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Problem 1 (32 Points)

1. Consider the linear regression model:

y = Xβ + ε ε ∼ N(0, σ2I)

where X is a (n × k) deterministic matrix with rank(X) = k and limn→∞
1
n
X ′X is a finite,

nonsingular matrix.

(a) (2 Points) Show that the OLS estimator β̂OLS = (X ′X)−1X ′y is unbiased.

(b) (2 Points) Derive the covariance matrix of β̂OLS .

2. Let there be two subsamples, (1) and (2), in which the parameters are not necessarily the same. An
unrestricted regression that allows the coefficients to be different in the two periods is[

y1

y2

]
=

[
X1 0
0 X2

] [
β1

β2

]
+

[
ε1

ε2

]
(a) (3 Points) Determine the unrestricted least squares estimators for β1 and β2.

(b) (2 Points) Write the formulae of the residuals e1 and e2 for this unrestricted regression. Use
the β̂1 and β̂2 derived in part (a).

(c) (2 Points) We can consider the restriction β1 = β2. A resticted estimator can be obtained by
stacking the data and estimating a single regression:[

y1

y2

]
=

[
X1

X2

]
β +

[
ε1

ε2

]
The resulting restricted least squares estimator is:

β̂R = (X ′
1X1 + X ′

2X2)
−1(X ′

1y1 + X ′
2y2)

Write the formulae for the residuals e1 and e2 for this restricted regression using the given β̂R.

(d) (8 Points) There are 70 observations in subsample (1) and 30 observations in subsample (2).
You are given the following residuals:

Unrestricted Model: e′1e1 = 314 e′2e2 = 107
Restricted Model: e′1e1 = 492 e′2e2 = 530

Use the F-test for linear restrictions to test H0 : β1 = β2 against H0 : β1 6= β2 using a
significance level of α = 0.05. The critical value is given by F (1, 98, 95%) = 3.94. Based on
the test decision which estimator would you use, β̂U or β̂R?

3. The Gauss-Markov Theorem states that under the full ideal conditions the β̂OLS is the best linear
unbiased estimator (BLUE).

(a) (5 Points) State the five conditions.

(b) (8 Points) Consider an alternative Linear Unbiased estimator: β̃ = β̂OLS + Cy. Show that
β̂OLS is more efficient than β̃. Hint: You may assume that E[CX] = 0.
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Problem 2 (28 Points)

Consider the linear regression model:

yi = x′iβ + εi, εi ∼ (0, σ2), i = 1, ..., n , (1)

where xi and β are (k × 1)–vectors. Moreover, it is assumed that:

A1) {(yi, x
′
i)
′} is a sequence of i.i.d. (k + 1× 1)–random vectors,

A2) E[xix
′
i] = ΩXX is finite and strictly positive definite,

A3) 4th moments of regressors exist,

A4) E[εixi] = 0,

A5) E[ε2
i xix

′
i] = σ2ΩXX .

Denote the (n×k)–matrix X = [x1, ..., xn]′ and the (n× 1)–vector ε = (ε1, ..., εn)′. β̂n is the OLSE of β.

1. (1 Point) Fill in the gap:
“Under assumptions A1), A2) and A3) it can be shown that (X ′X)/n

P−→ .......”

2. (3 points) Give the definitions for an unbiased, an asymptotically unbiased and a consistent estima-
tor of β.

3. (2 points) What is the difference between an unbiased and an asymptotically unbiased estimator?

4. (2 points) Give one reason why an asymptotically unbiased estimator is not necessarily consistent.

5. (3 Points) Does the central limit theorem hold for X ′ε/
√

n? Justify briefly and give the limiting
distribution.

6. (4 Points) Using 5, show that
√

n(β̂n − β)
D→ N(0, σ2Ω−1

XX).

7. (3 Points) Approximate the distribution of β̂n using the asymptotic result from part 6.

8. (4 Points) Justify that the WLLN holds for X ′ε/n. Give the probability limit.

9. (6 Points) Using your results from 1 and 8 and the hints given below, show that the OLS estimator
for σ2,

σ̂2 =
1

n− k
ε′Mε =

1

n− k
(ε′ε− ε′X(X ′X)−1X ′ε),

where M is the residual–maker, is consistent.

Hints: Multiply the variance estimator with n
n

and reformulate it. Furthermore, you can use that
plim(X ′) = (plim(X))′ for a random matrix X . The following probability limit is given:

1

n

n∑
i=1

ε2
i

P−→ σ2.
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Problem 3 (31 Points)

Consider yi, i = 1, . . . , n, i.i.d. and following a Bernoulli distribution

f(y|p) = py(1− p)1−y. (2)

with E[yi] = p and V[yi] = p(1− p).

1. (2 Points) Show that the log likelihood function is given by

ln L(p|y) = ln(p)
n∑

i=1

yi + ln(1− p)
n∑

i=1

(1− yi) (3)

2. (2 Points) Derive the score function of the log likelihood function. Interpret this function.

3. (3 Points) Derive the maximum likelihood estimator (MLE).

4. (1 Point) Show that the MLE p̂ML is unbiased.

5. (2 Points) Derive the variance of p̂ML.

6. (5 Points) Determine the second derivative of ln L(p|y) and the (scalar) Fisher Information I(p).
Show that p̂ML is efficient. Which theorem do you use to show that p̂ML is efficient?

7. (13 Points) Suppose you observed a random sample of size n = 25 with
∑25

i=1 yi = 8. Use the
Wald-test to test your null hypothesis for p∗ = 0.5 against the alternative that p∗ 6= 0.5 at a 5 %
level. The critical value is χ2

(1,95%) = 3.842. Proceed as follows:

(a) Calculate p̂ML.

(b) Formulate your null hypothesis in terms of r(p) and derive R(p), where r is the restriction
function and R the derivative of the restriction function.

(c) Estimate the Fisher Information by I(p̂ML).

(d) Calculate the value of the Wald test statistic and make your decision.

(e) Let the subscript U denote the unrestriced model and R denote the restricted model. Give the
Likelihood Ratio test statistic.

(f) Calculate the value of the LR test statistic and make your decision.

8. (3 Points) Discuss the difference between Wald and LR tests. Specifically:

(a) Which test statistic is larger or equal compared to the other in finite samples?

(b) When will the two test statistics be identical?

(c) What is the advantage of the Wald test over the LR test?
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Problem 4 (29 Points)

1. Consider the following linear regression model:

yt = β1 + β2x
∗
2t + εt, t = 1, .., T εt ∼ N(0, σ2

ε) i.i.d., (4)

where yt denotes consumption expenditures in period t, x∗2t denotes unobservable income in period t
and β = (β1, β2)

′ is a (2× 1) parameter vector. x∗2t and εt are independent. Assume that observable
income x2t can be expressed as unobservable income and an additional random component ηt:

x2t = x∗2t + ηt, ηt ∼ (0, σ2
η) i.i.d., (5)

where x∗2t and ηt are independent. In addition, ηt and εt are independent.

(a) (2 Points) Rewrite the model in equation (4) to obtain

yt = β1 + β2x2t + ut. (6)

Give the representation of ut in terms of β2, ηt and εt.
(b) (5 Points) Show that E[x2tut] = −β2σ

2
η 6= 0. How do you interpret this result?

(c) (4 Points) Let X = (x1, x2) with x1 denoting a (T × 1)-vector of ones. What can you say
about the consistency and unbiasedness of β̂OLS = (X ′X)−1X ′y in model (6)? Show your
results using plim

(
X′X

T

)
= ΩXX (positive definite) and plim

(
X′u
T

)
= ΩXu 6= 0.

2. Assume the following relationship between the unobservable income x∗2t and investment w2t:

x∗2t = γ1 + γ2w2t, (7)

where (γ1, γ2)
′ is a parameter vector. Denoting W = (w1, w2), with w1 being a (T × 1)-vector of

ones, it can be shown that (i) plim
(

W ′W
T

)
= ΩWW (positive definite) and (ii) plim

(
X′W

T

)
= ΩXW

(nonsingular). Assume there exists a weak law, such that (iii) plim
(

W ′u
T

)
= 0 holds.

(a) (2 Points) How do you interpret (ii) and (iii)?
(b) (10 Points) To conduct a simple IV estimation of model (4), take the following data as given:

T∑
t=1

x2t = 360,
T∑

t=1

w2t = 90
T∑

t=1

w2tx2t = 600,
T∑

t=1

x2tyt = 660,

T∑
t=1

yt = 310,
T∑

t=1

w2tyt = 525, T = 50.

Compute the instrumental variable estimator β̂IV . Provide the economic interpretion for the
estimated coefficients.

3. (1 Point) Name the crucial condition for W that has to be fulfilled if β̂IV = β̂GIV , where β̂GIV

denotes the generalized instrumental variable estimator.

4. (5 Points) What is wrong with the following text on the properties of the Ordinary Least Squares
Estimator (OLSE) and the Instrumental Variable Estimator (IVE)? Explain briefly.

The OLSE is inconsistent, but unbiased in case of a positive correlation between the explanatory
variables and the error terms. The more correlated the instruments are with the explanatory vari-
ables, the larger will the covariance matrix of the IVE be (in terms of the elements of the matrix).
Consistency of the IVE can be established by any variable which is correlated with the explanatory
variables. The less correlated the instruments are with the explanatory variables, the less defensible
is the claim that these same variables are uncorrelated with the disturbances. The OLSE is not a
special case of the IVE if the explanatory variables and error terms are uncorrelated.
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