Aufgabe 1 (25 Punkte)

Gegeben sei ein lineares Regressionsmodell in der Form.

$$y_t = x_{t1}\beta_1 + x_{t2}\beta_2 + e_t, \qquad t = 1, \dots, 10$$
 (1)

Dabei ist

 y_t : Teekonsum in den USA (in 1000 Tonnen),

 x_{t1} : Nimmt den Wert 1 an für alle Perioden,

 x_{t2} : Durchschnittlicher Preis des Tees in Periode t (in Tausend \$/Tonne).

Für die Jahre 1990-1999 wurden folgende Daten ermittelt.

$$\overline{y} = 2.14$$
, $\sum x_{t2} = 12$, $\sum y_t^2 = 49$, $\sum x_{t2}^2 = 19$, $\sum y_t x_{t2} = 22$

- 1. Schätzen Sie die Koeffizienten des Modells mit der KQ-Methode.
- 2. Interpretieren Sie den geschätzten Koeffizienten b_2 .
- 3. Schätzen Sie die Varianz des Störterms e_t .
- 4. Berechnen Sie das Bestimmtheitsmaß für das geschätzte Regressionsmodell und interpretieren Sie $1 R^2$.
- 5. Erstellen Sie eine Prognose für das Jahr 2000 unter der Annahme, dass der durchschnittliche Preis des Tees 1.5 Tausend \$/Tonne beträgt.
- 6. Nehmen Sie an, dass die Störterme normalverteilt sind. Zeigen Sie, dass gilt:

$$\frac{\tilde{\sigma}^2 T}{\sigma^2} = \frac{\hat{\sigma}^2 (T - K)}{\sigma^2},$$

Dabei ist $\tilde{\sigma}^2$ die auf Basis der ML-Residuen und $\hat{\sigma}^2$ die auf Basis der KQ-Residuen geschätzte Varianz σ^2 .

7. Schätzen Sie das Modell (1) erneut ohne Konstante. Welches Modell würden Sie aus ökonomischen Gründen vorziehen? Begründen Sie Ihre Antwort kurz.

Aufgabe 2 (30 Punkte)

Betrachten Sie das lineare Regressionsmodell

$$y_t = \beta_1 + x_{t2}\beta_2 + x_{t3}\beta_3 + e_t, \qquad e \sim N(0, \sigma^2 I_T)$$
 (2)

Folgende Ergebnisse sind Ihnen bekannt:

$$X'X = \begin{bmatrix} 10 & 10 & 5 \\ 10 & 30 & 15 \\ 5 & 15 & 20 \end{bmatrix}, \quad (X'X)^{-1} = \begin{bmatrix} 0.15 & -0.05 & 0 \\ -0.05 & 0.07 & -0.04 \\ 0 & -0.04 & 0.08 \end{bmatrix}$$
$$X'y = \begin{bmatrix} 7 \\ -7 \\ -26 \end{bmatrix}, \quad \sum_{t=1}^{T} y_t^2 = 60, \quad b = \begin{bmatrix} 1.4 \\ 0.2 \\ -1.8 \end{bmatrix}$$

Für die folgenden Hypothesentests verwenden Sie bitte ein Signifikanzniveau von 5%, falls nichts anderes angegeben ist.

- 1. Testen Sie die Koeffizienten β_2 und β_3 einzeln auf Signifikanz.
- 2. Testen Sie nun die Steigungsparameter gemeinsam auf Signifikanz.
- 3. Testen Sie die Hypothese, dass $\beta_1 + \beta_2 + \beta_3 = 0$ ist. Hinweis: Überlegen Sie sich zunächst, welche Form die Restriktionsmatrix R dabei hat.
- 4. Gehen Sie nun davon aus, dass die Fehlervarianz bekannt ist mit $\sigma^2 = 0.7$.
 - (a) Erstellen Sie unter dieser Annahme ein 95% Konfidenzintervall für β_3 .
 - (b) Testen Sie die Hypothese, dass $\beta_3 \leq -2.2$ versus $\beta_3 > -2.2$. Auf welchem Signifikanzniveau würden Sie den Test gerade noch annehmen?
- 5. Eviews Aufgabe: Abbildung 1 enthält die Schätzergebnisse einer Regression der Benzinausgaben (Y) auf den Benzinpreis (X2), das Reale Pro-Kopf Einkommen (X3) und die durchschnittlich gefahrenen Kilometer pro Liter (X4).
 - (a) Geben Sie alle Variablen an, bei denen Sie auf dem 1% Signifikanzniveau die Nullhypothese verwerfen würden, dass die jeweilige Variable keinen Einfluss auf die Benzinausgaben hat.
 - (b) Testen Sie auch die Hypothese, dass die Benzinausgaben im gleichen Jahr um 2 Einheiten sinken, falls pro Liter Benzin im Durchschnitt ein Kilometer mehr gefahren wird.

Dependent Variable: Y Method: Least Squares Date: 07/12/04 Time: 19:04 Sample(adjusted): 1960:2 1990:4

Included observations: 123 after adjusting endpoints

	moduce observations. 125 after adjusting chapolitis							
<u>Variable</u>	Coefficient	Std. Error	t-Statistic	Prob.				
X2	-0.266588	0.049824	-5.350543	0.0000				
X2(-1)	0.090604	0.082238	1.101729	0.2731				
X2(-2)	0.018723	0.085938	0.217872	0.8280				
X2(-3)	-0.016477	0.085831	-0.191965	0.8481				
X2(-4)	-0.117434	0.083320	-1.409447	0.1617				
X2(-5)	0.109278	0.049632	2.201753	0.0299				
Х3	0.543415	0.190712	2.849392	0.0053				
X3(-1)	-0.044882	0.267667	-0.167677	0.8672				
X3(-2)	-0.000236	0.266732	-0.000883	0.9993				
X3(-3)	0.001656	0.259612	0.006381	0.9949				
X3(-4)	0.147558	0.252834	0.583614	0.5607				
X3(-5)	0.339102	0.182228	1.860861	0.0656				
X4	-0.876377	0.896924	-0.977092	0.3308				
X4(-1)	1.560587	1.853274	0.842070	0.4017				
X4(-2)	-1.838147	2.039956	-0.901072	0.3696				
X4(-3)	0.825074	2.060889	0.400349	0.6897				
X4(-4)	1.236529	1.916559	0.645182	0.5202				
X4(-5)	-1.466658	0.950193	-1.543537	0.1257				
C	-1.245670	0.142382	-8.748793	0.0000				
R-squared	0.977228	Mean dependent var		-7.752780				
Adjusted R-squared	0.973287	S.D. dependent var		0.111024				
S.E. of regression	0.018146	Akaike info criterion		-5.039599				
Sum squared resid	0.034244	Schwarz criterion		-4.605197				
Log likelihood	328.9354	F-statistic		247.9477				
Durbin-Watson stat	1.835879	Prob(F-statistic)		0.000000				

Abbildung 1: Y - Benzinausgaben, X2 - Benzin
preis, X3 - Reales Pro-Kopf Einkommen, X4 - durchschnittlich gefahrene Kilometer pro Liter (Aufgabe 2)

Aufgabe 3 (20 Punkte)

1. Nehmen Sie folgendes Modell an:

$$y_t = \beta_1 + x_{t2}\beta_2 + e_t$$
 für $t = 1, \dots, 6$.

Eine einfache KQ-Schätzung mit EVIEWS liefert das Ergebnis in Abbildung 2, sowie die geschätzten Fehler:

- (a) Führen Sie mit den EVIEWS-Ergebnissen aus Abbildung 2 einen Durbin-Watson Test auf einem 5% Signifikanzniveau durch. Nehmen Sie als Alternativ-Hypothese an, dass positive Autokorrelation erster Ordnung vorliegt.
- (b) Nehmen Sie nun an, dass gilt:

$$e_t = \rho e_{t-1} + \nu_t \quad \text{mit} \quad 0 < \rho < 1 \quad \text{und} \quad \nu_t \stackrel{iid}{\sim} N(0, 1)$$

- i. Schätzen Sie $\hat{\rho}$ mit der KQ-Methode.
- ii. Zeigen Sie, dass der einfache KQ-Schätzer erwartungstreu ist.
- iii. Stimmt die folgende Aussage: "Unter der Annahme, dass positive Autokorrelation vorliegt, sind die Standardfehler in Abbildung 2 falsch berechnet worden."? Begründen Sie kurz.
- 2. Gegeben sei nun das Modell

$$y_t = \beta_1 + x_{t2}\beta_2 + e_t$$
 wobei $e_t = 0.5e_{t-1} + \nu_t$ und $\nu_t \stackrel{iid}{\sim} N(0, 1)$ für $t = 1, \dots, 6$.

Desweiteren sind Ihnen folgende Angaben bekannt:

$$X'\Psi^{-1}y = \left[\begin{array}{c} 35.59 \\ 175.63 \end{array} \right] \quad , \quad X'\Psi^{-1}X = \left[\begin{array}{cc} 2 & 6 \\ 6 & 33.5 \end{array} \right] \quad , \quad X'\Psi X = \left[\begin{array}{cc} 18.75 & 68.875 \\ 68.875 & 274.33 \end{array} \right],$$

$$X'y = \begin{bmatrix} 112.91 \\ 482.76 \end{bmatrix} \quad , \quad X'X = \begin{bmatrix} 6 & 21 \\ 21 & 91 \end{bmatrix}.$$

- (a) Schätzen Sie $\beta = (\beta_1, \beta_2)'$ nun mit der verallgemeinerten KQ-Methode (GLS) und berechnen Sie $Cov(\hat{\beta})$.
- (b) Es kann gezeigt werden, dass für jeden erdenklichen Vektor $a = (a_1, a_2)'$,

4

$$a'Cov(b)a > a'Cov(\hat{\beta})a$$

gilt. Was besagt dieses Ergebnis?

Dependent Variable: Y Method: Least Squares
Date: 07/11/04 Time: 12:18

Sample: 1 6 Included observations: 6

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.301933	0.182425	7.136796	0.0020
X	5.004629	0.046843	106.8394	0.0000
R-squared	0.999650	Mean dependent var		18.81813
Adjusted R-squared	0.999562	S.D. dependent var		9.364443
S.E. of regression	0.195956	Akaike info criterion		-0.160648
Sum squared resid	0.153596	Schwarz criterion		-0.230061
Log likelihood	2.481943	F-statistic		11414.66
Durbin-Watson stat	0.449687	Prob(F-statistic)		0.000000

Abbildung 2: EVIEWS–Ergebnisse, Aufgabe 3