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1 Introduction

Instances abound when a principal, e.g. society, is interested in the investigation of a certain

hypothesis. Indeed, important policy decisions may depend on whether, say, there is a

causal link between passively inhaling other people’s cigarette smoke and the occurrence of

cancer, or whether global warming trends are caused by certain emissions related to specific

kinds of economic activity. Often, though, it will not be practical for “society” to carry out

the necessary research itself; it will rather have to delegate the investigation to a group of

scientists, or, as is the case in my model, to a single scientist. The problem with that, of

course, is that this scientist will typically have interests of his own, some of which may even

be endogenously generated by society’s incentive scheme.

As is well known from the principal-agent literature, when an agent’s actions cannot

easily be monitored, his pay must be made contingent on his performance, so that he have

proper incentives to exert effort. Thus, the scientist will only get paid, or will get paid a

substantial bonus if, and only if, he proves his hypothesis. While this may well provide him

with the necessary incentives to work, unfortunately, it might also give him incentives to

fabricate, or manipulate, his data, in order to make it appear as though his hypothesis was

proved. In a setting involving Bayesian learning on the agent’s part, my model investigates

how optimally to achieve the dual objective of providing the agent with the right incentives

to work, while also making sure that he not be tempted to engage in manipulations and

trickery, even if said manipulations were not verifiable in a court of law, or even completely

unobservable. Alternatively, one could interpret my model as a model of technology adoption:

An agent is hired expressly to test some new production method, or some new way of doing

business, yet the boss cannot monitor whether the successes he observes are really due to the

new method, or whether the agent has surreptitiously availed himself of an old established

method to produce the observed results.

In my model, the agent can either shirk, in which case he will never have a success, but

which gives him some flow benefit, or he can cheat, which gives him an apparent success

according to some known distribution, or he can do the risky thing, and be honest. If the

hypothesis is incorrect, honesty never yields a success. The principal can only observe if

there has been a success or not; he cannot observe the agent’s actions, and, in particular, he

does not observe if a success has been achieved by honest means or whether it is the result

of manipulation.

I show that if even the investigation of a correct hypothesis yields breakthroughs at a

lower frequency than manipulation, honesty is not implementable at all. If, however, investi-

gating a correct hypothesis yields breakthroughs at a higher intensity than manipulation, the
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optimal incentive scheme I characterize will make sure that the agent is always honest up to

the first breakthrough at least, and even leads to the first-best levels and speed of experimen-

tation, so that there will be no deadweight loss from agency. Indeed, the optimal incentive

scheme exactly compensates the agent for his outside option of shirking, which is precisely

the relevant yardstick in the benchmark case where the principal conducts the investigation

himself. Thus, there will be just as much exploration when the principal has to delegate the

operation to an agent as there would be if he were in a position to conduct the investigation

himself; indeed, both the amount, as well as the speed, of overall experimentation will be

efficient.

While actually investigating the hypothesis, the agent increasingly grows pessimistic

about the thesis being true as long as no breakthrough arrives. At the first breakthrough,

though, all uncertainty is resolved, and the agent will know for sure that the hypothesis is

true. Thus, depending on the incentive scheme, this learning aspect might give the agent

an experimentation motive for using arm 1, i.e. he might be willing to forgo current payoffs

in order to gather information which might then potentially be parlayed into higher payoffs

come tomorrow. The principal himself has no learning motive as he is only interested in the

first breakthrough achieved on arm 1; however, when designing the incentive scheme, it will

be one of his goals to kindle the agent’s experimentation motive, by endogenously making

information valuable to him, as a way of providing incentives.

If honesty is implementable, I show that even though the principal is only interested

in the first breakthrough the agent achieves, he will reward the agent for the (m + 1)-st

breakthrough, with m ≥ 1, in order to deter the agent from engaging in manipulation,

which otherwise might seem expedient to him in the short term. Now, m will be chosen

high enough that even for an off-equilibrium agent, who has achieved his first breakthrough

via manipulation, m breakthroughs are so unlikely to be achieved by cheating that he will

prefer to be honest after his first breakthrough. This will put the cheating off-equilibrium

agent at a distinct disadvantage, as, in contrast to the honest on-path agent, he will not have

had a discontinuous jump in his belief. This difference in beliefs between on-equilibrium and

off-equilibrium agents in turn can be leveraged by the principal, who enjoys full commit-

ment power; thus, the principal can induce investigation of the hypothesis by endogenously

creating a high value of information for the agent.

To provide adequate incentives in the cheapest way possible, the principal will endeavor

to give the lowest possible value to a dishonest agent, given the continuation value he has

promised the on-equilibrium agent. While paying only for the (m + 1)-st breakthrough

ensures that off-equilibrium agents will not continue to cheat, they will nevertheless continue

to update their beliefs after their first success, and might be tempted to switch to shirking
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once they have grown too pessimistic about the hypothesis, a possibility that, as is well

known from the literature on strategic experimentation with bandits, gives them a positive

option value. In order to reduce this additional option value, an optimal incentive scheme

will make sure that the off-equilibrium agent will imitate the on-equilibrium agent to an

arbitrarily large extent.

The rest of the paper is set up as follows: section 2 reviews some relevant literature;

section 3 introduces the model; section 4 analyzes the provision of a certain continuation

value; section 5 characterizes the optimal mechanism before the first breakthrough, section 6

analyzes when the principal will optimally elect to stop the project, and section 7 concludes.

2 Related Literature

Holmström & Milgrom (1991) analyze a case where, not unlike in my model, the agent

performs several tasks, some of which may be undesirable from the principal’s point of view.

The principal may be able to monitor certain activities more accurately than others. They

show that in the limiting case with two activities where one activity cannot be monitored

at all, incentives will only be given for the activity which can in fact be monitored; if the

activities are substitutes (complements) in the agent’s private cost function, incentives are

more muted (steeper) than in the single task case. While their model could be extended to

a dynamic model where the agent controls the drift rate of a Brownian Motion signal,1 the

learning motive I introduce fundamentally changes the basic trade-offs involved. Indeed, in

my model, the optimal mechanism extensively leverages the fact that only an honest agent

will have had a discontinuous jump in his beliefs.

Bergemann & Hege (1998, 2005), as well as Hörner & Samuelson (2009) examine a

venture capitalist’s provision of funds for an investment project of initially uncertain quality;

the project is managed by an entrepreneur, who might divert the funds for his private

ends. The investor cannot observe the entrepreneur’s allocation of the funds, so that, off-

equilibrium, the entrepreneur may accumulate some private information about the quality of

the project. If the project is good, it yields a success with a probability that is proportional

to the amount of funds invested in it; if it is bad, it never yields a success. While Bergemann

& Hege (2005) and Hörner & Samuelson (2009) analyze the game without commitment,

Bergemann & Hege (1998) investigate the problem under full commitment. These papers

differ from my model chiefly in that there is no way for the entrepreneur to “fake” a success;

any success that is publicly observed will have been achieved by honest means alone.

1See Holmström & Milgrom (1987).
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Gerardi & Maestri (2008) investigate the case of a principal who, in order to find out

about the binary state of the world, has to employ an agent. The agent can decide to incur

private costs to exert effort to acquire an informative binary signal, one realization of which

is only possible in the good state. As for the principal, he can monitor neither the agent’s

effort choice nor the realization of the signal. The game ends as soon as the agent announces

that he has had conclusive evidence in favor of the good state. They show that the agent

needs to be left an information rent because of both the Moral Hazard and the Adverse

Selection problems, suggesting there would tend to be a deadweight loss from agency. In

my model, by contrast, the game does not end after the first breakthrough; much to the

contrary, I show that in my model, in order to give optimal incentives, it is absolutely vital

that they be provided via the continuation game that follows the first breakthrough rather

than via an immediate transfer. As a matter of fact, this construction makes sure that there

will be no deadweight loss from agency in my model.

One paper that is close in spirit to mine is Manso (2010), who analyzes a simple,

undiscounted two-period, model, where an agent can either shirk, try to produce in some

established manner with a known success probability, or experiment with a risky alternative.

He shows that, in order to induce experimentation, the principal will optimally not pay for

a success in the first period, and might even pay for early failure,2 while a success in the

second period is always rewarded. My continuous-time investigation confirms Manso’s (2010)

central intuition that it is better to give incentives through later rewards; furthermore, the

richer action and signal spaces in my fully-fledged dynamic model yield additional insights

into the structure of the optimal incentive scheme. Moreover, the dynamic structure allows

me to analyze the principal’s optimal stopping time, and to conclude that the overall amount

and speed of experimentation will be efficient, whenever honesty is implementable at all.

De Marzo & Sannikov (2008) also incorporate private learning on the agent’s part into

their model, where current output depends both on the firm’s inherent profitability and on

the agent’s effort, which is unobservable to the principal. Thus, off-equilibrium, the agent’s

private belief about the firm’s productivity will differ from the public belief. Specifically, if

the agent withholds effort, this depresses the drift rate of the firm’s Brownian motion cash

flow. They show that the firm will optimally accumulate cash as fast as it can until it reaches

some target level, after which it starts paying out dividends; the firm is liquidated as soon

as it runs out of cash. De Marzo & Sannikov (2008) show that one optimal way of providing

2This is an artefact of the discrete structure of the model and the limited signal space; indeed, in Manso’s
(2010) model, early failure can be a very informative signal that the agent has not exploited the known
technology, but has rather chosen the risky, unknown alternative. In continuous time, by contrast, arbitrary
precision of the signal can be achieved by choosing a critical number of successes that is high enough, as will
become clear infra.
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incentives is to give the agent an equity stake in the firm, which is rescindable in the case of

liquidation, and that liquidation decisions are efficient, agency problems notwithstanding.

To capture the learning aspect of the agent’s problem, I model it as a bandit problem.3

Bandit problems have been used in economics to study the trade-off between experimentation

and exploitation since Rothschild’s (1974) discrete-time single-agent model. The single-agent

two-armed exponential model, a variant of which I am using, has first been analyzed by Pres-

man (1990). Strategic interaction among several agents has been analyzed in the models by

Bolton & Harris (1999, 2000), Keller, Rady, Cripps (2005), Keller & Rady (2010), who all in-

vestigate the case of perfect positive correlation between players’ two-armed bandit machines,

as well as by Klein & Rady (2010), who investigate the cases of perfect, as well as imperfect,

negative correlation. Klein (2010) analyzes the case where bandits have three arms, with

the two risky ones being perfectly negatively correlated. While the afore-mentioned papers

all assumed that players’s actions, as well as the outcomes of their actions, were perfectly

publicly observable, Rosenberg, Solan, Vieille (2007), as well as Murto & Välimäki (2009),

analyze the case where actions are observable, while outcomes are not. Bonatti & Hörner

(2010) analyze the case where actions are not observable, while outcomes are. Bergemann

& Välimäki (1996, 2000) consider strategic experimentation in buyer-seller interactions. My

contribution to this literature is to introduce the question of optimal incentive provision into

a fully-fledged dynamic bandit model.

Rahman (2009, 2010) deals with the question of implementability in dynamic contexts,

and finds that, under a full support assumption, a necessary and sufficient condition for

implementability is for all non-detectable deviations to be unprofitable under zero transfers.

The issue of implementability turns out to be quite simple in my model, and is dealt with

in proposition 3.1.

3 The Model

There is one principal and one agent. The agent operates a bandit machine with three arms,

i.e. one safe arm yielding the agent a private benefit flow of s, one that is known to yield

breakthroughs according to Po(λ0) (arm 0), and arm 1, which either yields breakthroughs

according to Po(λ1) (if the time-invariant state of the world θ = 1, which is the case with

initial probability p0 ∈]0, 1[) or never yields a breakthrough (if the state is θ = 0). It is

commonly known that λ1, λ0 > 0. The principal only observes if, and at what time, there

has been a breakthrough; he does not observe on which arm the breakthrough has been

3See Bergemann & Välimäki (2008) for an overview of this literature.
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achieved. The agent in addition observes on which arm the breakthroughs have occurred.

The principal and the agent share a common discount rate r.

The principal, only being interested in the first breakthrough achieved on arm 1, chooses

and end date Ť (t) ∈ [t, T ] (where T ∈]T,∞[ is arbitrary), in case the first breakthrough

occurs at time t. Conditional on there having been no breakthrough, the game ends at

time t < ∞. I the first half of this paper, I take T to be exogenously given. In the second

half, the principal optimally chooses the end date T .4 There, I shall assume that the first

breakthrough achieved on arm 1 at time t gives the principal a payoff of e−rtΠ.

Formally, I consider the point processes {N i
t}0≤t≤T (for i ∈ {0, 1}), where N i

t measures

the number of breakthroughs achieved on arm i up to, and including, time t. In addition,

I define the point process {Nt}0≤t≤T , where Nt := N0
t + N1

t for all t. Moreover, I consider

the filtrations FN0+1
:=

{
FN0+1

t

}
0≤t≤T

and FN :=
{
FN

t

}
0≤t≤T

generated by the processes

{(N0
t , N1

t )}0≤t≤T and {Nt}0≤t≤T , respectively.

By choosing which arm to pull, the agent affects the probability of breakthroughs on

his several arms. Specifically, if he commits a constant fraction k0 of his unit endowment

flow to arm 0 over a time interval of length ∆ > 0, the probability of achieving at least one

breakthrough on arm 0 in that interval is given by 1 − e−λ0k0∆. If he commits a constant

fraction of k1 of his endowment to arm 1 over a time interval of length ∆ > 0, the probability

of achieving at least one breakthrough on arm 1 in that interval is given by θ
(
1− e−λ1k1∆

)
.

Formally, a strategy for the agent is a process {(k0,t, k1,t)}t which satisfies (k0,t, k1,t) ∈
{(a, b) ∈ R+ : a + b ≤ 1} for all t, and is FN0+1

-predictable, where ki,t (i ∈ {0, 1}) denotes

the fraction of the agent’s resource that he devotes to arm i at instant t. The agent’s

strategy space, which I denote by UA, is given by all the processes {(k0,t, k1,t)}t satisfying

these requirements.

A wage scheme offered by the principal is a non-negative, non-decreasing process {Wt}0≤t≤T

which is FN -adapted, where Wt denotes the discounted time 0 value of the cumulated pay-

ments the principal has consciously made to the agent up to, and including, time t. I

assume the agent is protected by limited liability; hence {Wt}0≤t≤T is non-negative and

non-decreasing.5 I furthermore assume that the principal has full commitment power, i.e.

he commits to a wage scheme {Wt}0≤t≤T , as well as a schedule of end dates {Ť (t)}t∈[0,T ], at

the outset of the game.

4I am essentially following Grossman & Hart’s (1983) classical approach to principal-agent problems in
that I first solve for the optimal incentive scheme given an arbitrary T (sections 4 and 5), and then let the
principal optimize over T (section 6).

5If the game ends at time Ť < T , we set WŤ+∆ = WŤ for all ∆ > 0.
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Over and above the payments he gets as a function of breakthroughs, the agent can

secure himself a safe payoff flow of s from the principal by pulling the safe arm; the principal,

however, can do nothing about this, and only observes it after the end of the game. The

idea is that society cannot observe its scientists shirking in real time, as it were; only after

the lab e.g. is shut down, such information might come to light, and society will only learn

ex post that it has been robbed of the payoff flow of s during the operation of the research

lab.

It is the principal’s goal to induce the agent to use arm 1 at least up to the first break-

through, and to do so in the most cost-efficient manner possible. Thus, I shall refer to

K :=
{{(k0,t, k1,t)}t ∈ UA : Nt = 0 ⇒ k1,t = 1

}
as the set of incentive compatible strategies.

Clearly, as it is the principal’s goal to get the agent to exert effort in order to achieve a

breakthrough, it is never a good idea for him to pay the agent in the absence of a break-

through; as the principal is only interested in the first breakthrough, the notation can be

simplified somewhat. Let {Wt}0≤t≤T be the principal’s wage scheme, and t the time of the

first breakthrough: In the rest of the paper, I shall write ht := ert (Wt − limτ↑tWτ ) for

the instantaneous lump sum the principal pays the agent as a reward for his first break-

through. By wt I denote the expected continuation value of an agent who has achieved his

first breakthrough on arm 1 at time t; formally,

wt := sup
{(k0,τ ,k1,τ )}t<τ≤Ť (t)

E

[
ert

(WŤ (t) −Wt

)
+ s

∫ Ť (t)

t

e−r(τ−t) (1− k0,τ − k1,τ ) dτ |FN0+1

t , N1
t = 1, lim

τ↑t
N1

τ = 0, N0
t = 0, {(k0,τ , k1,τ )}τ

]
.

The expected continuation payoff of an off-equilibrium agent, who achieves his first break-

through on arm 0 at time t, I denote by ωt; formally,

ωt := sup
{(k0,τ ,k1,τ )}t<τ≤Ť (t)

E

[
ert

(WŤ (t) −Wt

)
+ s

∫ Ť (t)

t

e−r(τ−t) (1− k0,τ − k1,τ ) dτ |FN0+1

t , N0
t = 1, lim

τ↑t
N0

τ = 0, N1
t = 0, {(k0,τ , k1,τ )}τ

]
.

The state of the world is uncertain; clearly, whenever the agent uses arm 1, he gets

new information about its quality; this learning is captured in the evolution of his (pri-

vate) belief p̂t that arm 1 is good. Formally, p̂t ≡ E
[
θ|FN0+1

t

]
. On the equilibrium

path, the principal will correctly anticipate p̂t; formally, pt = p̂t, where pt is defined by

pt := E
[
p̂t|FN

t , {(k0,t, k1,t)}t ∈ K
]
. In the following, I shall write pt whenever pt = p̂t, even

when analyzing the agent’s optimization problem.
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The evolution of beliefs is easy to describe, since only a good arm 1 can ever yield a

breakthrough. As the agent will always operate arm 1 until the first breakthrough, it is clear

that if on the equilibrium path Nt ≥ 1, then pt+∆ = 1 for all ∆ > 0. If Nt = 0, Bayes’ rule

implies that

pt =
p0e

−λ1t

p0e−λ1t + 1− p0

on the equilibrium path.

Now before the first breakthrough, given an arbitrary incentive scheme (ht, wt)0≤t≤T ,

the agent seeks to choose {(k0,t, k1,t)}0≤t≤T ∈ UA so as to maximize

∫ T

0

{
re−rt−λ1

∫ t
0 pτ k1,τ dτ−λ0

∫ t
0 k0,τ dτ [(1− k0,t − k1,t)s + k0,tλ0(ht + ωt) + k1,tλ1pt(ht + wt)]

}
dt.

subject to ṗt = −λ1k1,tpt(1− pt).

The following impossibility result is now immediate:

Proposition 3.1 If λ0 ≥ λ1, there does not exist a wage scheme {Wt}0≤t≤T implementing

any strategy in K.

Proof: Suppose λ0 > λ1. Then, any distribution over {Nt}0≤t≤T that can be generated

by a good arm 1 can be generated by a combination of arm 0 and the safe arm that puts

strictly positive weight on the safe arm. As the safe arm gives the agent an instantaneous

flow utility of s > 0, the latter option strictly dominates the former. If λ0 = λ1, arm 0

dominates arm 1 since p̂t < 1 before the first breakthrough.

In the rest of the paper, I shall therefore assume that λ1 > λ0. When we denote the

solution to the agent’s problem that is implemented by an incentive scheme (ht, wt)0≤t≤T as

{(k∗0,t, k
∗
1,t) ((ht, wt)0≤t≤T )}0≤t≤T , the principal’s problem is to choose (ht, wt)0≤t≤T so as to

minimize his wage bill ∫ T

0

re−rt−λ1

∫ t
0 pτ dτptλ1(ht + wt) dt

subject to {(k∗0,t, k
∗
1,t) ((ht, wt)0≤t≤T )}0≤t≤T ∈ K.

In the next two sections, I shall consider the end date T as given. In section 6, the

principal will optimally choose this end date T . Thus far, we have been silent on how the

continuation value of wt is delivered to the agent after his first breakthrough. It will turn

out, though, that the manner in which the principal gives the agent his continuation value

will matter greatly, as we will see in the next section.
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4 Incentives After The Breakthrough

4.1 Introduction

The purpose of this section is to analyze how the principal will deliver a promised continua-

tion value of wt given a first breakthrough has occurred at time t. His goal will be to find a

scheme which maximally discriminates between an agent who has achieved his breakthrough

on arm 1, as he was supposed to, and an agent who has been “cheating”, i.e. who achieved

the breakthrough on arm 0. Put differently, for any given promise wt to the on-equilibrium

agent, it is the principal’s goal to push the off-equilibrium agent’s continuation value ωt

down to as low a level as possible, as this will give the principal the biggest bang for his

buck in terms of incentives. As an off-equilibrium agent always has the option of imitating

the on-equilibrium agent’s strategy, we know that ωt ≥ p̂twt, where p̂t ∈ [pt, p0] denotes his

(off-equilibrium) belief at time t. Writing ωt as a function of p̂t, the following proposition

shows that it is possible to get arbitrarily close to this lower bound.

Proposition 4.1 For every ε > 0, wt ≥ s(1 − e−r(T−t)), and p̂t ∈ [pt, p0], there exists a

continuation scheme such that ωt(p̂t) ≤ p̂twt + s(1− e−rε).

Proof: Proof is by construction, see infra.

The construction of this wage scheme relies on the assumption that λ1 > λ0, implying

the variance in the number of successes with a good risky arm 1 is higher than with arm

0. Therefore, the principal will structure his wage scheme in such a way as to reward

realizations in the number of later breakthroughs that are “extreme enough” that they are

very unlikely to have been achieved on arm 0 as opposed to arm 1. Thus, even the most

pessimistic of off-equilibrium agents would prefer to bet on his arm 1 being good rather than

pull arm 0. Yet, now, in contrast to the off-equilibrium agents, an on-equilibrium agent will

know for sure that his arm 1 is good, and therefore has a distinct advantage when facing

the principal’s payment scheme after a first breakthrough. The agent’s anticipation of this

advantage in turn gives him the right incentives to use arm 1 rather than arm 0 before the

first breakthrough occurs.

4.2 Construction of An Optimal Continuation Scheme

My construction proceeds in several steps. First, the principal will only pay the agent for

the m-th breakthrough, where m is chosen large enough that even the most pessimistic of
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off-equilibrium agents will deem m breakthroughs more likely to occur on arm 1 than on

arm 0. Then, for a given ε > 0, I make sure that even the most pessimistic of off-equilibrium

agents will not switch to playing safe with more than ε time left to go. This requires a

certain minimum lump sum reward for the m-th breakthrough. Then, given this reward, the

end date Ť (t) is chosen appropriately so that the on-equilibrium agent exactly receive his

promised continuation value of wt in expectation.

Specifically, the agent is only paid a constant lump sum of V 0 after his (m + 1)-st

breakthrough, where m is chosen sufficiently high that even for the most pessimistic of all

possible off-equilibrium agents, m breakthroughs are more likely on arm 1 than on arm 0.

As λ1 > λ0, such an m obviously exists; e.g. any m satisfying pT

(
λ1

λ0

)m

> e(λ1−λ0)T will do.

Thus, for all types of off-equilibrium agents, arm 0 will be dominated by arm 1.6

Now, I recursively define auxiliary functions Vi(t̃; V 0) for i = 1, ...,m− 1 according to

Vi(t̃; V 0) := max
{ki,τ}∈M(t̃)

∫ Ť (t)

t̃

ki,τ

[
e−(r+λ1)(τ−t̃)

(
λ1Vi−1(τ ; V 0)− s

)]
dτ

whereM(t̃) denotes the set of measurable functions ki : [t̃, Ť (t)] → [0, 1], and I set V0(τ ; V 0) ≡
V 0.

The following lemma notes that, once the agent knows that θ = 1, his best reply is

given by a cutoff strategy, along with some useful properties of these functions Vi:

Lemma 4.2 The agent’s best response is given by a cutoff strategy:

Vi(t̃; V 0) := max
t∗i∈[t̃,Ť (t)]

∫ t∗i

t̃

e−(r+λ1)(τ−t̃)
(
λ1Vi−1(τ ; V 0)− s

)
dτ.

The functions Vi(t̃; V 0) are continuous, differentiable, ad strictly decreasing in t̃ and

strictly increasing in V 0 for t̃ < t∗i . Moreover, for V 0 > s
λ1

, it is the case that Ť (t) = t∗1 >

t∗2 > · · · > t∗m−1.

Proof: The statements obviously hold for i = 1, since V 0 = const > s
λ1

.

6The formula for m explicitly only makes sure the agent prefers the strategy “always stick with arm 1,
whatever befall” over the strategy “always stick with arm 0”. This is sufficient for our purposes, though,
because once it is optimal for the agent to play arm 0, he will no longer learn, and therefore it will always
remain optimal for him to play arm 0 in the future, given he is facing a reward scheme that is constant over
time. Moreover, on account of the linear structure of the agent’s optimization problem, it is never strictly
optimal for him to distribute his resources over several arms at the same time.
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For i > 1, I posit the induction hypothesis that

Vi−1(t̃; V 0) := max
t∗i−1∈[t̃,Ť (t)]

∫ t∗i−1

t̃

e−(r+λ1)(τ−t̃)
(
λ1Vi−2(τ ; V 0)− s

)
dτ,

and that Vi−1 is continuous, differentiable, and strictly decreasing. It now immediately

follows that

Vi(t̃; V 0) := max
t∗i∈[t̃,Ť (t)]

∫ t∗i

t̃

e−(r+λ1)(τ−t̃)
(
λ1Vi−1(τ ; V 0)− s

)
dτ,

with Vi−1(t
∗
i ) = s

λ1
.

Now, computing the derivative V̇i, one finds that

V̇i(t̃) = −e−(r+λ1)(t∗i−t̃) (λ1Vi−1(t
∗
i )− s) +

∫ t∗i−t̃

0

e−(r+λ1)χλ1V̇i−1(χ + t̃) dχ.

Since Vi−1 is strictly decreasing, we have that Vi−1(t
∗
i ) = s

λ1
, and that the first term is

zero, while the second term is strictly negative. This establishes that, for t̃ < t∗i , Vi is strictly

decreasing also.

Given that the Vi are strictly decreasing, we have that Vi(t
∗
i+1) = s

λ1
> 0; hence

Vi+1(t
∗
i+1) = 0. As Vi(t

∗
i ) = 0, and Vi is strictly decreasing, it follows that t∗i+1 < t∗i .

Clearly, V1(t̃; V 0) is strictly increasing in V 0 for all t̃ < Ť (t). A simple induction

argument establishes that Vi is strictly increasing in V 0 for all i = 1, ..., m− 1.

Next, I choose the constant V 0 in such a way that Vm−1(t̃) ≥ w̃(t̃; p̂t) with w̃ defined as

w̃(t̃; p̂t) =





s
λ1

+ 1−p̌τ

p̌τ

s
r−λ1

[
r
λ1
− e−(r−λ1)(T−τ)

]
if r 6= λ1

s
λ1

+ 1−p̌τ

p̌τ
s
[
T − t− 1

λ1

]
if r = λ1.

As I show in the appendix, the function w̃ denotes the reward for the next breakthrough

that has to be offered an agent with belief p̌t̃ for him to be exactly indifferent between

choosing arm 1 and the safe arm, conditional on his always choosing arm 1 till time T . Of

course, in actuality, the agent will stop using the safe arm at some time in [Ť (t) − ε, Ť (t)],

i.e. before time T . Yet, as w̃ is an increasing function of T , it provides an upper bound on

the actual indifference boundary.

Now, the off-equilibrium agent definitely will not play arm 0, because m breakthroughs

are more likely on arm 1 than on arm 0 and the reward for the m-th breakthrough is constant

over time; our construction also makes sure that he will never switch to the safe arm before

time Ť (t)− ε. Hence, the option value of doing so is bounded above by s(1− e−rε).

11



As a last step, we now need to make sure that the on-equilibrium agent is indeed

delivered an expected continuation value of wt. In order to do so, I first define another

auxiliary function f(Ť (t), V 0):

f(Ť (t), V 0) := Eτm,t∗

[
1τm≤Ť (t)e

−r(τm−t)
(
V 0 + s(1− e−r(Ť (t)−τm))

)
+ s(1− e−r(Ť (t)−t∗(Ť (t))))|Λ1

]

where Λ1 is the distribution over τm that is engendered by the stopping times (t∗m−1, ..., t
∗
1)

implied by the optimal behavior of the on-equilibrium agent, who knows that the state is

θ = 1, and t∗ is the appertaining time t-expected stopping time of the on-equilibrium agent

(which depends on Ť (t)).

Now, if wt ≤ f(T , V 0), we can choose Ť (t) so that wt = f(Ť (t), V 0). Otherwise, we

choose the constant δ > 0 so that wt = f(T , V 0 + δ).

Now, with Ť (t) chosen as described, it may well be the case that ε ≥ Ť (t) − t. In this

case, it might well happen that the off-equilibrium agent prefers to play safe all along on

]t, Ť (t)], in which case he collects a payoff of s(1−e−r(Ť (t)−t)) < s(1−e−rε) < s(1−e−rε)+p̂twt.

Or otherwise, the agent might play risky for a while, and switch to safe after a period of

length ξ ≤ Ť (t)− t ≤ ε, in which case his payoff is bounded above by s(1 − e−rξ) + p̂twt <

s(1− e−rε) + p̂twt.

Thus, in summary, the mechanism I have constructed delivers a certain given continu-

ation value of wt to the on-equilibrium agent; it must take care of two distinct concerns in

order to harness maximal incentive power at a given cost. On the one hand, it must make

sure off-equilibrium agents never continue to play arm 0; this is achieved by only rewarding

the (m + 1)-st breakthrough. On the other hand, the mechanism must preclude the more

pessimistic off-equilibrium agents from collecting an excessive option value from switching

between the safe arm and arm 1, so as to make being an off-equilibrium agent none too

attractive.

5 Before the Breakthrough–Optimal Incentive Scheme

Whereas in the previous section, I have investigated how a principal would optimally deliver

a given continuation value wt, the purpose of this section is to understand to what extent the

principal would optimally give incentives via continuation values wt, as opposed to immediate

rewards ht, which are paid out right at the moment of the first breakthrough. We recall from

proposition ?? that, for any given p̂t, the principal can choose a continuation scheme such

that ωt(p̂t) = p̂twt. Since the principal only cares about incentives on path, and, since,
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for any continuation scheme, it is always the case that ωt(pt) ≥ ptwt, at all times t, it is

clearly optimal for the principal to choose the continuation scheme that guarantees that

ωt(pt) = ptwt. Clearly, we have that wt ≥ (1 − e−r(T−t))s, since otherwise the agent would

prefer the safe arm over arm 1. In order to analyze this question, we first have to consider the

agent’s best response to a given incentive scheme (ht, wt)0≤t≤T , in order to derive necessary

conditions for the agent to best reply by always using arm 1 until the first breakthrough. In

a second step, we will then use these necessary conditions as constraints in the principal’s

problem as he seeks to minimize his wage bill.

While the literature on experimentation in bandits would typically use dynamic pro-

gramming techniques, this would not be expedient here, as an agent’s optimal strategy will

depend not only on his current belief and the current incentives he is facing but also on

the entire path of future incentives. To the extent we do not want to impose any ex ante

monotonicity constraints on the incentive scheme, today’s scheme need not be a perfect pre-

dictor for the future path of incentives; therefore, even a three-dimensional state variable

(pt, ht, wt) would be inadequate. Thus, I shall be using the Pontryagin approach of Optimal

Control.

The Agent’s Problem

Given an incentive scheme (ht, wt)0≤t≤T , the agent chooses (k0,t, k1,t) so as to maximize

∫ T

0

{
re−rt−λ1

∫ t
0 pτ k1,τ dτ−λ0

∫ t
0 k0,τ dτ [(1− k0,t − k1,t)s + k0,tλ0(ht + ωt(pt)) + k1,tλ1pt(ht + wt)]

}
dt.

subject to ṗt = −λ1k1,tpt(1− pt).

It will turn out to be useful to work with the log-likelihood ratio xt := ln
(

1−pt

pt

)
,

and the probability of no success on arm 0, yt := e−λ0

∫ t
0 k0,τ dτ , as the state variables in

our variational problem. These evolve according to ẋt = λ1k1,t (to which law of motion

I assign the co-state µt) and ẏt = −λ0k0,tyt (co-state γt), respectively. The initial values

x0 ≡ ln
(

1−p0

p0

)
and y0 = 1 are given, and xT and yT are free. The agent’s controls are

(k0,t, k1,t) ∈ {(a, b) ∈ R+ : a + b ≤ 1}.
Neglecting a constant factor, the Hamiltonian Ht is now given by

Ht = e−rtyt[(1− k0,t − k1,t)s + k0,tλ0(ht + ωt(xt))]

+ yte
−rt−xt [(1− k0,t − k1,t)s + k0,tλ0(ht + ωt(xt)) + k1,tλ1(ht + wt)]}

+ µtλ1k1,t − γtλ0k0,tyt.
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By the Maximum Principle, the equations (1), (2), (3), together with the transversality

conditions γT = µT = 0, are necessary for the agent’s behaving optimally by setting k1,t = 1

for all t:

µ̇t = e−rtyt

{
e−xt [(1− k0,t − k1,t)s + k0,tλ0(ht + ωt(xt)) + k1,tλ1(ht + wt)]− k0,tλ0(1 + e−xt)ω′(xt)

}
,

(1)

and

γ̇t = −e−rt{[(1− k0,t − k1,t)s + k0,tλ0(ht + ωt(xt))]

+ e−xt [(1− k0,t − k1,t)s + k0,tλ0(ht + ωt(xt)) + k1,tλ1(ht + wt)]}+ γtλ0k0,t. (2)

e−rtyt

[
e−xtλ1(ht + wt)− (1 + e−xt)s

]
+ µtλ1

≥ max
{
0, e−rtyt(1 + e−xt)[λ0(ht + ωt(xt))− s]− γtλ0yt

}
. (3)

In the appendix, it is shown that these conditions are also sufficient for optimality of

the agent’s behavior, thus validating my first-order approach.

The Principal’s Problem

Now, we turn to the principal’s problem, who will take the agent’s incentive constraint into

account when designing his incentive scheme with a view toward implementing k1,t = 1 for

almost all t ∈ [0, T ]; we note that k1,t = 1 for all t implies yt = 1 for all t. Thus, the

principal’s objective is to choose (ht, wt)0≤t≤T ∈ [0, L]× [s(1−e−r(T−t)), L] (for some L which

I choose large enough) so as to minimize
∫ T

0

re−rt−λ1

∫ t
0 pτ dτptλ1(ht + wt) dt

subject to the constraints (1), (2), (3), and the transversality conditions µT = γT = 0.

Neglecting constant factors and using the fact that xt = x0 + λ1t, which we derived

when we analyzed the agent’s problem, one can re-write the principal’s objective in terms of

the log-likelihood ratio as ∫ T

0

e−(r+λ1)t(ht + wt) dt.

This can be viewed as a variational problem with the co-state variables (µt, γt) from the

agent’s problem as the state variables. I denote the co-state associated with µt as ξt, and
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the one associated with γt as ηt. I define νt as the Lagrangian parameters associated with

the agent’s incentive constraints (3).

As we have seen, µt and γt evolve according to

µ̇t = e−rt−xtλ1(ht + wt),

and

γ̇t = −e−rt−xtλ1(ht + wt) = −µ̇t.

The generalized Hamiltonian is given by

Ht = −re−(r+λ1)t(ht + wt) + (ξt − ηt)e
−rt−xtλ1(ht + wt)

+νt

{
e−rt

[
e−xtλ1(ht + wt)− (1 + e−xt)s

]
+ µtλ1 −max

{
0, e−rt(1 + e−xt) [λ0(ht + ωt(xt))− s]− γtλ0

}}
.

In the appendix, I prove the existence of an optimal plan, a result I state formally in

the following lemma.

Lemma 5.1 There exists an optimal wage scheme.

Proof: See the discussion of the principal’s optimization problem in the appendix.

By Pontryagin’s Principle, any optimal plan must maximize Ht; in the appendix, I

show that the optimal plans are actually characterized by these first-order conditions. In the

following lemma, I make precise the intuition that if a plan is optimal, the agent’s incentive

constraint will bind for almost all t.

Lemma 5.2 In any optimal plan, the agent’s incentive constraint binds a.s.

Proof: Suppose (ht, wt)0≤t≤T is an optimal plan. As the plan is optimal, it must be in-

centive compatible for a.a. t. This means that either ht > 0 or wt > s(1 − e−r(T−t)) for

a.a. t, for otherwise playing safe is a strictly dominant action for the agent. Now, suppose

that, under (ht, wt)0≤t≤T , the incentive constraint was slack on a set of positive measure.

This means that there exists an interval [t1, t2], with t1 < t2, such that the incentive con-

straint is slack a.e. on [t1, t2]. Then there exists a collection (εt)t1≤t≤t2 with εt > 0 and an

incentive compatible plan (h̃t, w̃t)0≤t≤T satisfying (h̃t, w̃t) = (ht, wt) if t ∈ [0, t1]∪ [t2, T ], and

h̃t + w̃t = ht + wt − εt if t ∈ [t1, t2]. As [t1, t2] has positive measure, the principal is strictly

better off under (h̃t, w̃t)0≤t≤T , contradicting the optimality of (ht, wt)0≤t≤T .
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In the next lemma, we shall see that it can never be strictly optimal for the principal

to pay for the first breakthrough:

Lemma 5.3 The principal can without loss restrict himself to plans (ht, wt)0≤t≤T with ht = 0

for all t.

Proof: Consider an incentive compatible plan (ĥt, ŵt)0≤t≤T with ĥt > 0 for some t. Con-

sider the alternative plan (ht, wt)0≤t≤T with ht ≡ 0 and wt = ŵt+ĥt. Applying proposition 4.1

for an ε satisfying 1−e−rε ≤ 1−pt

2
ĥt

s
(which exists, because ĥt > 0), shows that (ht, wt)0≤t≤T is

incentive compatible. Moreover, it gives the principal exactly the same payoff as the original

plan (ĥt, ŵt)0≤t≤T .

Now, we are ready to characterize the optimal incentive scheme, which is essentially

unique in the class of optimal schemes with ht = 0 for a.a. t, as the following proposition

shows. The characterization relies on the fact, which we have formalized in lemma 5.2, that

it never pays for the principal to give strict rather than weak incentives for the agent to do

the right thing, because if he did, he could lower his expected wage bill while still providing

adequate incentives. This means that the agent is indifferent between doing the right thing

and using arm 1, on the one hand, and his next best outside option on the other hand. Yet,

the wage scheme we have constructed in section 4 makes sure that the agent’s best outside

option can never be arm 0. Indeed, playing arm 0 yields the agent approximately ptwt after

a breakthrough, which occurs with an instantaneous probability of λ0dt if arm 0 is pulled

over a time interval of infinitesimal length dt. Arm 1, by contrast, yields wt in case of a

breakthrough, which occurs with an instantaneous probability of ptλ1dt; thus, as λ1 > λ0,

arm 1 dominates arm 0. Any optimal incentive scheme now has the property that the agent

is exactly indifferent between the safe arm and arm 1. It is therefore no surprise that

our optimal scheme mirrors the function w̃, which we have introduced in section 5. These

insights are summarized in the following two propositions:

Proposition 5.4 An optimal plan is given by ht = 0 and

wt =
s

λ1

eλ2
1(T−t) +

s

1 + λ1

1− pt

pt

[
1

λ1

+ eλ1(1+λ1)(T−t)

]

for all t ∈ [0, T ].

Proof: By lemmas 5.1 and 5.3, we know that there exists an optimal wage scheme (ht, wt)0≤t≤T

with ht = 0 for all t. In this scheme, lemma 5.2 implies that one of the following two con-

straints will bind almost surely:
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e−rt
[
e−xtλ1wt − (1 + e−xt)s

]
+ µtλ1 ≥ 0, (4)

e−rt
[
e−xtλ1wt − (1 + e−xt)s

]
+ µtλ1 ≥ e−rt(1 + e−xt) [λ0ωt(xt)− s]− γtλ0. (5)

Moreover, by the maximum principle, we know that, for any t, µt = −γt. Now, suppose

that the constraint (4) is slack on a set of positive measure. This means that there exist

times t1 < t2 such that (4) is slack a.s. on [t1, t2]. Lemma 5.2 implies that constraint (5)

will bind a.s. on [t1, t2]. Simple algebra now shows that for (4) to hold given that (5) binds,

it has to be the case that ωt ≥ ptwt +
(

1
λ0
− 1

λ1

)
s a.e. on [t1, t2]. Yet, by proposition 4.1,

there exists an alternative scheme (h̃t, w̃t, ω̃t) with h̃t ≡ ht ≡ 0 and w̃t ≡ wt for all t, yet

ω̃t < ptwt +
(

1
λ0
− 1

λ1

)
s. Clearly, (h̃t, w̃t, ω̃t) ≡ (ht, wt, ω̃t) still satisfies (4) with slackness

a.e. on [t1, t2], since (4) is independent of ω̃t. Since ω̃t < ωt a.e. on [t1, t2], it follows that (5)

is now also slack a.s. on [t1, t2]. Hence, there exists a sequence of (δt)t1≤t≤t2 with δt > 0 such

that, for ŵt := w̃t − δt, (ht, ŵt, ω̃t) satisfy both constraints and imply lower wage costs for

the principal on [t1, t2], a set of positive measure, contradicting the optimality of (ht, wt, ωt).

Thus, we have shown that if ht = 0 for all t, and (ht, wt) is optimal, then (4) binds

a.s. Furthermore, by the maximum principle, γt = λ1

∫ T

t
e−rτ−xτ wτ , which completes the

proof.

That the agent will be kept indifferent between arm 1 and the safe arm is a feature of

any optimal wage scheme, as the following proposition shows:

Proposition 5.5 Any optimal wage scheme (ht, wt)0≤t≤T has the property that, prior to

the first breakthrough, it keeps the agent indifferent between arm 1 and the safe arm almost

surely.

Proof: Proof is by contradiction. Suppose to the contrary that (ht, wt)0≤t≤T is an optimal

wage scheme with the property that the agent strictly prefers arm 1 over the safe arm a.s.

on some interval [t1, t2] with 0 ≤ t1 < t2 ≤ T . In a first step, I shall show that this implies

that ht > 0 a.s. on [t1, t2], which, as I show in a second step, contradicts the optimality of

(ht, wt)0≤t≤T .

Indeed, suppose it is not the case that ht > 0 a.s. on [t1, t2]. Then, there exists a time

interval [t′1, t
′
2] ⊆ [t1, t2] such that t′1 < t′2 and ht = 0 a.s. on [t′1, t

′
2]. Since the agent a.s.

strictly prefers arm 1 over the safe arm on this interval, it follows by lemma 5.2 that the

17



constraint (5) will bind a.s. on [t′1, t
′
2], which, as we have seen in the proof of Proposition 5.4,

contradicts optimality.

Therefore, ht > 0 a.s. on [t1, t2]. As the agent strictly prefers arm 1 over the safe arm,

lemma 5.2 implies that the incentive constraint

e−rt
[
e−xtλ1(ht + wt)− (1 + e−xt)s

]
+ µtλ1 ≥ e−rt(1 + e−xt) [λ0(ht + ωt(xt))− s]− γtλ0

will bind for a.a. t ∈ [t1, t2]. Now, consider the alternative plan (ĥt, ŵt)0≤t≤T with ĥt = 0 and

ŵt = wt+ht for all t ∈ [t1, t2], and ĥt = ht and ŵt = wt for all t ∈ [0, t1[∪ ]t2, T ]. Arguing as in

the proof of lemma 5.3, one shows that (ĥt, ŵt)0≤t≤T satisfies the incentive constraint (3) with

slackness, and gives the principal exactly the same payoff as the original plan (ht, wt)0≤t≤T .

Therefore, by lemma 5.2, the principal can strictly improve over (ĥt, ŵt)0≤t≤T , and hence

over (ht, wt)0≤t≤T .

Thus, an immediate implication of the preceding proposition is that the optimal incen-

tive scheme is essentially unique in that wt + ht is a.s. uniquely pinned down in any optimal

incentive scheme:

Corollary 5.6 If (ht, wt)0≤t≤T is optimal, then

ht + wt =
s

λ1

eλ2
1(T−t) +

s

1 + λ1

1− pt

pt

[
1

λ1

+ eλ1(1+λ1)(T−t)

]

t-a.s.

6 The Optimal Stopping Time

In this section, the principal can optimally choose the end date T , which we have taken to

be given thus far. As the main result of this section, I shall show that agency costs do not

imply that the principal will stop the project inefficiently early. As the first-best benchmark,

I use the solution which is given by the hypothetical situation in which the principal operates

the bandit himself. He would obviously never use arm 0. Therefore, as is well known, his

problem is equivalent to a one-armed bandit problem where he has to decide at what time

to stop using the risky arm, which he pulls at a flow cost of s, conditional on not having

obtained a success thus far, i.e. he chooses a stopping time T so as to maximize

∫ T

0

{
re−rt−λ1

∫ t
0 pτ dτ (ptλ1Π− s)

}
dt. (6)
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Clearly, the integrand is positive if, and only if, ptλ1Π ≥ s, i.e. as long as pt ≥ s
λ1Π

=: pm.

As the principal is only interested in the first breakthrough, information has no value for

him, meaning that, very much in contrast to the classical bandit literature, he is not willing

to forgo current payoffs in order to learn something about the state of the world. In other

words, he will behave myopically, i.e. as though the future was of no consequence to him,

and stops playing risky at his myopic cutoff belief pm.

Now, as the principal delegates the investigation to an agent, he will choose T so as to

maximize ∫ T

0

{
re−rt−λ1

∫ t
0 pτ dτptλ1 (Π− (ht + wt))

}
dt. (7)

Thus, all that changes with respect to the first best problem (6) is that the opportunity

cost flow s is now replaced by the wage costs ht +wt, which only have to be paid out in case

of a success, which happens with an instantaneous probability of ptλ1dt. Yet, recall from

the preceding sections that given the optimal incentive scheme we have computed there, the

principal only needs to compensate the agent for his outside option of using the safe arm;

yet, this is exactly what risky arm 1 has to compensate the principal for in the first-best

problem. Thus, the following result should come as little surprise:

Proposition 6.1 The principal stops the delegated project at the time T ∗ when pT ∗ = pm.

Proof: After we plug the ht + wt we have determined in corollary 5.6 into the principal’s

objective (7), we find that his problem is equivalent to maximizing

∫ T

0

e−(r+λ1)t

[
λ1Π− seλ2

1(T−t) − s

1 + λ1

ex0+λ1t
(
1 + λ1e

λ1(1+λ1)(T−t)
)]

dt.

If the principal were to stop at time t, his payoff after time t would be zero. If instead he

decided to stop “an instant later”, i.e. at time t+ dt, his payoff from doing so would amount

to e−(r+λ1)t
[
λ1Π− seλ2

1dt − s
1+λ1

ex0+λ1t
(
1 + λ1e

λ1(1+λ1)dt
)]

dt, which exceeds the payoff from

stopping at time t if, and only if, λ1Π − s
pt
≥ 0. As pt monotonely decreases over t, the

left-hand side of this expression is monotonely decreasing in t, so that there is a unique

optimal stopping time T ∗, which is given by pT ∗ = pm.

Thus, while delegating the project to an agent forces the principal to devise quite a

complicated incentive scheme, it does not force him to stop the exploration inefficiently

early; hence, in the second-best solution, there is no efficiency loss stemming from agency

costs. In summary, if λ0 ≥ λ1, it is impossible to have the agent use arm 1; if λ0 < λ1, it is

possible to give incentives in a manner that even achieves efficiency.
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7 Conclusion

The present paper introduces the question of optimal incentive design into a dynamic single-

agent model of experimentation on bandits. I have shown that even though the principal

only cares about the first breakthrough, he only rewards later ones. Structuring incentives

appropriately allows the principal to achieve first-best levels of exploration.

The present paper only investigates the case of a single agent. It would be interesting to

explore how the structure of the optimal incentive scheme would change if several agents were

simultaneously working for the same principal. Intuition would suggest that the rationale

for only rewarding later breakthroughs should carry over to that case. Previous literature

on strategic experimentation on bandits with exogenously given rewards has found that in

most cases the efficient amount of experimentation cannot be achieved in any Markov perfect

equilibrium.7 It would be quite compelling to investigate under what conditions efficiency

could be sustained with several players. I intend to explore these questions in future work.

7See Bolton & Harris (1999) or Keller, Rady, Cripps (2005), for positively correlated bandits, for instance.
Klein & Rady (2010), by contrast, find that for perfectly negatively correlated bandits the overall amount
of experimentation is efficient in any equilibrium, while there exist equilibria for imperfectly negatively
correlated bandits with the same efficiency properties; the speed of learning will typically be inefficiently
slow, unless the exogenously given stakes are low. Klein (2010), by contrast, shows that when players are
able to choose if they want to investigate a given hypothesis or its negation, the efficient solution can be
implemented in a Markov perfect equilibrium if, and only if, the stakes exceed a certain threshold.

20



Appendix

Derivation of the Function w̃

Let t and p̂t be given. As in section 5, it is again convenient to work with the log-likelihood ratio
xτ := ln

(
1−p̌τ

p̌τ

)
. We now consider the Hamiltonian for the hypothetical problem where the off-

equilibrium agent with initial belief p̂t has to allocate his flow endowment between the safe arm
and arm 1 over the time interval [t, T ], subject to ẋτ = λ1k1,τ (co-state variable µτ ), xt given and
xT free, and his first breakthrough on arm 1 is rewarded according to the function w̃(τ ; p̂t), which
is to be determined:8

H̃τ = e−r(τ−t)k1,τ

[−(1 + e−xτ )s + e−xτ λ1w̃(τ ; p̂t)
]
+ µτλ1k1,τ .

Clearly, the agent’s choice set is closed and bounded, the set of admissible policies is non-
empty, and the state variable is bounded. Moreover, the objective is linear in the choice variable;
thus, existence of an optimal plan follows from the Existence Theorem of Filippov-Cesari (Thm. 8
in Seierstad & Sydsæter, 1987, p. 132).

To show sufficiency of the first-order Pontryagin conditions, I use the same variable trans-
formation as Bonatti & Hörner (2010), qτ := e−xτ . The maximized Hamiltonian is then clearly
concave in qτ , so that sufficiency follows from Arrow’s Sufficiency Theorem (Thm. 5 in Seierstad &
Sydsæter, 1987, p. 107).

Now, Pontryagin’s conditions are given by µT = 0,

µ̇τ = e−r(τ−t)−xτ k1,τ [λ1w̃(τ ; p̂t)− s] ;

and the agent is indifferent between choosing arm 1 and the safe arm at time τ if, and only if,

e−r(τ−t)
[
e−xτ λ1w̃(τ ; p̂t)− (1 + e−xτ )s

]
+ µτλ1 = 0.

Now, plugging in k1,τ = 1 for all τ ∈ [t, T ] gives us w̃ as defined in the text.

The Agent’s Optimization Problem

As derived in the text, the agent’s Hamiltonian is given by

Ht = e−rtyt[(1− k0,t − k1,t)s + k0,tλ0(ht + ωt(xt))]

+ yte
−rt−xt [(1− k0,t − k1,t)s + k0,tλ0(ht + ωt(xt)) + k1,tλ1(ht + wt)]}

+ µtλ1k1,t − γtλ0k0,tyt.

8Here, it turns out to be convenient to normalize payoffs by subtracting a flow of s. This way, all the
dynamics stop as soon as the agent switches to safe.
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with the state variables evolving according to ẋt = λ1k1,t (co-state µt) and ẏt = −λ0k0,tyt

(co-state γt), x0 given, y0 = 1, and xT and yT free, and (k0,t, k1,t) ∈ {(a, b) ∈ Rt : a + b ≤ 1} ≡ UA
T .

Clearly, UA
T is closed and bounded, the set of admissible policies is non-empty, and the state

variables are bounded. Moreover, the objective is linear in the choice variables; thus, existence of
an optimal plan follows from the Existence Theorem of Filippov-Cesari (Thm. 8 in Seierstad &
Sydsæter, 1987, p. 132).

To show sufficiency of Pontryagin’s conditions, I invoke Arrow’s Sufficiency Theorem (Thm.
5 in Seierstad & Sydsæter, 1987, p. 107). To do so, I define the new state variables ỹt := − ln yt

(co-state γ̃t), and zt := −eỹt−xt (co-state ζt). Thus, ˙̃yt = λ0k0,t and żt = zt(λ0k0,t − λ1k1,t). Then,

Ht = −e−rt+ỹt [(1− k0,t − k1,t)s + k0,tλ0(ht + ωt(zt))]

+ e−rtzt [(1− k0,t − k1,t)s + k0,tλ0(ht + ωt(zt)) + k1,tλ1(ht + wt)]}
+ γ̃tλ0k0,t + ζtzt(k0,tλ0 − k1,tλ1).

As Ht is linear in the control variables, the maximized Hamiltonian is given by plugging in
either k0,t = k1,t = 0, (k0,t, k1,t) = (0, 1) or (k0,t, k1,t) = (1, 0) in the above expression. We shall now
show that Ht is concave in (ỹt, zt) for each of these three cases, which in turn implies sufficiency of
the first-order Pontryagin conditions by Arrow’s Theorem.

If k0,t = k1,t = 0,
Ht = −e−rt+ỹts + e−rtzts,

and hence clearly concave.
If (k0,t, k1,t) = (0, 1),

Ht = e−rtztλ1(ht + wt)− ζtztλ1,

which is linear, and hence concave.
If (k0,t, k1,t) = (1, 0) we note that zt = pt(zt − eỹt), and thus

Ht = e−rtλ0zt(ht + δ̂t + wt)− e−rt+ỹtλ0(ht + δ̂t) + λ0(ζtzt + γ̃t),

hence concave also.9

The Principal’s Optimization Problem

As derived in the text, the principal’s Hamiltonian is given by

Ht = −re−(r+λ1)t(ht + wt) + (ξt − ηt)e−rt−xtλ1(ht + wt)

+νt

{
e−rt

[
e−xtλ1(ht + wt)− (1 + e−xt)s

]
+ µtλ1 −max

{
0, e−rt(1 + e−xt) [λ0(ht + ωt(xt))− s]− γtλ0

}}
.

9Here, I set ωt ≡ ptwt + δ̂t. In proposition ??, we have seen that for any ε > 0, there exists a continuation
scheme such that ptwt ≤ ωt ≤ ptwt + s(1 − e−rε). Equivalently, we can think of the principal choosing
δ̂t ∈ [ε, L] with ε > 0 sufficiently small.
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with the state variables evolving according to µ̇t = e−rt−xtλ1(ht + wt) (co-state ξt), and
γ̇t = −e−rt−xtλ1(ht + wt) (co-state ηt), and µT = γT = 0.

Clearly, the set of admissible controls and states is non-empty for L < ∞ large enough; e.g. the
plan expounded in proposition 5.4 is admissible. Moreover, µt and γt are bounded for all admissible
(µt, γt, ht, wt) because (ht, wt)0≤t≤T ∈ [0, L] × [s(1 − e−r(T−t)), L] and γT = µT = 0. As the set
of feasible controls is bounded, the set of incentive compatible controls is also bounded. Since the
objective is linear in the controls, all that remains to be shown is that the constraint set is convex
for any given t and (µt, γt). Existence of an optimal plan then follows by Fillipov-Cesari’s Theorem
(Thm. 2, Seierstad & Sydsæter, 1987, p. 285).

The incentive compatibility constraint can be written as the following two conditions:

e−rt
[
e−xtλ1(ht + wt)− (1 + e−xt)s

]
+ µtλ1 ≥ 0,

and

e−rt
[
e−xtλ1(ht + wt)− (1 + e−xt)s

]
+ µtλ1 ≥ e−rt(1 + e−xt)

[
λ0(ht + δ̂t +

wt

1 + ext
)− s

]
− γtλ0

which, in (ht, wt, δ̂t)-space, is the intersection of two half-spaces, and therefore convex.
As both the objective as well as the above constraints are linear in both control and state

variables, sufficiency of first-order conditions immediately follows from Mangasarian’s Theorem
(see Seierstad & Sydsæter, 1987, Thm. 5, p. 287).
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