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Abstract

In a model of strategic network formation, the endogenously formed network
is built around a pre-existing network. We envisage that the pre-existing
or core network is publicly provided. Strategic network formation is de-
centralized: Players act in their private interest and bear the costs when
adding links to the pre-existing network. We study how the pre-existing
network affects existence of Nash equilibria and efficiency of Nash equilib-
rium outcomes: It can foster or prohibit existence of Nash equilibria. It
can improve or worsen equilibrium welfare. Special attention is paid to an
insider-outsider model where society is partitioned into several groups and
links within a group (between insiders) are much cheaper than links across
groups (between outsiders). We also investigate the relationship between dif-
ferent notions of efficient networks, Pareto optimal networks on the one hand
and welfare maximizing networks on the other hand; present equilibrium ex-
istence results; examine the effect of efficient publicly provided networks; and
design and analyze a subscription game for the public provision of a network.
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1 Introduction

The rapidly growing importance of networks and network analysis is now
recognized in many fields, for instance in artificial intelligence, biology, busi-
ness and finance, computer science, economics, electrical engineering, neuro-
science, sociology, and physics. Network analysis can be focused on network
topology, network utilization, network formation, or the co-evolution of net-
work utilization and network formation. Within game theory, several strands
of literature on network creation (network formation, network design) have
emerged. A number of recent contributions have treated social and economic
networks as the outcome of a network formation game. The players of the
game constitute the nodes of the network to be formed. In the purely nonco-
operative approach of Bala and Goyal (2000), addition and deletion of links
are unilateral decisions of the player from whom the respective links origi-
nate.1 The player’s strategy is a specification of the set of agents with whom
he forms links. The costs of link formation are incurred only by the player
who initiates the link. The formed links define the network.

I adopt the basic paradigm of Bala and Goyal that a network is the out-
come of a game in strategic form where the players are the nodes of the
network and unilaterally form links. The benchmark model is the two-way
flow connections model à la Galeotti, Goyal, and Kamphorst (2006) that
incorporates cost and value heterogeneity. A player receives valuable infor-
mation from others not only through direct links, but also via indirect links.
The player incurs the cost of the direct links she initiates. The solution
concept is Nash equilibrium. In general, the term Nash network refers to
a network arising as the Nash equilibrium outcome of a network formation
game. I shall use Nash network as a synonym for Nash equilibrium, since
in our game (as in the literature in the tradition of Bala and Goyal (2000))
a strategy profile can be identified with the resulting network.

Frequently, networks are not designed de novo, but rather built around
and upon pre-existing infrastructures and networks — which imposes con-
straints on network formation. In response to this observation, the subse-
quent analysis goes beyond the basic model of Bala and Goyal (2000), Gale-

1Pairwise stability à la Jackson and Wolinsky (1996) treats addition of a link in a
network as a bilateral decision by the two players involved, whereas severance of a link
constitutes a unilateral decision.
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otti, Goyal, and Kamphorst (2006), Haller, Kamphorst and Sarangi (2007),
and others by incorporating internal constraints on network formation. Be-
fore we proceed to the latter, let us briefly consider the opposite, external
constraints. In a network formation game, players may be subject to an
exogenous external constraint, given by a pre-existing network or infrastruc-
ture g. In that case, a player can only form direct links to his immediate
neighbors in g. The ultimately formed network g has to be a subnetwork of
g: g ⊆ g. The endogenous network is built within g. For example,
the exogenous network could reflect geographical, legal or language barriers.
If two persons are not neighbors broadly defined, then a link between them
may be implausible, because it is impossible or to no avail. Alternatively,
the exogenous network could be a physical infrastructure, like fiber-optical
cables, which determines the set of feasible individual links. Infeasible could
simply mean exorbitantly costly. Network formation with an exogenous ex-
ternal constraint has been investigated in Baron et al. (2006).

Here I am considering network formation games where players are sub-
ject to an (exogenous or endogenous) internal constraint, again given by a
network or infrastructure g. Players can only create links in addition to
those already existing in g. Consequently, the ultimately formed network g
encompasses g: g ⊇ g. The endogenous network is built around g. For
instance, the internet rests on major links, so-called “backbones”, around
which the rest of the network is constructed.

In the sequel, I treat g as variable and study its effect on the architecture
and efficiency of the resulting Nash networks, that is the networks that are
Nash equilibrium outcomes of the strategic network formation game. I con-
sider four possibilities. First, a non-trivial g can prove efficiency enhancing,
leading to an efficient outcome while an inefficient network may result when
g is the empty network with no links. Second, to the opposite, a non-trivial g
can prove efficiency reducing. Third, a non-trivial g can be stabilizing, yield-
ing existence of a Nash network in situations where Nash networks do not
exist when g is the empty network. Finally, under different circumstances, a
non-trivial g can prove destabilizing. I am going to exemplify all four possible
effects. Furthermore, existence of Nash networks will be addressed. I shall
analyze in more detail the effects of internal constraints in the special case
of the insider-outsider model of Galeotti, Goyal, and Kamphorst (2006).
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From a descriptive and positive perspective, introduction of internal con-
straints allows one to study endogenous network formation when only part
of the network is created de novo. From a normative viewpoint, performing
comparative statics with g as exogenous variable provides the basis for mak-
ing g an endogenous public choice. One may be able to determine an optimal
choice of a publicly provided infrastructure g. Alternatively, one might con-
sider the possibility that g is determined in a decentralized manner, like the
rest of the network.

The next section contains a benchmark model without an internal con-
straint, that is, no pre-existing or publicly provided infrastructure or network.
In Section 3, internal constraints are incorporated into the model. Section 4
deals with existence of Nash equilibria with and without external constraints
and the effect of efficient infrastructures on equilibrium outcomes. Section 5
is devoted to the stabilizing or destabilizing effects of a publicly provided in-
frastructure. Section 6 is devoted to the welfare effects of a publicly provided
infrastructure. In Section 7, we explore the impact of a publicly provided
backbone infrastructure in the insider-outsider model of Galeotti, Goyal, and
Kamphorst (2006). In Section 8, the question how to choose or fund an in-
frastructure g is briefly addressed. Section 9 concludes.

2 Benchmark Model

We first introduce a benchmark model, where an internal constraint is ab-
sent. It serves two purposes. On the one hand, it constitutes the foundation
of the more general model. One the other hand, it allows to assess the effects
of internal constraints. The benchmark model is the two-way flow connec-
tions model à la Galeotti, Goyal, and Kamphorst (2006) that incorporates
cost and value heterogeneity. We adopt the notation of Haller, Kamphorst
and Sarangi (2007) for the case of perfectly reliable links.

Let n ≥ 3. N = {1, . . . , n} denotes the set of players with generic ele-
ments i, j, k. N also constitutes the set of nodes of the network to be formed.
For ordered pairs (i, j) ∈ N × N , the shorthand notation ij is used and for
non-ordered pairs {i, j} ⊂ N the shorthand [ij] is used. The symbol ⊂
for set inclusion permits equality. The model is specified by two families of
parameters, indexed by ij, with i ̸= j:
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• Cost parameters cij > 0.

• Value parameters Vij > 0.

In case cij ̸= ckl (Vij ̸= Vkl) for some ij ̸= kl, the model exhibits cost (value)
heterogeneity; otherwise, it exhibits cost (value) homogeneity. Follow-
ing Derks and Tennekes (2009), we say that costs are owner-homogeneous
if for each player i, there exists ci > 0 such that cij = ci for all j ̸= i. This
condition is also considered in Galeotti (2006), Galeotti et al. (2006), Billand
et al. (2008), and Derks and Tennekes (2009).

We only consider pure strategies. A pure strategy for player i is a vector
gi = (gi1, . . . , gii−1, gii+1, . . . , gin) ∈ {0, 1}N\{i}. The set of all pure strategies
of agent i is denoted by Gi. It consists of 2n−1 elements. The joint strategy
space is given by G = G1 × · · · × Gn.

There is a one-to-one correspondence between the set of joint strategies
G and the set of all directed graphs or networks with vertex set N . Namely,
to a strategy profile g = (g1, . . . , gn) ∈ G corresponds the graph (N,E(g))
with edge or link set E(g) = {(i, j) ∈ N ×N | i ̸= j, gij = 1}. In the sequel,
we shall identify a joint strategy g and the corresponding graph and use the
terminology directed graph or directed network g. Since our aim is to
model network formation, gij = 1 is interpreted to mean that a direct link
between i and j is initiated by player i (edge ij is formed by i) whereas
gij = 0 means that i does not initiate the link (ij is not formed). Regardless
of what player i does, player j can set gji = 1, i.e., initiate a link with i, or
set gji = 0, i.e., not initiate a link with i.

Benefits. A link between agents i and j potentially allows for two-
way (symmetric) flow of information. Accordingly, the benefits from
network g are derived from its closure g ∈ G, defined by gij := max {gij, gji}
for i ̸= j. Moreover, a player receives information from others not only
through direct links, but also via indirect links. To be precise, information
flows from player j to player i, if i and j are linked by means of a path in
g from i to j. A path of length m in f ∈ G from player i to player j ̸= i,
is a finite sequence i0, i1, . . . , im of pairwise distinct players such that i0 = i,
im = j, and fikik+1

= 1 for k = 0, . . . ,m− 1. Let us denote

Ni(f) = {j ∈ N | j ̸= i, there exists a path in f from i to j},

the set of other players whom player i can access or “observe” in the network
f . Information received from player j is worth Vij to player i. Therefore,
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player i’s benefit from a network g with perfectly reliable links and two-way
flow of information is (as in Galeotti, Goyal, and Kamphorst (2006)):

Bi(g) = Bi(g) =
∑

j ∈ Ni(g)

Vij.

Notice that g belongs to the set H = {h ∈ G|hij = hji for i ̸= j}. In
turn, there is a one-to-one correspondence between the elements of H and
the non-directed networks (graphs) with node set N . Namely, for h ∈ H and
i ̸= j, [ij] is an edge of the corresponding non-directed network if and only
if hij = hji = 1. In the sequel, we shall identify h with the corresponding
non-directed network. In that case, the notation [ij] ∈ h stands for “[ij] is
an edge of h”, that is h is given by its set of edges. Accordingly, for k ∈ H,
k ⊂ h means that k is a subnetwork of h.

Costs. Player i incurs the cost cij when she initiates the direct link ij,
i.e., if gij = 1. Hence i incurs the total costs

Ci(g) =
∑
j ̸=i

gijcij

when the network g is formed.

Payoffs. Player i’s payoff from the strategy profile g is the net benefit

Πi(g) = Bi(g)− Ci(g). (1)

Nash Networks. Given a network g ∈ G, let g−i denote the network
that remains when all of agent i’s links have been removed so that g−i ∈
G−i ≡

∏
j ̸=i Gj. Clearly g = gi ⊕ g−i where the symbol ⊕ indicates that g is

formed by the union of links in gi and g−i. A strategy gi is a best response
of agent i to g−i if

Πi(gi ⊕ g−i) ≥ Πi(g
′
i ⊕ g−i) for all g′i ∈ Gi.

Let BRi(g−i) denote the set of agent i’s best responses to g−i. A network
g = (g1, . . . , gn) is said to be a Nash network if gi ∈ BRi(g−i) for each
i, that is if g is a Nash equilibrium of the strategic game with normal form
(N, (Gi)i∈N , (Πi)i∈N). A strict Nash network is one where agents are playing
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strict best responses.

Some Graph-theoretic Concepts. We now introduce some definitions
of a more graph-theoretic nature. The network with no links is called the
empty network and will be denoted e. A network g is said to be con-
nected if there is a path in g between any two agents i and j. A connected
network g is minimally connected, if it is no longer connected after the
deletion of any link.

A set C ⊂ N is called a component of g if there exists a path in g
between any two different agents i and j in C and there is no strict superset
C ′ of C for which this holds true. For each network g, the components of g
form a partition of the player set (node set, vertex set) N into non-empty
subsets. Each isolated point i ∈ N in g, that is a player or node i with
gij = gji = 0 for all j ̸= i, gives rise to a singleton component {i}. In par-
ticular, the components of the empty network are the sets {i}, i ∈ N . N is
the only component of g if and only if g is connected. If C is a component
of the network g, we denote by gC the network induced by g on the set of
nodes C, that is gCij = gij for i, j ∈ C, i ̸= j. A network g is minimal, if gC

is minimally connected for every component C of g. Minimally connected
networks are both connected and minimal.

Efficient Networks. LetW0 : G → IR be defined asW0(g) =
∑n

i=1Πi(g).
A network ĝ is efficient (in the narrow traditional sense) if W0(ĝ) ≥
W0(g) for all g ∈ G. Efficiency is a major performance criterion for network
designers or planners and plays a prominent role in the traditional network
literature. It is most attractive for cost-benefit analysis when payoffs are
monetary and side-payments between players are feasible. Efficiency consti-
tutes an important benchmark for network performance even when network
formation is decentralized and structured as a strategic game. In economics,
the term “efficiency” is often used in a broader sense, as a synonym for Pareto
optimality. An efficient network in the traditional sense is necessarily Pareto
optimal. That is, there is no other network that provides a higher payoff
to some player(s) and no lower payoff to any player. But not every Pareto
optimal network has to be efficient in the traditional sense as the following
example demonstrates.
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Example 1 (Efficiency and Social Welfare)
Let N = {1, 2, 3}. Further set Vij = 1 for all i ̸= j; c2j = 1.6 and cj2 = 1.8
for j ̸= 2; and cij = 3 otherwise. Then the empty network and g′ = {12, 32},
the periphery-sponsored star with center 2, are the two Nash networks. Nei-
ther one is efficient in the traditional sense. The center-sponsored star with
center 2, ĝ = {21, 23} is the only efficient network in the traditional sense.
However, g′ is Pareto optimal and maximizes the utilitarian social welfare
function W (g) = Π1(g) + 2Π2(g) + Π3(g).

In the example, the Pareto optimal network g′ does not maximize the
social welfare function W0 with equal weights, but it maximizes another
utilitarian social welfare function on G. This raises the question whether
in general, for every Pareto optimal network g′ ∈ G, there exists a social
welfare function W : G → IR of the form W (g) =

∑n
i=1 aiΠi(g) so that

(a1, . . . , an) ≫ 0 and g′ maximizes W on G.

Pareto optimal networks are minimal, but not necessarily minimally con-
nected. We obtain some partial answers in case all Pareto optimal networks
are minimally connected:

Proposition 1 Suppose all Pareto optimal networks are minimally connected.

(a) In case of owner-homogeneous costs, there exists a utilitarian social
welfare function W ∗ such that all minimally connected networks max-
imize W ∗ and are Pareto optimal.

(b) If costs are not owner-homogeneous, there can exist Pareto optimal
networks that do not maximize any utilitarian social welfare function.

(c) If costs are totally heterogeneous, that is, cij ̸= ckl for ij ̸= kl, then
for generic utilitarian welfare weights, the corresponding utilitarian
social welfare function has a unique maximizer.

proof. If g is minimally connected and W (g) =
∑n

i=1 aiΠi(g) is a utili-
tarian social welfare function, then

W (g) =
n∑

i=1

ai
∑
j ̸=i

Vij −
n∑

i=1

ai
∑
j ̸=i

gijcij. (2)
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Hence maximization of W (g) on the set of minimally connected networks
amounts to minimization of

∑n
i=1 ai

∑
j ̸=i gijcij on G subject to the constraint

that g is minimally connected. In the literature on combinatorial optimiza-
tion, computer science, and operations research, the latter is known as the
minimum spanning tree problem with weights wij = aicij.

(a) In case of owner-homogeneous costs, for each player i, there exists
ci > 0 such that cij = ci for all j ̸= i. Set a∗i =

∏
j ̸=i cj for each i ∈ N and

b =
∏

i ci. Take the utilitarian social welfare functionW ∗(g) =
∑n

i=1 a
∗
iΠi(g).

Then a∗i ci = b for all i and W ∗(g) =
∑n

i=1 a
∗
i

∑
j ̸=i Vij − (n − 1)b for all

minimally connected networks g. If there exists a network g with W ∗(g) >∑n
i=1 a

∗
i

∑
j ̸=i Vij − (n− 1)b, then there exists a maximizer of W ∗ that is not

minimally connected but Pareto optimal, contradicting the assumption that
all Pareto optimal networks are minimally connected. Hence all minimally
connected networks are maximizers of W ∗ and Pareto optimal.

(b) See Example 2 below.
(c) If cij ̸= ckl for ij ̸= kl, then aicij ̸= akckl for ij ̸= kl unless

ai = ak · ckl/cij. Hence with the exception of (a1, . . . , an) ≫ 0 belonging
to a finite number of hyperplanes in Rn, the weights wij = aicij satisfy
wij ̸= wkl for ij ̸= kl. But if the weights wij are distinct across pairs ij, the
minimum spanning tree is unique. See, for instance, Property 2 and its proof
in Gallager et al. (1983).

Example 2 (Pareto Optimality and Social Welfare)
In this example, all Pareto optimal networks are minimally connected but
some do not maximize any utilitarian social welfare function.

Let N = {1, 2, 3, 4, 5}. Further set Vij = 8 for all i ̸= j; c41 = c51 =
2, c42 = c52 = 4, c43 = 6, c53 = 5; and cij = 40 otherwise. In this example,
there exist at least nine Pareto optimal networks and all Pareto optimal
networks are minimally connected. First, let us show that every Pareto
optimal network is minimally connected. As an immediate consequence of
the definitions, a Pareto optimal network is minimal. It remains to be shown
that it is connected. If g is a network and i ∈ {1, 2} and j ∈ {3, 4, 5} belong
to different components of g, then Πi(g ⊕ {ij}) > Πi(g) and Πi′(g ⊕ {ij}) ≥
Πi′(g) for all i

′ ∈ N . Hence in this example, a Pareto optimal network can
have only one component, that is it is connected.

Let us focus next on four specific Pareto optimal networks. We label these
networks gb, gd, gp, gq such that x = (Π4(g

x),Π5(g
x)) for x = b, d, p, q. In each

of the four networks, both 4 and 5 initiate a link to 1. Moreover, for j = 2, 3
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either 4 or 5 initiates a link to j. In all four networks, players j = 1, 2, 3
don’t initiate any links and receive payoffs Πj(g

x) = 32. The payoff pairs x =
(Π4(g

x),Π5(g
x)) are b = (20, 30), d = (24, 26), p = (26, 25), q = (30, 21). The

five center sponsored stars constitute additional Pareto optimal networks.
Now consider an arbitrary utilitarian social welfare function W with

weights (a1, . . . , an) ≫ 0.

• If a4 < a5, then
a4 · b4 + a5 · b5 = 20 · a4 + 30 · a5 > 24 · a4 + 26 · a5 = a4 · d4 + a5 · d5;
hence, W (gb) > W (gd) and gd does not maximize W .

• If a4 ≥ a5, then
a4 · p4 + a5 · p5 = 26 · a4 + 25 · a5 > 24 · a4 + 26 · a5 = a4 · d4 + a5 · d5;
hence, W (gp) > W (gd) and gd does not maximize W .

It follows that gd does not maximize W in any case. Thus, gd proves to be a
Pareto optimal network that does not maximize any utilitarian social welfare
function.

3 Network Formation under

Internal Constraints

Internal constraints, given by a pre-existing network or infrastructure g ∈ G,
can be incorporated into a model in two ways: 1. via restrictions on players’
strategy choices or 2. via a modification of the players’ payoff functions. We
opt for the second way, which proves more tractable in our context. For
g, h ∈ G, h ⊕ g ∈ G denotes the network whose set of links is the union of
the links in h and the links in g. Given g, we define for each i ∈ N a payoff
function Πi(g; ·) : G → R by

Πi(g; g) = Bi(g⊕ g)− Ci(g) for g ∈ G. (3)

This formulation treats g free of costs which is of course implausible. Under
the separable cost assumption of the connections model, the cost of providing
g can be neglected as long as merely the formation of a network g given g is
considered. We shall account for the cost of g when we are going to perform
comparative statics and welfare analysis.

10



In the extended model, one ought to distinguish between a Nash equilib-
rium g∗ given the infrastructure g and the outcome g⊕g∗, the entire available
network. Notice that g and g∗ are disjoint because of cij > 0 for all ij.

4 Existence and Optimality of Nash Networks

under Internal Constraints

Bala and Goyal (2000) outlined a constructive proof of the existence of Nash
networks in the case of cost and value homogeneity. Subsequently, along the
same lines, existence of Nash networks has been shown by Haller, Kamphorst
and Sarangi (2007) in the case of cost homogeneity, allowing for value hetero-
geneity. An analogous argument demonstrates existence of Nash networks
when costs are homogeneous and there is a pre-existing network or infras-
tructure g ∈ G. Closer inspection of the proof shows that cost homogeneity
can be replaced by the weaker assumption of owner-homogeneity of costs.
Owner-homogeneous costs are also invoked in the main existence result for
one-way information flow models: Proposition 2 in Billand et al. (2008) and
Proposition 1 in Derks and Tennekes (2009).

Proposition 2 Consider a strategic model of network formation with payoff
functions Πi(g; g), g ∈ G, i ∈ N . Suppose that costs are owner-homogeneous.
Then there exists a Nash network g∗.

proof. First we proceed under the assumption that the pre-existing
network or infrastructure g ∈ G is minimal and are going to show that there
exists a Nash network g∗ with the property that g⊕ g∗ is minimal.

Beginning with the empty network, we construct a network g∗ such that
g⊕ g∗ is minimal and g∗ is Nash in the network formation game with payoffs
Πi(g; g), g ∈ G, i ∈ N . By assumption, the empty network e has the property
that g⊕ e is minimal and that no player benefits from deleting a link.

Next let g be any network with the property that g⊕g is minimal and that
no player benefits from deleting a link. Since g⊕ g is minimal, a link ik in g
connects i with the members of k’s component in g⊕ g−i. By assumption, i
does not gain from simply severing that link. Because of owner-homogeneity
of link costs, player i does not strictly prefer to replace that link with a link
to another member of k’s component in g⊕ g−i. Consequently, there remain
two possibilities: either (a) g is Nash or (b) some player is better off by
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sponsoring an additional link. In the latter case, suppose that player i is
better off sponsoring the additional link ij and denote g′ = g ⊕ {ij}. Since
player i is better off sponsoring the extra link ij, i and j belong to different
components of g ⊕ g. Hence g ⊕ g′ is also minimal. Moreover, adding the
link ij makes the existing links more valuable (or at least not less valuable).
Therefore, no player benefits from deleting a link in g′.

We have shown so far: If g is a network with the property that g ⊕ g is
minimal and that no player benefits from deleting a link and if g is not Nash,
then adding a suitably chosen link to g creates a larger minimal network g′

with the property that g⊕g′ is also minimal and that no player benefits from
deleting a link in g′.

Now let us begin with the empty network and label it g0. In case g0

is Nash, we are done. Otherwise, by the previous argument, there exists a
network g1 with one link and the property that g ⊕ g1 is minimal and that
no player benefits from deleting a link. In case g1 is Nash, we are done.
Otherwise, there exists a network g2 with two links and the property that
g⊕ g2 is minimal and that no player benefits from deleting a link, etc. Since
a minimal network with n nodes has at most n − 1 links, in finitely many
steps, say k steps with 0 ≤ k ≤ n − 1, a network gk is reached which has k
links, is Nash and has the property that g⊕ gk is minimal.

Finally, let g ∈ G be arbitrary. Deleting redundant links in g if any exist,
one obtains a network g′ that is minimal and has the same components as
g. Then Πi(g

′; g) = Πi(g; g) for all g ∈ G and i ∈ N . Therefore, the Nash
networks of the game with payoff functions Πi(g

′; g), g ∈ G, i ∈ N , and of
the game with payoff functions Πi(g; g), g ∈ G, i ∈ N , coincide. We have
shown that the first game has a Nash network — which, consequently, is a
Nash network of the second game as well.

Proposition 2 improves upon the existence result of Haller, Kamphorst
and Sarangi (2007) in two respects: Cost homogeneity is replaced by the
weaker assumption of owner-homogeneity of costs. g = e is replaced by an
arbitrary g. Examples 4 and 5 demonstrate that Nash networks need not
exist if the assumptions of Proposition 2 are not met.

Clearly, if g is not minimal and g∗ is a Nash network of the game with
payoff functions Πi(g; g), g ∈ G, i ∈ N , then g ⊕ g∗ is not minimal either.
For if a link ij is redundant in g, then it is still redundant in g ⊕ g∗. On
the other hand, if g is minimal and g∗ is a Nash network of the game with
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payoff functions Πi(g; g), g ∈ G, i ∈ N , then g ⊕ g∗ is minimal as well. To
see this, define for g ∈ G a cycle in g as a path in g whose endpoints are
directly linked. To be precise, if i0, i1, . . . , im is a path in g and imi0 ∈ g,
then i0, i1, . . . , im, i0 constitutes a cycle in g. Now obviously g is minimal if
and only if g has no cycles. If g is minimal, then g has no cycles. Suppose
g ⊕ g∗ is not minimal. Then g⊕ g∗ has a cycle i0, i1, . . . , im, i0. Since g has
no cycles, there must be some k ∈ {0, . . . ,m} with ikik+1 /∈ g where we set
m + 1 = 0. Then ikik+1 ∈ g∗ or ik+1ik ∈ g∗. Hence player ik or player
ik+1 forms a redundant link in g∗, contradicting the fact that g∗ is a Nash
network.

What happens if one starts with a Pareto optimal infrastructure g rather
than just some arbitrary one? The short answer is that nothing happens:
One ends up with the equilibrium outcome g⊕ e = g.

Proposition 3 Consider a strategic model of network formation with payoff
functions Πi(g; g), g ∈ G, i ∈ N . Suppose that the pre-existing network or
infrastructure g ∈ G is Pareto optimal. Then the empty network is a strict
Nash network and the only Nash network.

proof. Let g be Pareto optimal. Consider the strategic model of network
formation with payoff functions Πi(g; g), g ∈ G, i ∈ N . If g∗ is a Nash
network, then for each j ∈ N , Πj(g; g

∗) = Πj(g; g
∗
−j ⊕ g∗j ) ≥ Πj(g; g

∗
−j) ≥

Πj(g; e), hence Πj(g⊕ g∗) = Πj(g; g
∗)− Cj(g) ≥ Πj(g; e)− Cj(g) = Πj(g).

Suppose now that for some i, gi ̸= 0i is a best response against e−i

where 0i denotes the empty network in Gi and is encoded by the vector
(0, . . . , 0) ∈ {0, 1}N\{i} and e denotes the empty network in G. Then player i
incurs some positive cost of forming the links in gi. Therefore, for gi to be a
best response against e−i, i must have sufficiently large benefits from forming
the links in gi. Hence, gi must link i to at least one component C of g to which
i does not belong. Consequently, creating the links in gi increases the payoffs
of players k ∈ C so that for each of these players, Πk(g⊕ gi) > Πk(g) while
for all other players j (including i), Πj(g; gi) ≥ Πj(g; 0i) and, consequently,
Πj(g⊕ gi) = Πj(g; gi)− Cj(g) ≥ Πj(g; 0i)− Cj(g) = Πj(g). This contradicts
the Pareto optimality of g. Therefore, 0i is the unique best response against
e−i for all i. This shows the first claim.

Suppose next that g∗ ̸= e is a Nash network. Then choose a player i
with g∗i ̸= 0i. Player i incurs some positive cost of forming the links in
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g∗i . Therefore, for g∗i to be a best response against g∗−i, i must have suffi-
ciently large benefits from forming the links in g∗i . Hence, g∗i must link i to
at least one component C of g ⊕ g∗−i to which i does not belong. Specifi-
cally, creating the link ik to player k ∈ C increases k’s payoff by at least Vki

so that Πk(g; g
∗) = Πk(g; g

∗
−k ⊕ g∗k) ≥ Πk(g; g

∗
−k) > Πk(g; e) and, therefore,

Πk(g ⊕ g∗) = Πk(g; g
∗) − Ck(g) > Πk(g; e) − Ck(g) = Πk(g). For all players

j ̸= k (including i), Πj(g ⊕ g∗) ≥ Πj(g). This contradicts the Pareto opti-
mality of g. Therefore, g∗ ̸= e cannot be a Nash network. This shows the
second claim.

If a Pareto optimal network g is already in place and Pareto optimal
outcomes are desired, then there is no point to add further links to g. More
importantly, the result shows that in equilibrium, no additional links — which
might undo Pareto optimality — are formed. Proposition 3 is reminiscent
of the second welfare theorem for standard pure exchange economies: If the
endowment allocation is Pareto optimal, then a no-trade equilibrium results
and — in case there are multiple equilibria — equilibrium welfare is identical
across all competitive equilibria. Likewise, if the infrastructure already in
place is Pareto optimal, then nothing occurs in equilibrium. Notice, however,
that a publicly provided or pre-existing infrastructure g is not necessarily
Pareto optimal. Most of the subsequent analysis is devoted to this more
plausible and more intriguing case.

5 (De)stabilizing Effects of Internal Constraints

According to Proposition 3, a Pareto optimal pre-existing or publicly pro-
vided network is always stabilizing. It gives rise to the empty network as a
strict Nash network. But then, it renders private network formation obsolete.
However, a Pareto optimal pre-existing or publicly provided infrastructure is
not necessarily to be expected. In a similar vein, a connected pre-existing or
publicly provided network would yield the empty network as a strict Nash
network and the only Nash network. Therefore, it would always prove sta-
bilizing and render private network formation obsolete. Yet again, such an
infrastructure need not materialize. We begin with an instructive example
where a single publicly provided link gives rise to the existence of a unique
Nash network (which is non-empty and strict Nash) whereas Nash networks
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do not exist without the link.

Example 4 (Stabilizing Effect)
The basic example2 constitutes a 4-player game with cost heterogeneity and
value homogeneity. It exhibits non-existence of a Nash network. However, a
unique Nash equilibrium (which is strict Nash) exists after introduction of a
single publicly provided link.

Let n = 4 and Vij = V > 0 for all ij. Suppose c1k > 3V for all k ̸= 1;
c23 = c24 > 3V and c21 < V ; V < c34 < c32 < 2V < 3V < c31; 2V < c42 <
3V < c41 = c43. Then the unique best reply of player 1 to any network is to
add no links at all. The unique best reply of player 2 to any network g−2 in
which he does not observe player 1 is to add a link to player 1 only. Players 3
and 4 will never have a link to player 1 as part of their best reply. Moreover,
in a best reply player 4 will never initiate a link to player 3.

Now let us take those best replies for granted and consider best responses
regarding the remaining links 32, 34, and 42. If player 4 initiates link 42,
then player 3’s best response is to initiate link 34 and not 32, and in turn
player 4’s best response is not to form link 42. If player 4 does not initiate
link 42, then player 3’s best response is to form link 32 and not 34, against
which player 4’s best response is to initiate link 42. Hence there do not exist
any mutual best responses. Therefore, a Nash network does not exist.

If the link 42 is publicly provided, i.e., g = {42}, then the network
g∗ = {21, 34} is the unique Nash equilibrium and is strict Nash. Thus,
public provision of g has a stabilizing effect.

Proposition 2 has two immediate consequences, Propositions 4 and 5.
The first one yields a stabilization result: Suppose owner-homogeneity of
costs is violated and a Nash equilibrium does not exist in the absence of
a publicly provided infrastructure, but violation of owner-homogeneity of
costs only occurs for a small number of nodes and links. Then there exists an
infrastructure g that involves no other nodes or links such that in the strategic
model of network formation with payoff functions Πi(g; g), g ∈ G, i ∈ N ,
there exists a Nash network.

2Example 2 of Haller, Kamphorst and Sarangi (2007).
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Proposition 4 Consider a strategic model of network formation with payoff
functions Πi(g; g), g ∈ G, i ∈ N . Suppose that

(i) the pre-existing network or infrastructure g ∈ G is minimal;

(ii) there exist c1 > 0, . . . , cn > 0 such that cij = ci for all ij /∈ g.

Then there exists a Nash network g∗ with the property that g⊕g∗ is minimal.

proof. In the proof of Proposition 2, replace owner-homogeneity by
condition (ii).

In Section 6, we obtain Proposition 7, a stabilization result for a class
of insider-outsider models. Furthermore, we obtain an irrelevance result for
network formation games with owner-homogeneous costs:

Proposition 5 Suppose that costs are owner-homogeneous. Then the public
provision of a minimal infrastructure g proves irrelevant for the existence of
Nash networks, that is, it neither fosters nor impedes the existence of Nash
networks.

proof. Proposition 2 asserts existence of a Nash network in the presence
of a minimal infrastructure g. Proposition 2 also applies when g is the empty
network.

Finally, we observe that the public provision of an infrastructure can have
a destabilizing effect.

Example 5 (Destabilizing Effect)
Let us first consider the 3-player game3 with player setN = {1, 2, 3}; strategy
sets G1,G2,G3; joint strategy space G = G1×G2×G3; cost and value parameters
satisfying

V12 > c12 > c13 > V13; c21 = c23 > V21 + V23; c31 > V31 + V32 > c32 > V32;
and corresponding payoff functions Πi(g), g ∈ G.
In Nash equilibrium:

— player 2 will not sponsor any links;

3Communicated by Jurjen Kamphorst via email dated July 12, 2004.
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— player 3 will not sponsor a link to player 1; he will sponsor a link to
player 2 only if player 1 and player 2 are connected and players 1 and
3 are not;

— player 1 will not sponsor any links if in g−1 he is connected to player
2; otherwise he will sponsor a link to player 2 if players 2 and 3 are
unconnected, and to player 3 if players 2 and 3 are connected.

These conditions cannot be satisfied simultaneously in pure strategies. Hence
the game does not have a Nash network.

Let us next consider a 4-player game with player set N ′ = {1, 2, 3, 4};
strategy sets G ′

1,G ′
2,G ′

3,G ′
4; joint strategy space G ′ = G ′

1 × G ′
2 × G ′

3 × G ′
4;

cost parameters
c′12 = 50, c′13 = 30, c′14 = 80; c′21 = c′23 = c′24 = 80;
c′31 = 80, c′32 = 40, c′34 = 80; c′41 = c′42 = c′43 = 80;

value parameters
V ′
12 = 45, V ′

13 = 10, V ′
14 = 10; V ′

21 = V ′
23 = V ′

24 = 10;
V ′
31 = 20, V ′

32 = 20, V ′
34 = 10; V ′

41 = V ′
42 = V ′

43 = 10;
and corresponding payoff functions Π′

i(g
′), g′ ∈ G ′.

Then g∗ = e is a Nash network of this 4-player game in the absence of a
publicly provided infrastructure. Now suppose that the publicly provided
infrastructure g = {42} is installed. Then the links 14, 24, 34, 41, and 43
will not be formed in a Nash equilibrium. The 3-player game with player set
N = {1, 2, 3} and payoff functions Πi(g) = Π′

i(g; g), g ∈ G, i ∈ N , can be
represented by cost parameters cij and value parameters Vij that satisfy the
inequalities in the 3-player game we started with. Hence that 3-player game
cannot have Nash equilibria. It follows that the 4-player game with payoff
functions Π′

i(g; g
′), g′ ∈ G ′, does not have a Nash equilibrium either.

6 Welfare Effects of Internal Constraints

We commence with an instructive example where a publicly provided link —
which would not be created by any player — does not alter the set of Nash
equilibria, yet constitutes a strict Pareto improvement.
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Example 6 (Welfare Improvement)
Let N = {1, . . . , 8}, K = {1, 2, 3, 4}, L = {5, 6, 7, 8}. Further set

Vij = 1 for all i ̸= j;

cij =


0.8 if i ̸= j, i, j ∈ K,
0.8 if i ̸= j, i, j ∈ L,
16 if i ∈ K, j ∈ L,
16 if i ∈ L, j ∈ K.

In the absence of a publicly provided infrastructure, i.e., in case g = ∅, a
Nash network g∗ has two minimally connected components, one consisting of
the members of K and the other one consisting of the members of L.

Next suppose that the link ij = 48 is publicly provided, that is g = {48}.
Then the set of Nash equilibria remains the same, but the total benefit is
increased by 8 × 4 = 32, at a cost of 16 for the link 48. This constitutes
a strict Pareto improvement if there is a way to charge each player a cost
contribution of 2 for the link 48.

Example 6 constitutes an instance of the insider-outsider model of Gale-
otti, Goyal, and Kamphorst (2006) and the welfare improvement observed in
Example 6 is an instance of Proposition 6(b). Rather than increasing welfare
per se, as is often the case in the insider-outsider model, the benefit of a
publicly provided infrastructure may consist in the elimination of inefficient
equilibria:

Example 7 (Elimination of Inefficient Networks)
Let N = {1, 2, 3} , Vij = 2 for i ̸= j and cij = 3 for i ̸= j. In case g = ∅, the
empty network and periphery-sponsored stars are the only Nash networks and
the empty network is the only strict Nash network. In the empty network,
every player receives a payoff of 0. In a periphery-sponsored star, the center
receives a payoff of 4 and each of the other two players receives a payoff of 1.

Now suppose that the link ij = 12 is publicly provided, that is g = {12}.
Then g∗ = {31} and g∗∗ = {32} are the only Nash networks. Neither one
is a strict Nash network. But both outcomes g⊕g∗ and g⊕g∗∗ are efficient.

There are instances of the insider-outsider model where public provision
of a backbone infrastructure is ineffective (Proposition 8) and other instances

18



where it is harmful (Proposition 9). A publicly provided infrastructure can
not only be too costly (as in Proposition 9), but can also induce players to
choose costlier links, as the following example demonstrates:

Example 8 (Welfare Reduction via Cost Increase)
Let N = {1, 2, 3}, Vij = V = 24 for all i ̸= j, c13 = 32, c23 = 28, c12 =
56, c32 = 40, and c21 = c31 = 80.

The periphery-sponsored star with center 3 is the only (strict) Nash net-
work in the absence of a publicly provided infrastructure.

Now suppose that the publicly provided infrastructure g = {12} is in-
stalled. Then g′ = {32} is the only (strict) Nash network. The corresponding
outcome is g ⊕ {32}. In g ⊕ {32}, each of the two links costs more than a
link in the center-sponsored star with center 3.

This example is reminiscent of Braess’s paradox [Braess (1968), Braess et
al. (2005)] that an extension of a road network may cause a redistribution of
traffic which results in longer individual travel times. In the present example,
installation of the public infrastructure causes players to switch to costlier
links.

7 An Insider-Outsider Model and Backbone

Infrastructures

Example 6 constitutes an instance of the insider-outsider model of Galeotti,
Goyal, and Kamphorst (2006). In that model, the player population is par-
titioned into m ≥ 2 non-empty subsets Nk, k = 1, . . . ,m. For i ∈ Nk and
j ∈ Nl, cij = cji = f(|k − l|) where f is a nondecreasing function with
f(0) = cL > 0. Further Vij = V = 1 for all i ̸= j. We shall concentrate on
the special case of equal group size, n > 1, so that |Nk| = n for all k, and
two cost levels, f(0) = cL > 0 and f(d) = cH > cL for d ≥ 1. The general
case does not yield noticeably different insights, but proves more tedious with
respect to both analysis and exposition.

In Example 6, the publicly provided link ij = 48 serves as welfare en-
hancing backbone infrastructure and would not have been created by any of
the players. More generally, costly intergroup links could serve as backbone
infrastructure in the insider-outsider model. Such an infrastructure might
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be socially beneficial, but would not be created in the strategic network for-
mation game if the private cost exceeded the private benefit of forming a
link. Let us formally define a backbone infrastructure as a network g
with m − 1 links and a component consisting of m nodes ik, k = 1, . . . ,m,
such that ik ∈ Nk for k = 1, . . . ,m. For instance, a star with m nodes
ik, k = 1, . . . ,m, such that ik ∈ Nk for k = 1, . . . ,m will do. We first identify
instances where public provision of a backbone infrastructure is beneficial,
then instances where it is ineffective, and finally instances where it is waste-
ful. As a by-product, we get a further stabilization result, Proposition 7.

Proposition 6 Consider the insider-outsider model of network formation
with equal group size n > 1 and two cost levels 0 < cL < cH .

(a) Suppose 0 < cL < 1 < cH < (m − 1)n. Then there does not exist
an efficient strict Nash network in the absence of a publicly provided
infrastructure. With a publicly provided backbone infrastructure g,
there do exist strict Nash networks and each strict network g∗ has an
efficient outcome g⊕ g∗.

(b) Suppose 0 < cL < 1 and (m − 1)n < cH < mn2. Then all Nash net-
works are inefficient in the absence of a publicly provided infrastruc-
ture. With a publicly provided backbone infrastructure g, the outcome
g⊕ g∗ is efficient for every Nash network g∗.

proof. (a) Suppose 0 < cL < 1 < cH < (m − 1)n. Then 0 < cL < 1 <
cH < mn2 and by Galeotti et al. (2006, Proposition 4.2 (1)), the efficient
networks are of the form gmc where the members of each group are minimally
connected via n − 1 links inside the group and there are m − 1 links across
groups so that the entire network is minimally connected. In the absence
of a publicly provided infrastructure, there exist Nash networks of the form
gmc. But no strict Nash network is of the form gmc, since

• either cH ≤ n in which case strict Nash networks do not exist, by
Galeotti et al. (2006, Proposition 4.1 (2b))

• or cH > n in which case strict Nash networks are unconnected center-
sponsored stars, by Galeotti et al. (2006, Proposition 4.1 (2c)).

Suppose a backbone infrastructure g is publicly provided. Then g ⊕ g∗

is of the form gmc for every Nash equilibrium g∗ of the strategic game with
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payoff functions Πi(g; g), g ∈ G, i ∈ N . Strict Nash equilibria of the game
exist and are composed of m center-sponsored stars, one for each group Nk.

(b) Suppose 0 < cL < 1 and (m − 1)n < cH < mn2. Then by Galeotti
et al. (2006, Proposition 4.2 (1)), the efficient networks are of the form
gmc whereas in the absence of a publicly provided infrastructure, each Nash
network has m minimal components Nk, k = 1, . . . ,m.

Suppose a backbone infrastructure g is publicly provided. Then like in
Example 6, the set of Nash equilibria does not change. But with the infras-
tructure g in place, the outcome g ⊕ g∗ is of the form gmc for every Nash
equilibrium g∗.

Next we obtain a stabilization result for a class of insider-outsider models
as a corollary to Proposition 6(a).

Proposition 7 Consider the insider-outsider model of network formation
with equal group size n > 1 and two cost levels 0 < cL < cH .
If 0 < cL < 1 < cH ≤ n, then strict Nash equilibria do not exist in the
absence of a publicly provided infrastructure whereas public provision of a
backbone infrastructure yields existence of strict Nash networks.

proof. See proof of Proposition 6(a).

We have seen in Example 8 that public provision of a small piece of
infrastructure need not be beneficial. In the context of the insider-outsider
model, public provision of a backbone infrastructure is not always beneficial
either. In some instances, public provision of a backbone infrastructure does
not affect aggregate welfare whereas in other instances public provision of a
backbone infrastructure proves wasteful.

Proposition 8 Consider the insider-outsider model of network formation
with equal group size n > 1 and two cost levels 0 < cL < cH < 1. Then public
provision of a backbone infrastructure is ineffective.

proof. Suppose 0 < cL < cH < 1. Then all minimally connected
networks are Nash and efficient in the absence of a publicly provided in-
frastructure. Some Nash networks are strict while most are not because by
Galeotti et al. (2006, Proposition 4.1 (2a)), strict Nash networks are “gener-
alized center-sponsored stars”. Public provision of a backbone infrastructure
does not affect welfare.
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Proposition 9 Consider the insider-outsider model of network formation
with equal group size n > 1 and two cost levels 0 < cL < cH . If 0 < cL < 1
and cH > mn2, then public provision of a backbone infrastructure is wasteful.

proof. Suppose 0 < cL < 1 and cH > mn2. Then in the absence
of a publicly provided infrastructure, each Nash network has m minimal
components Nk, k = 1, . . . ,m — and is efficient. Public provision of a back-
bone infrastructure is wasteful, since its cost (m − 1)cH exceeds its benefit
(m− 1)mn2.

8 On the Provision of Public Infrastructure

We have seen that the public provision of infrastructure followed by decentral-
ized network formation can be beneficial or undesirable: it can be stabilizing
or destabilizing, respectively; welfare improving or welfare reducing, respec-
tively. In some instances, a pre-existing infrastructure ought to be removed
or not to be used any longer. If the latter can be achieved at no cost, say
by just leaving a cable in the ground, then a benevolent, omniscient, and
omnipotent policy maker may do. Otherwise, the abandonment, removal,
renewal, expansion, or replacement of a publicly provided infrastructure can
be a formidable political challenge.

In the remainder of this section, I shall focus on the simpler task of creat-
ing a public infrastructure de novo, with the absence of a public infrastructure
as the status quo. Policy makers as well as players compare a Nash network
g∗ of the benchmark model without a public infrastructure with an outcome
g⊕ g∗∗ where g ̸= e is a candidate for a publicly provided infrastructure and
g∗∗ is a Nash network of the strategic game of network formation with payoff
functions Πi(g; g), g ∈ G, i ∈ N . To simplify the analytic task even further,
I assume that

(i) the choice is between the empty infrastructure e and the proposed
infrastructure project g ̸= e;

(ii) all players anticipate the Nash equilibrium g∗ in the subsequent net-
work formation game if the public infrastructure e is in place;
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(iii) all players anticipate the Nash equilibrium g∗∗ in the subsequent
network formation game if the public infrastructure g is in place.

Then frequently, a version of the well known “subscription game” will
yield selection and sufficient funding of the more efficient of the two infra-
structures. In that game, the infrastructure g gets built if the sum of the
players’ voluntary contributions si, i ∈ N , equals or exceeds the cost of
constructing g. In that case, the players forfeit any contributions in excess
of the construction cost. The infrastructure g is not built, if the aggregate
voluntary contributions fall short of the construction cost. In that case, the
contributions are refunded. The actions in the following strategic game Γ
represent the individual contributions si, i ∈ N , and the payoffs reflect the
players’ evaluations of the resulting outcomes in accordance with (i)–(iii).
Let Γ = (N, (Si)i∈N , (Ui)i∈N) where

si ∈ Si = R+ for i ∈ N ;
Ui(s1, . . . , sn) = Πi(g

∗) if
∑

j∈N sj < c(g);

Ui(s1, . . . , sn) = Πi(g; g
∗∗)− si if

∑
j∈N sj ≥ c(g);

c(g) =
∑

j ̸=k gjk · cjk, the cost of constructing g.

To analyze Γ, set ∆i = Πi(g; g
∗∗) − Πi(g

∗) for i ∈ N . ∆i is i’s equi-
librium payoff differential between the ensuing network formation games
(N, (Gi)i∈N , (Πi(g; ·))i∈N) and (N, (Gi)i∈N , (Πi)i∈N). Further set ∆ =

∑
i∆i,

N+ = {i ∈ N : ∆i > 0}, and ∆+ =
∑

i∈N+
∆i ≥ ∆. Then

W0(g⊕ g∗∗)−W0(g
∗) = ∆− c(g). (4)

On efficiency grounds, g should be built if W0(g⊕ g∗∗) > W0(g
∗) or equiva-

lently, by (4), if ∆ > c(g). And g should not be built if W0(g⊕g∗∗) < W0(g
∗)

(or equivalently, ∆ < c(g)).
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Proposition 10

(a) Suppose W0(g⊕ g∗∗) > W0(g
∗).

(aa) A strict Nash equilibrium of Γ exists.

(ab)
∑

i s
∗
i = c(g) in every strict Nash equilibrium (s∗1, . . . , s

∗
n) of Γ.

(b) Suppose W0(g⊕ g∗∗) < W0(g
∗).

(ba) If ∆i < c(g) for all i, then a Nash equilibrium of Γ exists.

(bb) If ∆i ≥ 0 for all i, then
∑

i s
∗
i < c(g) in every Nash equilibrium

(s∗1, . . . , s
∗
n) of Γ.

(bc) If ∆+ > c(g), then there exists a strict Nash equilibrium (s1, . . . , sn)
of Γ with

∑
i si = c(g).

proof. (aa) Suppose W0(g ⊕ g∗∗) > W0(g
∗). Then ∆ > c(g) and,

consequently, ∆+ ≥ ∆ > c(g) > 0. Set si = (c(g)/∆+) · ∆i for i ∈ N+ and
si = 0 for i /∈ N+. Then si ∈ Si for all i and

∑
i si = c(g).

For i /∈ N+, Ui(s1, . . . , sn) = Πi(g; g
∗∗) and si = 0. Choosing s′i > 0 given

s−i would yield payoff Πi(g; g
∗∗)− s′i < Πi(g; g

∗∗). Hence si is i’s unique best
response against s−i.

For i ∈ N+, Ui(s1, . . . , sn) = Πi(g; g
∗∗)− si and 0 < si = (c(g)/∆+) ·∆i <

∆i. Choosing s
′
i > si given s−i would yield payoff Πi(g; g

∗∗)−s′i < Πi(g; g
∗∗)−

si. Choosing s′i < si given s−i would yield payoff Πi(g
∗) = Πi(g; g

∗∗)−∆i <
Πi(g; g

∗∗)− si. Hence si is i’s unique best response against s−i. This shows
that (s1, . . . , sn) is a strict Nash equilibrium of Γ.

(ab) Suppose W0(g⊕g∗∗) > W0(g
∗). Now let (s∗1, . . . , s

∗
n) be a strict Nash

equilibrium of Γ. Then
∑

i s
∗
i = c(g). Suppose not. If

∑
i s

∗
i > c(g), then

Ui(s
∗
1, . . . , s

∗
n) = Πi(g; g

∗∗)−s∗i for all i and s∗j > 0 for some j. If such a player
reduces his contribution by a sufficiently small amount εj > 0, given s∗−j, then
s∗j−εj ≥ 0, s∗j−εj+

∑
i̸=j s

∗
i ≥ c(g) and Uj(s

∗
j−εj; s

∗
j) = Πi(g; g

∗∗)−(s∗i−εj) >
Πi(g; g

∗∗)−s∗i = Uj(s
∗
1, . . . , s

∗
n), contradicting the assumption that (s∗1, . . . , s

∗
n)

is a Nash equilibrium of Γ. If
∑

i s
∗
i < c(g), then Ui(s

∗
1, . . . , s

∗
n) = Πi(g

∗)
for all i. If some player j increases his contribution by a sufficiently small
amount εj > 0, given s∗−j, then s∗j + εj ≥ 0, s∗j + εj +

∑
i̸=j s

∗
i < c(g) and

Uj(s
∗
j − εj; s

∗
j) = Πj(g

∗) = Uj(s
∗
1, . . . , s

∗
n), contradicting the assumption that

(s∗1, . . . , s
∗
n) is a strict Nash equilibrium of Γ. Thus

∑
i s

∗
i ̸= c(g) always leads

to a contradiction. Hence as asserted,
∑

i s
∗
i = c(g) has to hold.
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(ba) Suppose W0(g ⊕ g∗∗) < W0(g
∗) and ∆i < c(g) for all i. Consider

(s1, . . . , sn) = (0, . . . , 0). Then
∑

i si = 0 < c(g) and Ui(s1, . . . , sn) = Πi(g
∗)

for all i. If some player j chooses s′j ∈ (0, c(g)) given s−j, then s′j+
∑

i ̸=j si =
s′j < c(g) and Uj(s

′
j, s−j) = Πi(g

∗) = Uj(s1, . . . , sn). If j chooses s′j ≥ c(g)
given s−j, then s′j +

∑
i̸=j si = s′j ≥ c(g) and Uj(s

′
j, s−j) = Πj(g; g

∗∗)− s′j ≤
Πj(g; g

∗∗) − c(g) < Πj(g; g
∗∗) − ∆j = Πi(g

∗) = Uj(s1, . . . , sn). Hence sj is
a best response against s−j for all j. This shows that (0, . . . , 0) is a Nash
equilibrium of Γ.

(bb) Suppose W0(g ⊕ g∗∗) < W0(g
∗) and ∆i ≥ 0 for all i. Now let

(s∗1, . . . , s
∗
n) be a Nash equilibrium of Γ. Suppose

∑
i s

∗
i ≥ c(g). Then

Ui(s
∗
1, . . . , s

∗
n) = Πi(g; g

∗∗)−s∗i for all i. By the same argument as in the proof
of (ab),

∑
i s

∗
i > c(g) can be ruled out. Further, Πi(g

∗) = Πi(g; g
∗∗) − ∆i

for each player i. Hence s∗i ≤ ∆i has to hold for (s∗1, . . . , s
∗
n) to be a Nash

equilibrium of Γ with
∑

i s
∗
i = c(g). But then

∑
i s

∗
i ≤

∑
i ∆i = ∆ < c(g)

because of W0(g⊕ g∗∗) < W0(g
∗), in contradiction to

∑
i s

∗
i = c(g). Hence to

the contrary,
∑

i s
∗
i < c(g) has to hold.

(bc) Suppose ∆+ > c(g). Then a strict Nash equilibrium (s1, . . . , sn) of
Γ with

∑
i si = c(g) can be constructed as in the proof of (aa).

Remarks. 1. The restriction to strict Nash equilibria in Proposition 10(ab)
is crucial. Take for instance the backbone infrastructure g = {48} in Example
6. Then W0(g ⊕ g∗∗) > W0(g

∗). But (0, . . . , 0) is a Nash equilibrium of Γ
which is not strict. Under the assumptions of Proposition 10(bb), strict Nash
equilibria do not exist and, therefore, restricting attention to strict Nash
equilibria proves counter-productive. The outcome in Proposition 10(bc) is
the public provision of the infrastructure g even though aggregate welfare is
diminished after the creation of the infrastructure. The beneficiaries from g,
the members of N+, are willing to shoulder the entire cost of construction
while others are opposed to the creation of g. Such a scenario is conceivable,
both in practice and in theory. In Example 8, consider g = {12}, g∗ =
{13, 23} (the periphery-sponsored star with center 3), and g∗∗ = {32} so that
g⊕g∗∗ is the periphery-sponsored star with center 2. Then c(g) = 56, ∆ = 20,
and ∆+ = 60, with N+ = {1, 2}. Hence the assumptions of Proposition
10(bc) are met.

2. An equilibrium outcome of Γ, e or g, defines a subgame-perfect equi-
librium outcome g∗ or g ⊕ g∗∗, respectively, of the two-stage game where
Γ is played in the first stage and depending on the outcome of the first
stage, (N, (Gi)i∈N , (Πi)i∈N) or (N, (Gi)i∈N , (Πi(g; ·))i∈N) is played in the sec-
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ond stage. A second-stage game may have multiple equilibria. To obtain a
well defined subscription game, I assume that the players expect g∗ to prevail
in (N, (Gi)i∈N , (Πi)i∈N) and g ⊕ g∗∗ to prevail in (N, (Gi)i∈N , (Πi(g; ·))i∈N).
A similar dilemma of multiple second stage equilibria — that needs to be
resolved by specific expectations — arises in two-stage resource allocation
mechanism where the first stage is under the planner’s control whereas the
second stage consists of competitive exchange outside the planner’s control.
See Guesnerie (1995), Section 3.1.

3. The general approach taken in this section and the equilibrium analysis
in Proposition 10 share the basic features of the model of Bagnoli and Lipman
(1989), but differ in many details, in particular equilibrium selection. Here we
deal with the special case M = 1 in Bagnoli and Lipman (1989). Bagnoli and
McKee (2001) provide episodical empirical support as well as experimental
support for that case. M = 1 in our context means a choice between e and
g ̸= e. M > 1 would mean to choose an infrastructure from among M + 1
different infrastructures e, g(1), g(2), . . . , g(M). The corresponding analysis
of Bagnoli and Lipman (1989) shows that this case poses a more intricate
mechanism design problem, which I leave to future research.

4. The “subscription model” or “subscription game” has been investi-
gated numerous times, under a variety of names, both theoretically (most
notably by Bergstrom, Blume, and Varian (1986)) and experimentally (by
Andreoni (1988) and many others). It has become part of the textbook
literature in public economics, e.g., Cornes and Sandler (1986) and Miles
(1995). In the standard model, the aggregate contribution

∑
i si determines

the amount q of a public good: q =
∑

i si or, more generally, q = f(
∑

i si). It
is a widely held wisdom among economists that the non-cooperative equilib-
rium outcome of the model is inefficient and in fact, there is under-provision
of the public good. It was the basic insight of Bagnoli and Lipman and others
that efficient equilibrium outcomes could obtain if the problem was selection
of a discrete public project from a finite set rather than choosing an amount
q from a continuum of possible amounts. With the exception of conclusion
(bc), Proposition 10 further confirms their insight.

5. The idea to finance the cost of building a network via voluntary contri-
butions also appears in Anshelevich et al. (2008). In their network formation
game, each player i decides on her non-negative contribution pi([jk]) to the
cost c[jk] of each potential edge [jk]. Edge [jk] is created if

∑
i pi([jk]) ≥ c[jk].

In Bloch and Jackson (2007), players can subsidize other players to form spe-
cific links and can also bribe other players not to form particular links.
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6. One could in principle start with an efficient public infrastructure g,
which would imply ∆ ≥ c(g) and existence of at least one (not necessarily
strict) Nash equilibrium (s1, . . . , sn) of Γ with

∑
i si ≥ c(g). By Proposi-

tion 3, however, efficiency of g renders the private provision of a network g
built around or upon g obsolete. In addition, distrust and disbelief in big
government could preempt huge public projects. For instance, in the insider-
outsider model of Section 7, public provision of a backbone infrastructure
might be acceptable while public provision of a larger infrastructure might
not. Notice that a backbone infrastructure g by itself is inefficient, but may
lead to an efficient equilibrium outcome g ⊕ g∗∗. There could also exist an
economic reason — which would warrant a slight modification of the model
— why very expensive public infrastructures should be avoided. A conceiv-
able reason could be a “shadow cost of public funds” λ > 0 which could
mean, for example, that ‘distortionary taxation inflicts disutility $(1+λ) on
taxpayers in order to levy $1 for the state.’ 4 In the present context, λ may
simply account for administrative or overhead costs. Needless to say, the
private sector may incur overhead costs as well, but possibly less than the
public sector.

7. Mutuswami and Winter (2002) address the question “how a social
planner can ensure the formation of an efficient network in a scenario where
the costs of network formation are publicly known but an individual player’s
benefits from network formation are not known to him.” They consider
mechanisms where a planner decides upon the network and cost contribu-
tions, based on the desired links and cost contributions announced by the
agents. They show that a mechanism can be designed that meets three cri-
teria: efficiency, balanced budget, and equity. Their approach as it stands
yields an efficient publicly provided network and (in view of Proposition 3)
leaves no room for decentralized network formation.

4Laffont and Tirole (1993, p. 55).
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9 Final Remarks

The foregoing analysis rests on two main premises. First, strategic network
formation builds a network around or upon a core network or infrastructure.
The latter imposes what I call internal constraints on network formation.
Second, the core network is either pre-existing or publicly provided prior to
the onset of strategic network formation.

Most of my investigation is devoted to the effects of a publicly provided
infrastructure, with the absence of such an infrastructure as the benchmark
case. Four possible effects are demonstrated: welfare or efficiency improve-
ment and reduction, stabilization and destabilization. Welfare effects of a
publicly provided backbone infrastructure are studied in more detail for the
insider-outsider model of Section 7.

Section 8 is devoted to the choice and funding of a publicly provided
infrastructure. The problem is confined to a binary choice between the ab-
sence of a public infrastructure (choice of the empty network e) and the public
provision of a particular infrastructure g at cost c(g). Everybody anticipates
that the choice of e will lead to a specific Nash equilibrium outcome g∗ in
the subsequent network formation game whereas the choice of g will yield
the Nash equilibrium outcome g ⊕ g∗∗. It turns out that the more efficient
alternative is frequently chosen in an equilibrium of a suitable version of the
subscription game.

There remain several important and promising directions for future re-
search. First of all, comparative statics should be further developed: Deter-
mine the set and properties of Nash equilibrium outcomes of the strategic
network formation game with a given core infrastructure. Find how they
change when the infrastructure varies. This might be possible in some in-
teresting cases. Second, in some instances, like in certain generalizations
of the insider-outsider model, one might agree on an “optimal” public in-
frastructure. Further, the implementation of such a public project might
be addressed beyond the simple approach taken in Section 8. As mentioned
earlier, if a publicly provided infrastructure already exists, but is possibly de-
teriorating or outdated, then its abandonment, removal, renewal, expansion,
or replacement can pose a formidable political — or sometimes technical —
challenge. Finally, other benchmark models of strategic network formation
ought to be considered. To conclude, a systematic study of internal con-
straints on network formation and the interplay between private and public
network provision has just begun.
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