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Abstract 
 
 
In this thesis, a model is presented which assumes reference-dependent prefer-
ences in the style of Tversky and Kahneman (1991). It attempts to answer the 
question whether consumers’ loss aversion leads to price stickiness, assuming 
that firms maximize profits. This is done by analyzing a monopolistic firm with 
constant marginal cost which faces a loss-averse representative customer. 

It is shown that the demand functions of loss-averse consumers are kinked; 
thus, so is the firm’s profit function. Moreover, the kink is shown to be so pro-
nounced that the maximum profit is attained at the associated price, as long 
as the producer’s unit cost lies inside a certain interval. This is interpreted as 
“price stickiness”, since the profit-maximizing price does not respond to shocks 
on the firm’s unit cost when the shocks are small enough. 

Two different specifications of consumers’ reference points are proposed: 
in the basic model, the reference point is set exogenously and not allowed to 
vary over time. In an extended version of the model, the reference point de-
pends on past consumption. The extended version is found to mimic real mar-
ket prices better than the basic version. My way of modeling the determination 
of the reference points is defended against two competing hypotheses about 
their nature, proposed by Sibly (2002) and by Heidhues and Kó́szegi (2004). 

The extended version is modified in a second extended version to allow for 
consumer heterogeneity, i.e. consumers have idiosyncratic reference points. 
This way, it is shown that the results of the first extended version survive aggre-
gation. Because of this result, I argue that customer heterogeneity can be ne-
glected and the model can be used in its representative-agent version, which is 
much easier to solve than the version incorporating consumer heterogeneity. 

The main result of my model is that it combines one kind of non-respon-
siveness of the profit-maximizing price—to cost shocks—with another kind 
of immediate responsiveness—to changes in demand. Such changes in demand 
occur, e.g., when the agents’ nominal income changes. Thus, expansionary 
monetary policy has in most cases no real, but only inflationary effects, despite 
the observation that prices are constant over longer periods of time. 

Finally, topics for further research are suggested: most importantly, upcom-
ing versions of the model should incorporate forward-looking behavior of both 
firms and consumers; the analysis should be extended from partial to general 
equilibrium; and a calibrated version of the model should be compared with 
actual data on prices and costs thereafter. In addition to this theoretical work, 
further empirical research on the origins and effects of reference points is con-
sidered necessary.
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1 Introduction 
 
 

This thesis deals with two longstanding controversies of economic theory. 
The first is the extent to which nominal prices and wages can adjust quickly to 
a changing environment; the second is the controversy about the constancy 
of individuals’ preferences. 

Whichever side one chooses in these controversies has far-reaching conse-
quences on what monetary and fiscal policy one considers appropriate. It is 
therefore easy to understand that the debate on sticky vs. flexible prices has 
been on the macroeconomic research agenda ever since the publication of the 
opus that founded macroeconomics—Keynes’s (1936) General Theory of Em-
ployment, Interest and Money. 

In the beginning—throughout two decades—inflexibility of the prices of 
goods was bluntly assumed by “Keynesian” theorists without providing a ration-
ale for such inflexibilities. Since the 1950s, this view was attacked vehemently 
on different grounds by competing schools of thought. The assumption of rigid 
prices was replaced by the assumption that firms’ pricing can be explained by 
mathematical models of profit-maximization. Some of the modern so-called 
“micro-founded” macro models still generate price stickiness, while others pre-
dict prices to adjust instantaneously to any change in the market environment. 
The existence or non-existence of price stickiness is crucial for the conduct 
of monetary policy, because if prices adjust quickly to any new information, 
expansionary monetary policy will likely only increase inflation and have no 
effect on employment whatsoever. 

Regarding peoples’ preferences, economists almost exclusively assume that 

1 individuals’ preferences are constant and 
2 it is only the absolute quantities of the consumed goods that matter. 

My thesis presents a model in which this convenient assumption is replaced 
by reference-dependent preferences in the style of the theory by Tversky and 

Kahneman (1991): people are assumed to be loss-averse. This way, preferences 
no longer depend only on the absolute amounts consumed, but also on relative 
quantities—vis-à-vis the reference point. Furthermore, by allowing the refer-
ence point to change over time, responding to past consumption, changes in 
tastes become endogenous. 

My thesis tries to answer the question whether the dependence of prefer-
ences on reference points in connection with loss aversion leads to price sticki-
ness, assuming that firms maximize profits. 

Why should there at all exist such a connection between price rigidities 
and reference-dependent preferences? The answer is: loss aversion changes the 
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shape of consumers’ demand curves and, thus, of suppliers’ profit functions. 
More specifically, as I will show in this thesis, the demand curves of loss-averse 
consumers are kinked; and I will also show that these kinks are so pronounced 
that the maximum profit is attained at the associated price, as long as the pro-
ducer’s marginal cost varies only inside a certain interval. 

Hence, as long as the kinks do not shift, prices can be indeed constant over 
several periods. However, whenever the kinks do shift—e.g., due to an increase 
in nominal income—a change in the firm’s profit-maximizing price can be the 
consequence. This is an interesting feature of my model: it combines one kind 
of non-responsiveness of the profit-maximizing price (to cost shocks) with an-
other kind of immediate responsiveness (to changes in demand). Thus, expan-
sionary monetary policy has hardly any real, but strong inflationary effects, de-
spite the observation that prices are constant over longer periods of time. In ad-
dition, just like empirical findings on real markets, price series generated by my 
model exhibit short-run price stickiness and long-run price flexibility. 

Remarkably, the characteristics of demand and price setting under con-
sumer loss aversion have been studied rather superficially up to now. While 
there were several attempts to verify empirically the existence of loss aversion 
over prices (e.g., Putler, 1992; Hardie et al., 1993; Bell and Lattin, 2000), 
only a few publications dealt with developing theoretical models of firms’ price 
setting when facing loss-averse customers: McDonald and Sibly (2001), Sibly 
(2002, 2004), and Heidhues and Kó́szegi (2004). 

Among the latter four models, in my opinion, only the one by Heidhues 

and Kó́szegi takes a satisfactory approach to deriving demand and firms’ price 
setting under loss aversion. Therefore, my own model will use certain elements 
of the Heidhues–Kó́szegi model, but differ considerably in other aspects. 

The remainder of this thesis is organized as follows: I start in Section  2.1 
by presenting a brief review of the major macroeconomic approaches that try 
to explain firms’ price setting. Section  2.2 provides an introduction to the theory 
of reference-dependent preferences. In Section  2.3, I present and criticize the 
findings of the abovementioned empirical studies and theoretical models which 
connect reference-dependent preferences and price setting. 

Section  3 consists of an extensive list of empirical findings on the movement 
of individual prices as well as on the aggregate price level. 

In Section  4, I then introduce my own model of a monopolistic firm facing 
loss-averse customers. The model is solved in Section  5, and simulation results 
are presented in Section  6. Section  7 adds two variations to the basic model by 
making the reference points endogenous and allowing for consumer heteroge-
neity. Section  8 discusses the predictions of all three variants. 

Section  9 concludes. 
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2 Literature 

2.1 Macroeconomic theory and price rigidities1 

 

The flexibility of prices is an extremely important issue in macroeconomics, 
even in economics in general, since it is the system of relative prices which in-
dicates relative scarceness of resources and, thus, channels production and in-
vestment decisions in such directions that they can contribute best to satisfying 
consumers’ needs. Disturbances in the adjustment of prices to changes in the 
economic environment can, therefore, lead to an inefficient allocation of re-
sources—i.e., suboptimal investment decisions, underemployed production fa-
cilities and an inadequate supply of goods to consumers. 

While Keynes (1936) mentioned inflexibility of nominal wages in his Gen-
eral Theory of Employment, Interest and Money, it was not his central concern. 
According to Snowdon et al. (1994, see p. 63), in Keynes’s theory indeed out-
put instead of price adjustments in response to economic shocks are empha-
sized; however, major influence on the aggregate level of economic activity is 
seen to be caused by the money market through people’s demand for liquidity 
and the influence of this demand on the interest rate (see pp. 66–67), which 
brings about the failure of Say’s Law. While admitting that unemployment of 
workers can be caused by money wage inflexibility, Keynes did not consider 
this a major problem. In his view, expansive monetary policy could re-establish 
the equilibrium amount of output and employment (see p. 72). 

It was only the interpretation of his work by Modigliani (1944) which led 
to the fact that “Keynesian economics was seen to be the economics of wage 
and price rigidities” (Snowdon et al., p. 74). However, this sort of “Keynesian-
ism” suffered from a major weakness: “the lack of a convincing reason for wage 
and price rigidities” (p. 74). Still, it gained widespread acceptance, with its main 
tool being the so-called “neoclassical synthesis”, which materialized in the is–lm 
model. In this model, with the price level held constant, it is possible for the 
monetary authority to influence the level of output and, thus, employment. 

Of course, the abovementioned “lack of a convincing reason for wage and 
price rigidities” drew severe criticism by competing schools of thought, such as 
monetarism in the late 1960s and a little later by the new classical “real business 
cycle” (rbc) approach. According to the monetarist model by Friedman (1968), 
in which he introduced the so-called “expectations-augmented Phillips curve”, 
expansive monetary policy may have real consequences in the short run, but 
only inflationary results in the long run. His analysis abandoned the mere as-

                                                                            
 1 This section draws heavily on the presentation in Snowdon et al. (1994). 
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sumption of rigid prices and provided a rationale for temporary non-adjust-
ment of prices to monetary shocks by positing that expectations of future 
inflation are incorporated in current wages and prices, but that these expecta-
tions lag behind actual inflation. Thus, there is space for monetary policy to 
influence output and employment in the short run—but monetary policy is 
“neutral” with respect to real variables in the long run. 

The new classical school as well assumed flexible prices and continuous 
market clearing. In addition to this, unlike the monetarist model described 
above, new classical models like the one by Lucas (1972) did not assume adap-
tive expectations any further, but “rational expectations”. Despite these ingredi-
ents, which favor neutrality of monetary policy regarding the real sphere, the 
Lucas model still generates temporary nominal non-adjustment in response 
to monetary shocks. This is due to the assumed properties of the information 
set available to producers: “while a firm knows the current price of its own 
goods, the general price level for other markets only becomes known with 
a time lag” (Snowdon et al., p. 194). This poses a “ ‘signal extraction’ problem 
[to the firms], in that they have to distinguish between relative and absolute 
price changes” (p. 195). In this context, unanticipated monetary shocks do have 
an influence on the level of output and employment, but foreseeable monetary 
policy does not—similar to the predictions of the monetarist approach. 

While all aforementioned theories have in common that fluctuations in 
the economy’s output are seen as reactions to movements in the money supply, 
the Real Business Cycle (rbc) revolution, started by Kydland and Prescott 
(1982), maintained that business cycles are not caused by monetary shocks at all. 
Instead, in rbc models they are explained by changes in productivity (“technol-
ogy shocks”) alone, with all nominal prices being totally flexible. In rbc models, 
money is not only neutral in the long run, but has no real effects even in the 
shortest of short runs. 

However, the rbc models fail to explain certain important features of actual 
economic data: Burda and Wyplosz (1997) mention, e.g., that real wages are 
acyclical in reality, while rbc theory predicts procyclical real wages. Further-
more, according to Burda and Wyplosz, “the real money stock is procyclical 
and in particular a leading indicator” (p. 374). Since money plays no role what-
soever in rbc models, if technology shocks were indeed the driving force be-
hind business cycles, we should not expect the real money stock to be leading, 
but rather lagging or coincident, since it simply reacts passively to the expan-
sions and contractions of real output. 

For this reason, among others, two new strands of micro-founded macro 
models have become popular: time-dependent and state-dependent (“New 
Keynesian”) sticky-price models. The former assume that, in general, firms set 
prices to maximize profits; however, it is assumed either that prices must be set 
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a fixed number of periods in advance or that in each period, only an exoge-
nously given fraction of firms is allowed to adjust prices. The first models with 
the former feature were developed by Phelps and Taylor (1977) and Fischer 

(1977), and with the latter feature by Calvo (1983). 
According to Snowdon et al. (see p. 74), the seminal papers incorporating 

state-dependent sticky-price models were Akerlof and Yellen (1985), Man-

kiw (1985), and Parkin (1986). In these models, profit-maximizing firms choose 
depending on their state and using rational expectations, not to update prices 
at every instant, because it is assumed to be costly to changes prices (so-called 
“menu costs”, e.g. due to the need of printing new catalogs and price tags). This 
price stickiness paves the way for monetary policy to exert an influence on real 
variables. 

Of course, New Keynesian economics is not uncontested either. The ex-
planatory power of time-dependent and state-dependent sticky-price models 
will be discussed in Sections  3.1 and  3.2, respectively. 

2.2 The case for reference-dependent preferences 

2.2.1 The point of departure: reference-independent preferences 

in riskless choice and in choice under risk 

Standard (by this I mean neoclassical) economic theory of choice postulates 
that human behavior can be described—at least on average—sufficiently well 
by an certain concept of rationality. A concise account of the axioms on which 
this theory rests can be found in Varian (1992, Ch. 7). Since I do not focus on 
criticizing this rationality concept as a whole, but rather on the actual use of 
the theory, it suffices to mention the concept’s main implication: that all choices 
x and y out of the set of admissible choices X can be mapped via a function 

:u →X \  (“utility function”) to real numbers such that x is preferred over y 
if and only if u(x) > u(y). The agent’s decisions are then modeled by maximiz-
ing the utility function subject to the agent’s budget restriction. 

While this theory of decision making is already subject to severe criticism2, 
it has without further specification of the shape of the utility function virtually 
no empirical content. Most models gain their predictive power—e.g., on the 
existence, uniqueness or multiplicity, and characteristics of equilibria—from 
assumptions which are made—often only implicitly—in addition to the basic 
rationality postulates, for instance by assuming that the utility function is strict-

                                                                            
 2 For a survey of objections to modeling human behavior this way, see Conlisk (1996). 
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ly concave. It is such commonly assumed specifications of the utility function 
to which my thesis suggests an alternative: 

• In dynamic models, it is almost exclusively assumed that the utility function 
(thus, the preferences) does not change over time. However, some econo-
mists argue that people’s preferences are strongly influenced by their eco-
nomic environment3, or that preferences are inherently unstable4 and con-
structed on-the-fly, whenever a decision has to be made, because one can 
never have the entire choice set in mind. 

• The utility function is normally defined only over the quantities of the 
goods consumed. Information and deliberation costs (to be able to decide 
at all)5, as well as social components of preferences (e.g. fairness, altruism) 
are usually disregarded. 

• Usually, the construction of the utility function lets the quantities of goods 
enter only in absolute terms. This way, potential dependence of preferences 
on reference states (anchoring effects6, available alternative products, past 
consumption, the consumption of one’s neighbor, the wage of fellow work-
ers, and so on) is excluded. 

• The neoclassical rationality concept makes no explicit statement on the use 
of information available to the economic agent. It only posits that, given an 
available set of information, the agent should behave consistently—no mat-
ter how (in)correct the information may be on which the agent bases her 
decisions. However, in contrast to this general possibility of misinterpreta-
tion that the theory allows for, virtually all neoclassical models make the 
implicit assumption that the economic agent interprets her information en-
vironment correctly (making preferences “description-invariant” which ex-
cludes, for example, so-called “framing” of situations).7 

This concept of rationality and the many implicit assumptions that usually 
come along with its actual use is not only applied to riskless choice but also 
to choice under risk8, in the form of so-called “expected utility theory” (eut)9. 
It was decision under risk for which reference-dependent preferences and loss 

                                                                            
 3 For arguments in favor of analyzing endogenous preference changes, see Bowles (1998). 
 4 This is done for example by Ariely et al. (2003). 
 5 For the relevance of introducing such costs into economic models see, e.g., Conlisk (1996). 
 6 See Ariely et al. (2003). 
 7 This point is mentioned by Munro (2004, p. 2-2) and Starmer (2000, p. 338). 
 8 In line with Starmer (2000, p. 334), I define as a state of “risk” a situation in which the outcome 
of an agent’s choice is random, but all potential consequences are known to the choice maker and 
can be attributed (at least subjective) probabilities. In contrast, a state of “uncertainty” is a situation 
in which at least some of the potential outcomes or probabilities are unknown. 
 9 Starmer (2000) provides a concise overview of eut, including its achievements, shortcomings, 
and potential alternatives. 
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aversion were first introduced (by Kahneman and Tversky, 1979) as an alter-
native to the commonly assumed specifications of the utility function. 

The standard reference-independent theory of choice not only makes it re-
latively easy to derive functions describing the demand and supply of goods, 
but it also has important implications for welfare economics and the assessment 
of the efficiency of markets. As soon as reference dependence is introduced in 
combination with an assumption that the reference point changes in a way con-
nected to the market’s behavior, the question of efficiency may become unan-
swerable by purely economic analysis, because the answer would involve a judg-
ment about which reference state is the best. Tversky and Kahneman (1991, 
p. 1039) make a similar point: 

The standard models of decision making assume that preferences do not de-
pend on current assets. This assumption greatly simplifies the analysis of indi-
vidual choice and the prediction of trades: indifference curves are drawn with-
out reference to current holdings, and the Coase theorem asserts that, except 
for transaction costs, initial entitlements do not affect final allocations. The facts 
of the matter are more complex. 

2.2.2 Evidence from experiments and market data on deviations from 

the neoclassical theory of choice 

Surveys on the deviations of actual behavior from the predictions of the neo-
classical theory of choice—often called “anomalies”—that were documented in 
experimental or field studies, can be found in Munro (2004), Starmer (2000), 
and Tversky and Kahneman (1991). Although these anomalies are very di-
verse, the theory of reference-dependent preferences has been used to explain 
a larger number of them. In the following I will present only the cases relevant 
for my object of analysis. 

Four classical findings on the deviation of actual choice from the predic-
tions of standard theory are the following phenomena: the “endowment effect” 
first described by Thaler (1980), the “status quo bias” documented by Samuel-

son and Zeckhauser (1988), “preference reversal” as it was first observed by 
Lichtenstein and Slovic (1971) and Lindman (1971), as well as the “disposi-
tion effect” first examined by Shefrin and Statman (1985). 

The endowment effect is called that way because it describes the following 
phenomenon frequently found in laboratory experiments: subjects are split into 
two subgroups. Subjects in one group are given an item (e.g., a chocolate bar), 
and in an incentive-compatible procedure their willingness to accept compen-
sation (wta) for giving up the item is elicited. Subjects in the second group are 
not given the item, and their willingness to pay (wtp) for the item is elicited. 
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Mean wta is frequently found to be higher than mean wtp. In the absence of 
transaction costs, this disparity is at odds with standard theory according to 
which for small stakes, wta and wtp should be equal. 

A very similar phenomenon is the status quo bias: this term describes peo-
ple’s aversion to give up the status quo. Samuelson and Zeckhauser (1988) 
showed it to be present in the decisions of Harvard University employees re-
garding enrollment in different available medical plans. 

The experiment to reveal preference reversal is as follows: Subjects are asked 
to choose between two prospects: the “$-bet” which offers the chance to win 
a high prize at a low probability, and the “p-bet” which offers the chance to win 
a smaller prize at a higher probability. Later, subjects’ minimum prices at which 
they are willing to sell the two lotteries are elicited. Studies have repeatedly 
shown that subjects tend to choose the p-bet, while placing a higher value on 
the $-bet (see Starmer, 2000, p. 338). From the perspective of eut, this behavior 
is inconsistent—thus, the term “preference reversal”. 

The disposition effect is more accurately the “disposition to sell winners 
too early and ride losers too long”, as the title of Shefrin and Statman’s (1985) 
groundbreaking article defines. The disposition effect has not only been verified 
by Weber and Camerer (1998) in a simple experimental setting, but it has also 
been shown by Odean (1999) to be present in professional asset traders’ deci-
sions. In Weber and Camerer’s experimental setting, the artificial assets were 
constructed in such a way that it was clearly a mistake to hold on to assets 
which had suffered losses in the past—yet, subjects did so. 

Reference-dependent preferences in combination with loss aversion are 
the most frequently used way to explain these phenomena. The next subsection 
provides an overview of the two seminal contributions by Kahneman and 
Tversky. 

2.2.3 The theory of reference-dependent preferences in decision under risk 

and in riskless choice 

The concepts of preferences which depend on reference states and of loss aver-
sion, as it was proposed in Kahneman and Tversky (1979) and Tversky and 

Kahneman (1991) have become known as “prospect theory”. 
More narrowly defined, prospect theory refers only to decision making 

under risk. A prospect is defined as a lottery with known potential outcomes xi 
and known associated probabilities pi, i = 1, …, n; thus, it can be denoted by the 
vector 1 1 2 2( , ; , ; ; , ).n nx p x p x p≡q …  Expected-utility theory posits that an agent 
who possesses an endowment y (measured in the same units as the components 
of the prospect) values the prospect as follows: 
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(2.1) 
1

( ) ( ),
n

i i
i

U p u y x
=

= +∑q  

where u(i) is usually assumed to be strictly increasing, differentiable and strictly 
concave. In contrast, prospect theory posits that people’s evaluation of a pros-
pect’s components can be described by the following value function: 

(2.2) 
1

( ) ( ) ( ),
n

i i
i

V π p v x
=

= ∑q  

where v(x) has the following properties (see Kahneman and Tversky, 1979, 
pp. 277–280): 

1 For all x ≥ 0 (“gain”): v″(x) ≤ 0; i.e., v(x) is concave. 
2 For all x ≤ 0 (“loss”): v″(x) ≥ 0; i.e., v(x) is convex. 
3 For x > y ≥ 0: v(y) + v(−y) > v(x) + v(−x), which implies: 
4 For all x: v(x) < –v(–x) and v′(x) < –v′(–x). 
5 v(0) = 0 (normalization). 

A function with these properties is depicted in Figure 2.1. 
Through these conditions prospect theory posits that an agent’s evaluation 

of a prospect is not based on its components’ contribution to absolute wealth, 
but only on whether the components increase or decrease wealth compared 
to the status quo. It is the change in wealth that matters. Furthermore, prospect 
theory posits that a loss of size x is valued more negatively than a gain of equal 
size, and that agents are risk-averse in the domain of gains, while being risk-
seeking in the domain of losses. In addition, it is important to note that the 
value function v(x) is not differentiable at x = 0. 

�4 �2 2 4
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Figure  2.1: Example of a function v(x) that ful>lls the assumptions 
made in Kahneman and Tversky (1979, pp. 277–280). 

x 

v(x) 
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π(p) is a “decision weight” function. While it can be the identity function, 
it is usually assumed that π(p) > p for p close to zero and that π(p) < p for p close 
to one. This way, the empirically found tendency of people to overestimate the 
probabilities of unlikely events and to underestimate the probabilities of very 
likely events shall be captured. 

In their 1991 article, Tversky and Kahneman extended this original theory 
to the domain of goods: In their “theory of reference-dependent preferences”, 
loss aversion is suggested to exert an influence even on decisions which involve 
no uncertainty at all. 

In contrast to prospect theory, in the theory of reference-dependent prefer-
ences the state to which a level of wealth or consumption xi is compared is not 
necessarily the status quo (0) any more, but can be any real number ri. In ana-
logue to prospect theory, the difference xi − ri is called a “gain” when larger than 
zero and a “loss” when below zero. Tversky and Kahneman provide accurate 
definitions of “loss aversion” and of “diminishing sensitivity to gains and losses” 
(pp. 1046–1050). For our purposes, however, the details of these definitions are 
not too important, because all attributes of the preferences of a loss-averse 
agent can be summarized in a value function :V →r X \  which maps all choices 
x and y out of the set of admissible choices X to real numbers such that x is pre-
ferred over y if and only if Vr(x) > Vr(y). The subscript r denotes in this context 
that the alternatives x and y are evaluated from the reference point r, which is 
also an element of X. The existence of such a value function substantially sim-
plifies the modeling of a loss-averse agent’s behavior. 

As Tversky and Kahneman show (p. 1048), the value function has to assign 
a more negative impact to losses than it assigns a positive impact to gains of 
equal size. When the agent’s preferences are decomposable, Vr(x) has the prop-
erty that the value of a bundle x = (x1, x2, …, xn) to the consumer can be de-
scribed by Vr(x) = V(vr, 1(x1), vr, 2(x2), …, vr, n(xn)). In the special case of “con-
stant loss aversion”, the functions vr, i(xi) are defined as follows: 

(2.3) ,
( ) ( ) if 

( ) ,
( ( ) ( ))/ if 

i i i i i i
i i

i i i i i i i

u x u r x r
v x

u x u r λ x r
− ≥⎧

= ⎨ − <⎩
r  

with : ,i iu X →\ λi > 0, i = 1, …, n. Although not mentioned by Tversky and 

Kahneman, I suppose that, in addition, ui(xi) has to be concave and strictly in-
creasing and that λi < 1. For only then the function vr, i(xi) in the case of refer-
ence-dependent preferences has the same properties as the function v(x) sug-
gested in prospect theory. (In fact, Tversky and Kahneman provide a plot of 
example indifference curves, allegedly with λ1 = 2 and λ2 = 3. I think this is a 
mistake, and it should be λ1 = ½ and λ2 = ⅓ instead. With λi > 1, one would have 
to speak of “loss proneness” rather than of “loss aversion”.) 
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Due to these properties, the theory of reference-dependent preferences 
can explain the endowment effect, the status quo bias, and preference reversal, 
given that the reference point is endowment: If the reference point is the en-
dowment at the time of the decision, then purchasing a new item/lottery is 
asymmetric from being endowed with it and selling it. For under loss aversion 
giving up something is perceived as a greater loss than acquiring is perceived 
as a gain. The disposition effect can be explained by the theory of reference de-
pendence, too, when last period’s price of the stock is used as the reference 
point. However, to explain the disposition effect, not only loss aversion has to 
be invoked, but also the property of risk-proneness in the domain of losses and 
risk-aversion in the domain of gains (see Weber and Camerer, 1998, p. 170). 

2.2.4 The relevance of loss aversion for real-world markets 

So far, the focus of the evidence mentioned has been individual decision mak-
ing. However, it is at least equally important to understand the implications 
of loss aversion for the collective outcome. As an example10 may serve the com-
mon justification for assuming continuous and differentiable market demand 
functions, while most goods in fact cannot be divided or are at least sold only 
in fixed quantities. Therefore, most consumption choices are over discrete, and 
not continuous quantities, or they are even binary choices. Still, for the super-
market which serves thousands of customers simultaneously, a larger number 
of individual binary choices who all have different reservation prices translates 

                                                                            
 10 This example is inspired by a similar, and more formally presented, one in Schlicht (1985), p. 81. 
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Figure  2.2: A graphic illustration of loss aversion: The agent is indi=erent 
between the bundles x and y, given that her reference point is s = (s1, s2). 

When evaluating x and y from the reference point r = (r1, r2), she prefers x over y, 
because y1 < r1. (Source: Tversky and Kahneman, 1991, p. 1047, Figure iii.) 
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to a monotonically decreasing demand curve. The larger the number of cus-
tomers, the better average demand per customer can be approximated by 
a smooth, i.e. differentiable, function. Similarly, it could be that anomalies, while 
being present on the individual level, are invisible on the aggregate level—for 
example to producers. 

Yet there is substantial evidence that in many situations departures of actual 
behavior from neoclassical choice theory do shape market outcomes to a non-
negligible extent. The findings by Samuelson and Zeckhauser (1988) illustrate 
how flawed forecasts on the success of new products may be when neglecting 
the status quo bias; they were already presented in Section  2.2.2. Another study 
using real-market data—Odean (1999), which was already mentioned earlier as 
well—shows that, at least in the case of discount brokerage employees, competi-
tion between different firms does not make the disposition effect disappear. 

For an impression of the wide range of economic areas in which evidence 
on the importance of reference-dependent preferences for explaining people’s 
behavior has been found in market data, please refer to Table 2.1. 

Of particular interest for this thesis is research on asymmetric reactions to 
price cuts and price increases. If demand functions stem from well-behaved 
preferences, they are monotonic and smooth. Of course, they are allowed to be 
non-linear so that the response to an equal-sized price increase is in general 
not simply the negative of the response to a price decrease. However, for minor 
price changes, responses to increases and cuts should be approximately of the 
same size. In contrast, if a demand curve is kinked at a certain price—which 
can be due to reference-dependent preferences—, around this price, reactions 
to increases and cuts are asymmetric. Such asymmetric response to price 
changes has been found by a number of studies, e.g. by Putler (1992), Hardie 

et al. (1993), and Bidwell et al. (1995). However, the most important study 
in this context is Bell and Lattin (2000), because unlike the aforementioned 
studies it allows for customer heterogeneity, which decreases the obtained esti-
mate of loss aversion. Still, despite this improved accuracy Bell and Lattin ob-
tained statistically significant estimates of asymmetric responses to price cuts 
and increases: for margarine, paper towels, detergents, hot dogs, bathroom tis-
sue, and soft drinks. In other cases the reduction in the estimated coefficient 
was so large that the coefficient became insignificant; this happened for bacon, 
butter, crackers, sugar, and ice cream (see pp. 194–195). 

Another important question is whether individual loss aversion disappears 
with increased market experience. Two experimental studies—carried out at a 
real market, however—by List (2003 a, 2003 b) deal with this issue, and the an-
swer is quite definitely “yes”. In both studies, List examines the wtp/wta dis-
parity 
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Study Commodity Method Result 

Samuelson 
and Zeck- 
hauser (1988) 

Annual 
health plan 
enrolments 

Choice by exist- 
ing staff versus 
new staff 

43.1% of existing staff opted 
for status quo versus 22.7% 
of new staff (numbers should 
be equal according to eut) 

Johnson 
et al. (1993) 

Car insurance Choice of right 
to sue or not, 
with variation 
in default option 

Given restricted rights, 20% 
opted for extended rights; 
given extended rights, 73% 
opted for extended rights 

Hardie 
et al. (1993) 

Supermarket 
goods (scanner 
data) 

Compare demand 
responses to price 
rises and cuts 

Demand elasticity for price 
rise > demand elasticity for 
price fall (standard theory: 
approximately identical) 

Benartzi 
and Thaler 
(1995) 

Investment de-
cisions: bonds 
versus equities 

Compare 
investment choices 
to eut predictions 

Level of risk aversion im-
plied by bond–equity split 
incompatible with that im-
plied by other risky deci-
sions; compatible with pros-
pect theory 

Bowman 
et al. (1999) 

Teachers’ 
consumption 

Responses of con-
sumption to bad in-
come news 

Consumption does not fall, 
supporting endowment effect 

List (2003 a) Sports cards 148 sporst card 
traders randomly 
endowed with cards 
and invited to swap 

45% (approx.) of dealers will-
ing to swap; 6.8% of inexpe-
rienced non-dealers willing 
to swap (standard theory: 
percentage should be equal) 

 Disney 
label pins 

80 Disney pin 
traders randomly 
endowed with pins 
and invited to swap 

25% of inexperienced traders 
willing to swap 
40% of experienced traders 
willing to swap 

 Sports cards 120 dealers and 
non-dealers wtp 
or wta for sports 
cards 

For dealers, mean wta/ 
mean wtp = 1.3; for non-
dealers, ratio = 5.58 (standard 
theory: wta/wtp ≈ 1) 

Bell and 
Lattin (2000) 

Supermarket 
goods (scanner 
data) 

Compare demand 
response to price 
rises and cuts, 
allowing for con-
sumer hetero- 
geneity 

Significant evidence of loss 
aversion for detergents, hot 
dogs, tissues, paper towels, 
margarine, and soft drinks; 
insignificant though positive 
effects for bacon, butter, ice 
cream, crackers, and sugar 

Simonsohn 
and Loewen-
stein (2003) 

Housing 
demand 
in the usa 

Uses panel study of 
income dynamics 
to relate price paid 
by movers in new 
city to price paid in 
previous city 

Movers from expensive cities 
pay more for same housing 
services than do movers 
from cheaper cities (standard 
theory: no difference should 
be observable) 

 
Table  2.1: Empirical evidence from >eld experiments and market data on reference-

dependent preferences. (Based on Munro, 2004, p. 2-10–12, excerpt from Table 2.1.) 
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called the “endowment effect” which I described in Section  2.2.2. In order to de-
termine whether market participants behave rather in line with neoclassical or 
with prospect theory, List (2003 b) uses three distinct measures on which the 
two theories predict exactly the opposite of each other (see p. 2): 

1 (in)dependence of trading behavior from current entitlements; 
2 the size of Hicksian equivalent and Hicksian compensating surplus; 
3 the curvature (convexity vs. concavity) of Hicksian equivalent surplus for 

relinquishing a certain number of units of a good. 

The results that List obtained are consistent over all three measures and sta-
tistically highly significant: Overall, people’s behavior is much better explained 
by prospect theory. However, there are clearly observable discrepancies between 
inexperienced and experienced market participants as well as between consum-
ers and professional dealers. While the behavior of inexperienced consumers 
is described well by prospect theory, trading patterns converge with increased 
market experience towards the prediction of neoclassical theory. Also was the 
dealers’ trading behavior observed in the experiment was closer to the predic-
tions of neoclassical theory than to those of prospect theory. 

This points in the direction that market experience (measured in years or 
in trading intensity) plays an important role in shaping people’s preferences. 
It is hard to judge from this study, however, whether this process should be 
called “learning”, or whether we should see in it not more than an endogenously 
triggered transition from one form of preferences to another one, without as-
cribing this process a positive or negative connotation. Yet, one should also 
keep in mind that List does not answer the question whether the causality 
might actually work the other way round: Maybe it is not market experience 
that changes people’s preferences, but it is their preferences that let some par-
ticipate in the market and others not. 

Moreover, List does not deal with the question which markets are domi-
nated by experienced and which by inexperienced consumers. It has to be re-
membered that for such an important market as the asset market, Odean (1999) 
found the disposition effect to be present even—maybe especially (see p. 1280)
—in professional traders’ decisions. 

2.3 Theoretical models linking reference-dependent preferences and pricing 

 

Apart from the aforementioned empirical models, a handful of theoretical 
models have been devised to explore the relation between consumer loss aver-
sion and firms’ price setting. Out of these, three were (co-)authored by Sibly: 
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Sibly (2002), McDonald and Sibly (2001), and Sibly (2004), while a fourth 
one is Heidhues and Kó́szegi (2004; cited as “H&K” hereinafter). 

The Sibly (2002) model also serves as the basis of McDonald and Sibly 
(2001) and Sibly (2004). Consequently, the two latter models share their main 
result with the Sibly (2002) model, and I will, therefore, restrict myself to pre-
senting Sibly (2002) and H&K. 

In his paper entitled “Loss Averse Customers and Price Inflexibility”, Sibly 
(2002) presents a model that assumes a representative consumer’s demand for 
a single good, produced by a monopolist, to be kinked at a reference price, pref. 
The kink is such that a positive deviation of the actual price from the reference 
price, p > pref, causes a decrease in demand which is larger than the increase in 
demand created by a negative deviation, p > pref, of equal size. Sibly motivates 
this by referring to empirically found asymmetries in the response of demand 
to price cuts and increases (as presented in the previous subsection). He incor-
porates in his model a term q which expresses the customer’s attitude towards 
the firm. Hence, the demand function d depends on two arguments: the prod-
uct’s price p and q, called the “disenchantment level”. As usual, demand falls 
when the price increases: dp(p, q) < 0. As well, demand falls when “disenchant-
ment” (a negative attitude towards the firm) grows: dq(p, q) < 0. 

Reference dependence enters the model through the assumption that the 
agent’s “disenchantment” towards the firm is connected to deviations of the ac-
tual price from the reference price. Disenchantment is proposed to be as fol-
lows: 

(2.4) 0 ,
ref

ref
p pq q ρ

p

⎛ ⎞−
= + ⎜ ⎟⎜ ⎟

⎝ ⎠
 

where q0 is “inherited disenchantment”, determined by the consumer’s past ex-
periences with the same producer. ρ has the following properties: ( ) 0,ρ′ >i  
ρ(0) = 0 and (0 ) (0 ).ρ ρ+ −′ ′>  The latter property of ρ is the one that creates the 
demand curve’s kink at the reference price. 

The firm in Sibly’s model does not exhibit loss aversion, but maximizes its 
profits. It has constant marginal cost w, so that the profit function is as follows: 

(2.5) ( , ) ( ) ( , ).π p q p w d p q= −  

Sibly assumes that π is strictly concave in p for any reference price pref and for 
any disenchantment level q,11 so that there exists a unique maximizer pm for 

                                                                            
 11 He does not elaborate on the question which restrictions this concavity imposes on the shape of d 
and hence, on the shape of ρ and ultimately, on the shape of the underlying utility function. In my eyes, 
this is a serious omission. 
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each pref. Sibly is interested in the circumstances that generate a pm = pref. This is 
the case when the following conditions hold: 

(2.6) 
d ( , ) 0

d refp p

π p q
p− =

>  and 

(2.7) 
d ( , ) 0.

d refp p

π p q
p+ =

<  

Evaluating conditions (2.6) and (2.7), one finally arrives at 

(2.8) 
1 1

ref ref

ref

ref
p q p qp p p p

p w
E E E Ep+ −

= =

−
< <

+ +
, 

where Ep is the elasticity of demand w.r.t. p, and qE+  and qE−  is the elasticity of 
demand w.r.t. q, evaluated for p > pref and p < pref, respectively. qE+  and qE−  incor-
porate (0 )ρ −′  and (0 ),ρ +′  respectively. These latter two expressions are the only 
difference between the upper and the lower bound of (2.8). 

Interval (2.8) illustrates that changes of the marginal cost w within a certain 
range do not alter the profit-maximizing price, which is pm = pref. 

The fact that the upper and lower bound of interval (2.8) differ only in the 
expression (0 )ρ −′  and (0 ),ρ +′  respectively, makes clear that the kink in the de-
mand function is necessary to obtain a non-degenerate interval for which it is 
profit-maximizing to set the actual price equal to the reference price. This prop-
erty is also stressed by Sibly (pp. 326–327). 

In contrast to Sibly, H&K assume consumers not to be loss-averse over 
prices, but over the quantities they consume. This is much closer to the original 
formulation of the theory of reference-dependent preferences, which is over 
quantities, and not prices, and it reflects the evidence obtained in experiments 
much better. 

The model by H&K is an application of a general model proposed by 
Kó́szegi and Rabin (2004; cited as “K&R” hereinafter). K&R (p. 1) claim that 

researchers have begun to apply these ideas [about reference dependent-prefer-
ences] in a handful of economic situations. Yet existing models are better suited 
to explaining experimental data, or to applying them in a specific context, rather 
than to systematically integrating them into economic theory. … In this paper 
we … flesh out, extend, and modify these models to build a realistic and more 
general theory of reference-dependent preferences that can be systematically 
applied to a wide array of economic settings. 

The following assumptions are common to H&K and K&R: A household’s 
utility in riskless choice is given by u(c | r), where 1 2( , ,..., ) K

Kc c c= ∈c \  and 
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1 2( , ,..., ) .K
Kr r r= ∈r \  c is consumption and r is a reference point of consump-

tion. Through combining the theory of reference-dependent preferences and 
prospect theory (with the probability-weighting function assumed to be the 
identity function), preferences over risky outcomes are modeled as follows: 

(2.9) ( | ) ( | ) d ( ),U F u F= ∫cr c r c  

where F(c) is a (discrete or continuous) probability measure according to which 
consumption is drawn. In addition, the reference level itself may be a probabil-
ity measure. Then, overall utility is given by: 

(2.10) ( | ) ( | ) d ( )d ( ).U F G u F G= ∫ ∫r c c r c r  

This “formulation of reference-dependent utility captures … the notion that the 
sense of gain or loss from a given consumption outcome derives from compar-
ing it to all outcomes in the support of the reference lottery” (K&R, p. 7). 

Overall utility is split up into two components: 

(2.11) ( | ) ( ) ( | )u m n≡ +c r c c r  

m(c) is “regular” utility gained from consumption itself (therefore, I will call it 
“consumption utility”), whereas n(c | r) derives from comparing actual con-
sumption c to the reference point r. Hence, n(c | r) is called “gain/loss utility”. 

For reasons of simplicity, but also for conceptual reasons (see K&R, 
Section 5), m is assumed to be additive-separable: 

(2.12) 1( ) ( ),K
k kkm m c=≡ ∑c  

where the functions mk are differentiable and strictly increasing. 
One of the main features of K&R’s model is the definition of gain/loss 

utility n: 1( | ) ( | ),K
k k kkn n c r=≡ ∑c r  where nk(ck | rk) is intimately connected to 

mk(ck) in the following way: 

(2.13) ( | ) ( ( ) ( )).k k k k k k kn c r μ m c m r≡ −  

Here, μ(·) is the “universal gain/loss function” and satisfies the properties im-
posed by prospect theory (where this function was called v, see Section  2.2.3): 

a0. μ(x) is continuous for all x, twice differentiable for x ≠ 0, and μ(0) = 0. 
a1. μ(x) is strictly increasing. 
a2. If y > x > 0, then ( ) ( ) ( ) ( ).μ y μ x μ x μ y− < − − −  
a3. ( ) 0 for 0 and ( ) 0 for 0.μ x x μ x x′′ ′′≤ > ≥ <  

a4. 
0

0

lim ( | |)
lim (| |) 1.x

x

μ x
μ x λ→

→

′ −
′ ≡ >  

K&R (p. 2) remark that basing gain/loss utility on consumption utility is “an 
important novel restriction for a reference-dependent model to make sensible 
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and strong predictions in many economic contexts”, even though “tying the two 
together so tightly is likely to lead to incorrect predictions in some situation”. 
A special property of this linkage is the prediction it makes on attitudes towards 
risk:  

By tying gain-loss utility in different dimensions to the consumption utility 
in those dimensions, our model predicts for instance that people are less both-
ered by risk in goods of lower consumption value than by risk in dimensions of 
greater consumption value. And by adding consumption utility to the decision-
maker’s utility function, it both replicates the predictions of Kahneman and 
Tversky’s prospect theory value function under typical situations, where the 
consumption values of gains and losses are likely to be similar, and improves 
predictions in cases where the value function over consumption levels clearly 
does not apply. 

An important special case is μ(·) being linear, which makes the model much 
better tractable. This case is the one dealt with in both K&R and H&K, which is 
justified by K&R as follows: 

While the inequalities in a3 are most realistically considered strict to capture 
diminishing sensitivity, we shall often be interested in characterizing the impli-
cations of reference dependence where diminishing sensitivity does not play 
a big role. For doing so, we define an alternative to a3 that isolates loss aversion 
in our model by eliminating the diminishing sensitivity. 
a3′. For all x ≠ 0, ( ) 0.μ x′′ =  

H&K complement this general framework outlined in K&R by a monopolistic 
producer with constant marginal cost c. c is a random variable to the firm with 
probability distribution function θ(c) and support [ , ].c c  The consumer is as-
sumed to carry out a binary decision only: to buy a single item of the single 
good produced by the firm—or not to buy it. If she buys, she has to pay a price 
p. Therefore, c = (c1, c2) denotes the agent’s consumption, with c1 being her con-
sumption in goods and c2 being her consumption in money. Initial wealth is 
normalized to zero; hence, with the binary decision to make, either c = (1, −p) 
or c = (0, 0). The reference levels are 1 {0, 1}r ∈  and 2 .r ∈\  

Another novel feature of K&R’s and H&K’s model is the determination of 
the reference levels. Stating that a “major challenge” in developing a “fully 
specified model of consumer behavior with reference-dependent preferences” 
(H&K, p. 1) is the specification of the reference point, they call for not making 
“arbitrary exogenous assumptions”, but assert that “a parsimonious theory of 
pricing and loss aversion should ideally build on a sufficiently general and pre-
cise specification of the reference point” (p. 2). To achieve this aim, H&K (p. 2; 
emphasis in original) assume that the  
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decision-maker’s reference point is determined by her recent expectations (i.e. 
probabilistic beliefs) about the outcomes she is going to get. … Based on this 
perspective, a person’s reference point … depends on market conditions and her 
own anticipated behavior… . 
… We assume that the reference point is determined endogenously, in a personal 
equilibrium, by the requirement that the stochastic outcome implied by optimal 
behavior conditional on expectations be consistent with expectations.12 

The firm has to map the costs it faces to prices it charges, with the cost dis-
tribution being unknown to the consumer. Using the above described kind of 
rational expectations, the consumer decides upon the probability with which 
she will buy the item for any possible price. 

H&K derive results for two variants of their model: one in which the firm 
commits to a pricing distribution before the consumer forms her expectations 
and one in which the firm does not announce its pricing distribution in ad-
vance. The results are qualitatively the same in the two cases, albeit that they re-
quire a denser cost distribution in the case without commitment (pp. 3–4): 

Our first major result is that even if marginal costs are continuously distributed, 
if the distribution has sufficiently high density, the firm charges finitely many 
prices. We interpret this as price stickiness. 

H&K explain the partial non-responsiveness of the selling price to cost shocks 
as follows: 

Intuitively, random prices induce uncertainty for the consumer as to how much 
she has to pay for the good in case she finds it worthwhile to buy. If she is con-
fronted with a relatively high buying price, she compares it to lower possible 
prices she could have gotten, and thus faces a monetary loss if she buys. The 
anticipation of this loss reduces her willingness to pay for the good. By insuring 
the consumer against small price shocks, therefore, the firm increases her over-
all willingness to pay and thus its sales revenues. If the cost distribution is suffi-

ciently thick, this gain dominates the loss from being unable to differentiate 
production levels according to marginal cost. 

It is important to note that the “price stickiness” generated by H&K’s model 
is not triggered by the assumption of loss aversion alone, but by the very com-
bination of loss aversion and the determination of the reference point they 
choose. 

                                                                            
 12 To use expected consumption in order to determined the reference point was already suggested 
by Bidwell et al. (1995, p. 291). However, they did not solve a full-fledged model. 
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3 Microeconomic and macroeconomic evidence 
on >rms’ price setting 

3.1 Microeconomic evidence on >rms’ price setting i: 

“Regular prices” and sales periods 

 

Visual inspection of time series of prices for different consumer goods reveals 
striking similarities, see Figure 3.1: first of all, there seems to exist something 
like a “regular price” for all three retail goods, which is constant for periods 
ranging from a couple of weeks to more than 150 weeks. Plus, all depicted price 
series are characterized by recurrent temporary sales activities: downward de-
viations from the “regular price” followed by a quick return to it. The duration 
of these deviations is usually one week or less. 

The message of the price series is ambiguous: the existence of sales periods 
is crucial, since it can serve as an argument counter the relevance of so-called 
“menu costs”. Models incorporating menu costs assume that it is (considerably) 
costly to change prices (e.g., through printing and distributing new “menus”, i.e. 
catalogs, advertisements and price tabs); as a result, firms only change prices 
when their expected increase in revenue from the price change exceeds the cost 
of changing. Thus, prices are predicted to stay constant for much longer periods 
than when “menu costs” are absent. 

Given the volatility of the actual price, it is hard to accept the idea that menu 
costs are high enough to prevent price changes. This is even more so when tak-
ing into account that sales activities are usually accompanied by putting the re-
spective item on special display; hence, they are an example of activities that go 
along with comparably large menu costs. 

Yet, the behavior of the “regular price”, which is changed only infrequently, 
is in line with the predictions of “menu cost” models. The constancy of the “re-
gular price” might be explainable by menu costs if we define them in a broader 
way and allow them to incorporate costs of re-optimization, the story might 
change. For instance, it could be the case that firms and retailers apply a rule of 
thumb for their short-term sales activities (“Let’s decrease the product’s price by 
around 20% vis-à-vis the ‘regular price’ twice a month”), while they reconsider 
their long-term pricing strategy (based on sector growth, expected inflation, 
competitors’ strategies, developments on the markets for raw materials etc.) 
only once in a couple of months, because it is costly to acquire all the necessary 
information. 
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3.2 Microeconomic evidence on >rms’ price setting ii: 

Frequencies of price changes 

 

Two studies on the frequency, size and direction of price changes appeared re-
cently this year: Bils and Klenow (2004) and Levy et al. (2004). 

Let me first summarize the findings by Bils and Klenow: The study is 
based on data from the us-American Bureau of Labor Statistics (bls) for the 

a)   
 

b)  
 

c)   
 

Figure  3.1: 
a) Price of Frozen Concentrate Orange Juice, Heritage House, 12 oz., 

September 14, 1989–May 8, 1997. Discontinuities in the line indicate missing 
observations. (Source: Levy et al., 2004, Figure 1.) 

b) Price of Triscuit, 9.5 oz., in Dominick’s Finer Foods Supermarket in Chicago. 
(Source: Golosov and Lucas, 2003, p. 44, Figure 3 a.) 

c) Price of Nabisco Premium Saltines, 16 oz., in Dominick’s Finer Foods Supermarket. 
(Source: Rotemberg, 2003, p. 30, Figure 1.) 
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years 1995–1997. The data consist of prices for between 70,000 and 80,000 
goods and services, divided into 350 categories, that cover about 70% of con-
sumer spending. They are collected by the bls from around 22,000 outlets 
across 88 geographic areas. In densely populated areas, the data are gathered 
every month, in more sparsely populated areas only bimonthly. 

The annual bls Commodities and Services Substitution Rate Table provides, 
for each recorded good, how many times during that year the good’s price 
changed with regard to the previous survey. Since—as already mentioned—the 
surveys take place monthly in some places and bimonthly in others, Bils and 

Klenow had to estimate the frequencies of monthly changes from the mixture 
of monthly and bimonthly frequencies reported by the bls.13 

It is important to note that Bils and Klenow’s inference from the mixed 
reported frequencies to monthly frequencies underestimates the true frequen-
cies of price changes. In addition, also the monthly surveys underestimate the 
true number of price changes during each month. This is due to the fact that 
(according to Chevalier et al., 2003, as cited in Bils and Klenow, 2004, 
p. 951) “temporary sales are … quite common” and “typically last less than one 
month”. In this case, many price reductions at the beginning of a sales activity 
and the re-increases at the sales’ end, will be unnoticed by monthly surveys—
and even more so by bimonthly ones. 

Turning to their results (see p. 951), we should therefore keep in mind that 
Bils and Klenow’s estimates systematically underestimate the true values: 

                                                                            
 13 For details, see Bils and Klenow (2004), p. 950–951. 

 
 

Figure  3.2: How often do how many consumption items change their prices? 
(Source: Bils and Klenow, 2004, p. 952, Figure 1.) 
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1 The weighted mean frequency of monthly price changes equals 26.1%, and 
the weighted median frequency is 20.9% (see Figure 3.2), where the weights 
were taken from the 1995 Consumer Expenditure Survey. That is, for half 
the products, the probability of a price change vis-à-vis the previous month 
is 20.9% or higher. 

2 From this, Bils and Klenow calculate that half of the prices are constant 
for a period of 4.3 months or less (i.e., the median duration of prices is 
4.3 months). The mean duration of prices equals 7 months. 

3 Large variation across products can be observed: while some prices change 
only in 5% of all months—e.g., taxi fares, newspaper prices—others change 
in 70% of all months—e.g., those of gasoline, and fresh food. Prices of raw 
goods change more frequently than those of processed goods, and the prices 
of low-priced and high-priced goods vary more than those of medium-
priced goods. Notably, the prices of durable goods are reset frequently. 

4 Bils and Klenow hypothesize that the price of a good changes more often, 
the less value is added at one stage of the production process. The competi-
tiveness of a market seems to increase the frequency of price changes. How-
ever, this effect disappears if one controls for the effect of “raw” vs. “proc-
essed” good. 

Finally, Bils and Klenow provide an argument for not having filtered out 
sales activities from their data: They consider sales periods as a major conse-
quence and indicator of price flexibility. Analogously, they have opted not to 
drop observations from their data when a manufacturer replaced an item by 
a slightly altered new product. This is because if the new good’s price deviates 
from the old one’s, the moment of the new good’s introduction could as well 
have been used for changing the old one’s price (see p. 957). 

The aim of Bils and Klenow’s paper is to check the predictions of cali-
brated time-dependent sticky-price models of the Calvo and Taylor type. A 
main features of simulated time series generated by a calibrated Calvo model 
is that prices’ responses are relatively minor in the immediate aftermath of a 
shock. At the same time, once a price movement has started, it becomes rela-
tively persistent. These features are just two sides of the same story: Both result 
from the assumption that in any period, any firm can adjust its price only with 
a certain probability below 1—no matter how huge its desire for a price change. 
Therefore, only a fraction of the firms can react to an observed shock and seizes 
this opportunity, leading only to a minor change in the aggregate price level. In 
the subsequent periods, again each time a fraction of the firms gets the chance 
to adjust prices to the new aggregate price level and in response to past shocks
—leading to persistence of the inflationary movement. 

Bils and Klenow state very clearly that such inertia does not correspond to 
their empirical findings from the bls data (p. 949): 
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We do not see this in the data. For nearly all 123 categories, inflation movements 
are far more volatile and transient than implied by the Calvo and Taylor models 
given the frequency of individual price changes in the bls data. 

3.3 Microeconomic evidence on >rms’ price setting iii: 

Magnitude and direction of price changes 

 

In contrast to Bils and Klenow, Levy et al. (2004) focuse on the size and di-
rection of price changes, while not taking their frequency into account. The 
dataset employed by Levy et al. are weekly collected scanner data of retail 
prices from 94 stores of the “Dominick’s” supermarket chain in the Chicago 
area. The data cover as many as 29 different product categories, with up to 
400 products per category. They were collected from September 14th, 1989 to 
May 8th, 1997. In all, this means that “the data set contains more than 98 million 
weekly price observations” (p. 7). Since the largest part (86.3%) of retails grocery 
sales in the us takes place in supermarkets of chains of the “Dominick’s” type, 
Levy et al. consider their dataset “representative of a major class of the retail 

 
 

 
Figure  3.3: Frequencies of positive and negative price changes (in us cents and %) 

combined for hundreds of products that were sold at Dominick’s between September 1989 
and May 1997. (Source: Levy et al., 2004, Figures r1a, r1b, r2a and r2b.) 
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grocery trade” (p. 6). Since “retail sales account for about 9.3% of the [us] gdp”, 
their dataset can, furthermore, be considered “representative of as much as 
1.28 percent of the gdp, which seems substantial. Thus the market we are study-
ing has a quantitative economic significance as well” (p. 6). 

The main observation by Levy et al. is that of “asymmetric price adjust-
ment in the small”: Across virtually all (!) product groups—and, thus, also in 
the combined data—small price increases (up to ca. 10 us cent) occur more of-
ten than small price decreases. Of course, this finding would be hardly surpris-
ing with constantly positive inflation, but it turns out to hold even during the 
low/ zero inflation periods and deflation periods identified by Levy et al. (see 
p. 3 of the main text and p. 1 of the referee appendix). In Figure 3.3, this result 
becomes obvious from the fact that the dotted line is significantly above the 
continuous line for price changes up to 18 us cent. Something noteworthy about 
this fact is that when retail prices rise frequently even during low/no inflation 
periods, prices in other categories of consumer goods must fall to obtain an 
overall cpi inflation of (close to) zero. 

It can also be observed from Figure 3.3 (upper left and upper right panel) 
that the size of price decreases and increases is, in the vast majority of cases, 
a multiple of 10 ¢—and for these multiples of 10 ¢, the number of price decreases 
and increases is virtually the same: the dotted and the solid line are extremely 
close to each other. These two observations demonstrate that sales activities are 
a common characteristic of retail goods, because, as already stated, sales start 
with a price decrease and typically terminate with a price increase of exactly 
the same size. 

Levy et al. discuss several models that could potentially explain the discov-
ered disparity in the number of small price increases and decreases (pp. 12–13). 
Among the models they review are ones that incorporate capacity adjustment 
costs on the side of the firm, imperfect competition, menu costs in combination 
with inflation and customer anger. However, they find that these models all pre-
dict asymmetry in the very opposite direction of that observed in the data. 

3.4 Macroeconomic evidence on the movement of aggregate price indices 

 

Burda and Wyplosz (1997, p. 359) mention that inflation (as measured by the 
consumer price index, cpi) is procyclical with regard to movements in gdp, but 
that it “systematically lag[s] behind” gdp. To illustrate this, they show a Burns–
Mitchell diagram of cpi inflation, averaged over five countries (France, Ger-
many, Italy, uk, and usa), which reveals that inflation peaks 1½ quarters after 
gdp. They interpret this as indicating “that prices—measured as aggregate in-
dices—do appear to be rigid” (p. 376). 
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4 A model of price setting with reference-dependent 
preferences 

4.1 Assumptions on the composition of the agent’s utility 

 

The agent is assumed to live T periods. For simplicity it is assumed that saving 
is impossible; hence, shifting consumption between different periods is impos-
sible, and the agent maximizes utility separately in each period. 

Following K&R, I assume the following specification of the household’s util-
ity function: A person’s utility is given by u(x | r), where 1 2( , ,..., ) K

Kx x x= ∈x \  
and 1 2( , ,..., ) .K

Kr r r= ∈r \  x is consumption, and r is the vector of reference lev-
els for the K goods considered; r is called “reference point” and assumed to be 
given exogenously. Overall utility is a combination of two additive components: 

(4.1) ( | ) ( ) ( | ).u m n≡ +x r x x r  

This formula can be interpreted as the household’s utility consisting of two 
parts: The first one, m(x), is “regular” utility gained from consumption. The sec-
ond part, n(x | r), is called “gain/loss utility”.14 This utility is not derived from 
consumption itself, but from comparing consumption to the reference points. 

To keep things simple, I assume that m and n are additive-separable as well: 
1( ) ( ),K

k kkm m x=≡ ∑x
 
and 1( ) ( ).K

k kkn n x=≡ ∑x  
The functions mk are continuously differentiable. They fulfill the standard 

assumptions made on utility functions, i.e. positive but decreasing marginal 
utility: ( ) 0k km x′ ≥  and ( ) 0k km x′′ ≤  for all xi. To exclude zero consumption of 
goods from being an optimal solution of the constrained maximization prob-
lem, I will furthermore assume that 0lim ( ) .

kx k km x′ = ∞2  
The functions nk(xk | rk) are closely connected to mk(xk), in the following 

way (for a justification, see the argumentation in Section  2.3, citing K&R, p. 2): 

(4.2) ( | ) ( ( ) ( )),k k k k k k kn x r μ m x m r≡ −  

where μ is given by 

(4.3) 
if 0

( ) ,
( ) if 0
ω x x

μ x
λ ω x x

≥⎧
= ⎨ + <⎩

 

with ω ≥ 0 and λ > 0. This function μ fulfills the properties a1, a2, a3′, and a4, 
as required by K&R (p. 10) and as they were introduced in Section  2.3. Only a0 
is not fulfilled in the case of ω = 0. Neglecting a0 does not change the qualitative 
properties of the model, as is argued in Section  4.3. 

                                                                            
 14 The specification that overall utility is the sum of consumption utility and gain/loss utility is not 
only used by K&R, but also by Barberis et al. (2001). 
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4.2 A speci>c consumption utility function 

 

I assume the consumption utility function to take on a specific form of ces 
(constant elasticity of substitution) utility. Furthermore, I restrict myself to con-
sidering two goods only. An extension of the model to include more than two 
goods is possible, but it will severely complicate the calculations, while impor-
tant insights can already be gained from the two-good case. 

I assume the utility function to have the following additive form: 

(4.4) 1 1 2 2 1 21 2( ) ( ) ( ) ,ρ ρm m x m x α x α x≡ + = +x  

where α1 ≥ α2 > 0 and ( 1)/ .ρ σ σ≡ −  σ > 1 is the elasticity of substitution between 
the two goods considered.15 For m to be concave, ρ has to be smaller than unity, 
which holds for σ > 1. 

Let M denote the nominal income that is exogenously given to the house-
hold at the beginning of each period. Then the single-period budget constraint 
is given by 

(4.5) 1 1 2 2 .p x p x M+ ≤  

Both goods are assumed to have a strictly positive price, p1 > 0 and p2 > 0, so that 
there exists a trade-off between consuming the two goods. 

4.3 Assumptions on the parameter values 

 

Regarding the composition of consumption utility, I will assume from now on 
that, ½ ≤ α < 1 (the lower bound is due to the condition that α1 ≥ α2, see above), 

(4.6) 1 1 1( ) ρm x α x=  and 

(4.7) 2 2 2( ) (1 ) .ρm x α x= −  

Furthermore, I will assume μ to take on the simplest possible form, i.e. ω = 0, 
λ > 0. This, of course, contradicts the original notion of “gain utility”. However, 
in the original Kahnemann–Tversky model, gains and losses are the only 
source of utility, and no value derived from the pleasure of consumption itself 
is attributed to the goods. Since we do incorporate consumption utility into 
overall utility via m(c), which increases in c, a gain compared to the reference 

                                                                            
 15 This utility function is the additive-separable representation of the ces (constant elasticity of sub-
stitution) function 1/

1 1 2 2( ) ( ) .ρ ρ ρm A α x α x≡ +x�  m(x) represents the same preferences as ( )m x�  and 
can be obtained from ( )m x�  by applying two monotone transformations: ( ) [(1/ ) ( )] ,ρm A m≡x x�  under 
the condition that A and ρ are greater than zero, which I assume. 
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level is still valued positively. This way, gain utility is still present, albeit less 
strongly than in the case of ω > 0. 

What is important about gain–loss utility is the kink in the overall utility 
function at the reference level; this kink is present as long as λ > 0. Therefore, 
setting ω to zero, while it does change the numerical properties of the utility 
function, does not alter the qualitative properties of the utility function. Thus, 
the qualitative results of the model stay the same, no matter whether ω > 0 or 
ω = 0. 

This is illustrated by the indifference curves depicted in Figure 4.1: For λ > 0, 
they have the same properties as the indifference curves depicted in figure v 
of Tversky and Kahneman (1991, p. 1051): convexity (in our case even strict 
convexity) and kinks at the reference levels, with the effect that the marginal 
rate of substitution is discontinuous at the reference levels. 

Remembering that 

 1 1 2 2 1 1 1 2 2 2

1 1 2 2 1 1 1 1 2 2 2 2

( | ) ( ) ( | )

( ) ( ) ( | ) ( | )
( ) ( ) ( ( ) ( )) ( ( ) ( )),

u m n

m x m x n x r n x r
m x m x μ m x m r μ m x m r

≡ +

= + + +

= + + − + −

x r x x r

 

                                                                            
 16 The plot was created from u(x | r) as given by formula (4.8), with r = (1.6, 2.2) and the parameters 
taking on the following values: α = ⅔, ρ = ½, λ = 2. λ was chosen so—probably unrealistically—high in 
order to make the kinks in the indifference curves pronounced enough to be visible clearly in the plot. 
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Figure  4.1: Indi=erence curves for loss-averse agent.16 
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we can plug in the definition of μ and the assumptions made in the previous 

paragraphs to get a utility function that has four separate branches: 

(4.8) 

1 1 2 21 2

1 1 2 21 2 1 1

1 1 2 21 2 2 2

1 1 2 21 2 1 1 2 2

( | )

(1 ) if , 

(1 ) ( ) if , 
.

(1 ) (1 )( ) if , 

(1 ) ( ) (1 )( ) if , 

ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

u

αx α x x r x r

αx α x λα x r x r x r

αx α x λ α x r x r x r

αx α x λα x r λ α x r x r x r

=

⎧ + − ≥ ≥
⎪
⎪ + − + − < ≥⎪
⎨

+ − + − − ≥ <⎪
⎪

+ − + − + − − < <⎪⎩

x r

 

A two-dimensional illustration of the utility function—varying one argument, 
with the second argument fixed to its reference level, which is assumed to be 
zero—is given by Figure 4.2. 

I will call the four branches “branch i”, “branch ii”, “branch iii”, and “branch 
iv”, according to their order in the above utility function (see also Figure 5.2). 

4.4 The maximization problem of >rm 2 

 

I will model only the behavior of the producer of good 2 (“firm 2”) explicitly. 
This can be justified by conceiving of good 1 as an aggregate of all other prod-
ucts on the market. The price p1 of this aggregate is taken as given by firm 2.  

Like the consumer, the firm is assumed to exist T periods.  
Firm 2 is assumed to be the only producer of good 2. For simplicity, I will 

assume the firm to have complete information about consumers’ demand func-

                                                                            
 17 The plot was created from m1(x1) as given by formula (4.6) and u(x | r) as given by formula (4.8) 
with x2 = r2 = 0 and r1 = 1.6 and the parameters taking on the following values: α = ⅔, ρ = ½, λ = 2. 
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Figure  4.2: Comparison between utility function without 
loss aversion [m1(x1)] and with loss aversion [u(x1, 0 | 1.6, 0)].17 



 30 

tions; that the production technology creates constant unit cost c2; and that 
demand equals supply. 

The unit cost c2 is assumed to be random. It seems reasonable that the cor-
relation between the cost in one period and the subsequent period is positive. 
This could, for instance, be due to climatic influences: When the harvest of a 
certain fruit was destroyed yesterday by bad weather, this will increase today’s 
price of the fruit, and tomorrow’s price will likely be higher than average, too. 
Therefore, I assume that the unit cost follows an ar(1) process, which is 
specified as follows: 

(4.9) log c2, t = θ log c2, t − 1 + (1 − θ) log εt     for 2 ≤ t ≤ T, 

with log εt ~ N(μc, σc), log c2, 1 being drawn from the distribution N(μc, σc), and 
0 ≤ θ ≤ 1. 

At the beginning of each period, a realization of the unit cost is drawn 
which is valid throughout that period. Thus, the realization of the cost variable 
for one period is known to the firm when it solves the profit maximization 
problem for the respective period. 

Since the household is not allowed to borrow or save and, therefore, has to 
consume each period’s income in the respective period, the profit function of 
firm 2 is of identical form in every period and given by 

(4.10) 2 1 2 2 2 2 2 2 1 1( , , , ) ( ) ( / , / )π p p M c p c x p p M p≡ −  

or 

(4.11) 2 1 2 2 1 2 2 2 2( , , , ) ( ) ( , ).π p p M c p p c x p M≡ −� �� � �  

In addition, let us define unit cost and profit of firm 2 relative to price 1, 
i.e. 2 2 1/c c p≡�  and 

(4.12) 2 1 2
2 2 2 2 2 2 2

1

( , , )
( , , ) ( ) ( , ).

π p p M
π p M c p c x p M

p
≡ = −� �� � �� � �  

The producer of good 2 maximizes profits by choosing p2. The maximization 
can as well be modeled over choosing 2 ,p�  which is for a given p1 equivalent to 
maximizing over p2. 
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5 Solving the model 

5.1 A preliminary step: Derivation of the demand functions when 

no loss aversion is present 

5.1.1 Derivation of the demand curves 

It will be very helpful to first solve the agent’s maximization problem assuming 
there is no reference dependence. Based on the results obtained in Sections  5.1.1 
and  5.1.2, Section  5.1.3 will then introduce loss aversion. 

Making good 1 the numeraire good, I define the relative price between 
the two goods as 2 2 1/p p p≡�  and the income converted into units of good 1 
as 1/ .M M p≡�  With these, the budget constraint (4.5) can be written as 

(5.1) 1 2 2 .x p x M+ ≤ ��  

When reference dependence is absent, u(x | r) = m(x). Since both prices have 
been assumed to be positive, maximizing m(x) subject to the budget constraint 
yields the following first-order necessary conditions: 

(5.2) 
1

1 11 1 1
1

2 2 22 2

( )
( )

ρ

ρ
α ρ xm x p

m x pα ρ x

−

−
′

= =
′

 and 

(5.3) 1 1 2 2 .p x p x M+ =  

The budget constraint (4.5) is exhausted in the optimum (i.e., fulfilled by equal-
ity), which yields (5.3), because m is strictly increasing in both arguments. Since 
m is strictly concave, the first-order conditions are also sufficient and have 
a unique solution. Therefore, combining (5.2) and (5.3) yields the following de-
mand functions for the goods 1 and 2: 

(5.4) 1
1 1 2 1 1

1 1 1 2 2
( , , )

σ

σ σ σ σ σ
αMx p p M

p α p α p− −= ⋅
+

 and 

(5.5) 2
2 1 2 1 1

2 1 1 2 2
( , , ) .

σ

σ σ σ σ σ
αMx p p M

p α p α p− −= ⋅
+

 

With the notation introduced above, equations (5.4) and (5.5) become 

 1
1 1 2 1

1 2 2
( , , )

σ

σ σ σ
αx p p M M

α α p −=
+

�
�

 and 

 2
2 1 2 1

2 1 2 2
( , , ) .

σ

σ σ σ σ
αMx p p M

p α α p −= ⋅
+

�
� �
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This shows that the demand functions can be expressed in terms of the relative 
price 2p�  and the relative income M� alone. I therefore re-define them as follows: 

(5.6) 1
1 2 1

1 2 2
( , )

σ

σ σ σ
αx p M M

α α p −≡ ⋅
+

� ��
�

   and 

(5.7) 2
2 2 1

2 1 2 2
( , ) .

σ

σ σ σ σ
αMx p M

p α α p −≡ ⋅
+

���
� �

 

5.1.2 Comparison of demand with the reference levels 

Since under loss aversion, we will have to compare demand given by functions 
like the above one to the reference levels r1 and r2, it makes sense to do this once 
in advance with the general forms: 

 
1 2 1

1
11

1 2 2

( , )

.
σ

σ σ σ

x p M r

αM r
α α p −

≥

⇔ ⋅ ≥
+

��

�
�

 

Note that for non-negative 2 ,p�  this inequality can be only fulfilled if 1,M r>�  
since 1

1 1 2 2/( ) 1.σ σ σ σα α α p −+ <�  Only if 1 0,M r> >�  the following rearrangements 
yield a meaningful condition (if r1 = 0, 1 2 1( , )x p M r≥��  is always fulfilled): 

 

1
11

1 2 2

1
1

11 2 2

1 1
1 2 2

1

1 1 1 1
2

2

1 1 1
1

22

1 2
2

1 1 1

1

/

/1

.
/

σ

σ σ σ

σσ σ σ

σ
σ σ σ

σ σ
σ

σ

σ σ

σσ

σ
σ

σ σ

αM r
α α p

r
α Mα α p

α Mα α p
r

α M r αp
α

α M r α
αp

αp
α M r α

−

−

−

−

−

−

⋅ ≥
+

⇔ ≥
+

⇔ + ≤

−
⇔ ≤

−
⇔ ≤

⇔ ≥
−

�
�

��
�

�

�
�

�
�

�
�

 

Thus, for the optimal consumption of good 1 to exceed its reference level r1, 
we arrive at the conditions 

(5.8) 1M r>�  and 

(5.9) 

1/( 1)
2

2
1 1 1/

σσ

σ σ
αp

α M r α

−
⎛ ⎞

≥ ⎜ ⎟
−⎝ ⎠

�
� . 
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For now, let us assume that 1.M r>�  Then the denominator of the r.h.s. of 
(5.9) is larger than zero and the r.h.s. is a real number. I denote by *

2 1 2( , , )p α α M��  
the value of 2p�  for which (5.9) is fulfilled by equality: 

(5.10) 

1/( 1)
* 2
2 1 2

1 1 1
( , , ) .

/

σσ

σ σ
αp α α M

α M r α

−
⎛ ⎞

≡ ⎜ ⎟
−⎝ ⎠

��
�  

Hence, if *
2 2,p p=� �  then x1 is equal to its reference level r1; if *

2 2,p p>� �  then x1 > r1; 
and if 1M r≤�  or *

2 2,p p<� �  then x1 < r1. 
For consumption of the second good to exceed its reference level r2, the fol-

lowing condition has to be satisfied: 

(5.11) 2
2 2 21

2 1 2 2
( , ) .

σ

σ σ σ σ
αMx p M r

p α α p −= ⋅ ≥
+

���
� �

 

Again, for non-negative 2 ,p� 1
1 1 2 2/( )σ σ σ σα α α p −+ �  is strictly less than unity. Hence, 

a necessary condition for x2 to be at least as large as r2 (r2 > 0) is that 

(5.12) 1/
2 2 2 2/ ( / ) .σ σM p r p M r> ⇔ <� �� �  

(If r2 = 0, 2 2 2( , )x p M r≥��  is always fulfilled.) 
Provided that (5.12) holds, we can rearrange the inequality as follows: 

 

2
21

2 1 2 2

2

1 2 2 2 2

1 ,

σ

σ σ σ σ

σ σ σ σ

αM r
p α α p

r
α p α p α M

−⋅ ≥
+

⇔ ≥
+

�
� �

�� �

 

which translates to 

(5.13) 2
1 2 2 2

2
.

σ
σ σ σ α Mα p α p

r
+ ≤

�
� �  

Note that for non-negative 2 ,p�  this inequality implies (5.12), because it was as-
sumed that α1 ≥ α2. By rearranging (5.13) we can see (keeping in mind that σ > 1) 
that (5.12) holds, if (5.13) is fulfilled: 

 

2
1 2 2 2

2

1
2 2

22

11
2 2

2 2

2
2

.

σ
σ σ σ

σ
σ

σ

σ
σ

σ

σ

α Mα p α p
r

α Mp p
rα

α Mp r
α p

M
r

p

−

+ ≤

⇔ + ≤

⎡ ⎤⎛ ⎞
⎢ ⎥⇔ + ≤⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⇒ <

�
� �

�
� �

�
�

�
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Thus, for x2 to be at least as large as r2, condition (5.13) is both necessary and 
sufficient. 

Unfortunately, (5.13) cannot be solved for 2p�  directly. However, since the 
l.h.s. is strictly increasing in 2 ,p�  there exists a unique value **

2 1 2( , , )p α α M��  for 
which the condition is fulfilled by equality: 

(5.14) ** 2
2 1 2 2 1 2 2 2

2
( , , ) : .

σ
σ σ σ α Mp α α M p α p α p

r
≡ + =

��� � � �  

**
2p�  can be solved for numerically when the parameter values are given. 

If **
2 2 ,p p=� �  then x2 is equal to its reference level r2; if **

2 2 ,p p<� �  then x2 > r2. 
And if **

2 2 ,p p>� �  then x2 < r2. 
Combining these results, we get: 

1 If 1M r>�  and if * **
2 2 ,p p<� �  the inequalities (5.9) and (5.13) define a unique in-

terval * **
2 2[ , ]p p� �  of relative prices for which both consumed quantities exceed 

or are equal to their reference levels. 
2 If 1M r>�  and * **

2 2 ,p p>� �  the inequalities (5.9) and (5.13) define a unique inter-
val ** *

2 2[ , ]p p� �  of relative prices for which both consumed quantities are below 
or equal to their reference levels. 

3 If 1M r≤�  and **
2 2 ,p p<� �  it holds that x1 < r1 and x2 > r2. 

4 If 1M r≤�  and **
2 2 ,p p>� �  it holds that x1 < r1 and x2 < r2. 

All possible combinations are summarized in Table 5.1. 

 1M r>�  1M r≤�  

x1 ≥ r1 

if 
1/( 1)

2
2

1 1 1/

σσ

σ σ
αp

α M r α

−
⎛ ⎞

≥ ⎜ ⎟
−⎝ ⎠

�
�  

< r1 

 < r1 

if 
1/( 1)

2
2

1 1 1/

σσ

σ σ
αp

α M r α

−
⎛ ⎞

< ⎜ ⎟
−⎝ ⎠

�
�  

 

x2 ≥ r2 

if 2
1 2 2 2

2

σ
σ σ σ α Mα p α p

r
+ ≤

�
� �  

≥ r2 

if 2
1 2 2 2

2

σ
σ σ σ α Mα p α p

r
+ ≤

�
� �  

 < r2 

if 2
1 2 2 2

2

σ
σ σ σ α Mα p α p

r
+ >

�
� �  

< r2 

if 2
1 2 2 2

2

σ
σ σ σ α Mα p α p

r
+ >

�
� �  

 
Table  5.1: Overview of the conditions under which x1 and x2 are 

above, equal to, or below the respective reference levels r1 and r2. 
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Given that 1,M r>�  outside the interval * **
2 2[ , ]p p� �  or ** *

2 2[ , ],p p� �  respectively, 
either one of the two quantities consumed is below its reference level, while 
the other one is above. Which is above and which below, depends on which 
of the inequalities (5.9) and (5.13) is fulfilled. Figure 5.1 provides an overview 
of these results. 

Note that, as one would expect, *
2p�  is strictly decreasing in ,M�  while **

2p�  is 
strictly increasing in :M�  The higher the income, the larger is the interval 

* **
2 2[ , ]p p� �  inside which both x1 > r1 and x2 > r2. This leads us to the following con-

siderations: As we know, it can be the case that * **
2 2p p<� �  as well as that * **

2 2 .p p>� �  
It will be crucial later which of the two cases holds. Therefore, let us determine 
the income M�  for which * **

2 2p p=� �  and denote this value by *.M� *M� is given by 

(5.15) 2 2*
1 2 1

1 1
( , ) 1 ,

ρ

ρ
α r

M α α r
α r

⎛ ⎞
≡ +⎜ ⎟⎜ ⎟

⎝ ⎠
�  

as is derived in Appendix A. Due to the monotonicity of *
2p�  and **

2p�  in M�  we can 
conclude that if *,M M>� �  then * **

2 2 ,p p<� �  and if *,M M<� �  then * **
2 2 .p p>� �  

5.1.3 The pro>t-maximizing price of >rm 2 

Using the demand function derived above, the profit of firm 2, converted into 
units of good 1, is given by 

 
2 2 2 2 2 2 2

2
2 2 1

2 1 2 2

( , , ) ( ) ( , )

( ) .
σ

σ σ σ σ

π p M c p c x p M

αMp c
p α α p −

= −

= − ⋅
+

� �� � �� � �
�

� �
� �

 

p~2

p~2* p~2**

x1> r1, x2> r2 x1> r1, x2< r2x1< r1, x2> r2

p~2

p~2** p~2*

x1< r1, x2< r2 x1> r1, x2< r2x1< r1, x2> r2

x1= r1 x2= r2

x2= r2 x1= r1

0

0

 
 

Figure  5.1: Intervals of the relative price p2�  for which x1 and x2 are above, 
below or equal to the respective reference level r1 or r2, provided that M r .�

1>  
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Since 2 2( , ) 0x p M >��  for all admissible 2 ,p� 2 2p c=� �  is the only null of 2 .π�  It 
holds that 2 0π <�  for 2 2p c<� �  and 2 0π >�  for 2 2 .p c>� �  Thus, the profit-maximizing 
price will always be larger than 2 ,c�  with the consequence that the firm makes 
positive profits. 

Unfortunately, it is impossible to obtain an analytical solution to firm 2’s 
profit-maximization problem. However, it is shown in the following that the 
profit-maximizing price 2

maxp�  is unique and can be calculated numerically when 
the values of all parameters are given. Firm 2 increases 2p�  as long as the deriva-
tive of 2π�  w.r.t. 2p�  is non-negative. Marginal profit is given by 

(5.16) 

2 2 2

2

12
2 2 2 1 2 2 2 22

2 1 2 2 2

( , , )

[ ( 1) ].
( )

σ
σ σ σ σ σ

σ σ σ

π p M c
p

α M c α p α σ p c α σ p
p α p α p

+

∂
=

∂

− − +
+

��� �
�
�

� � �� �
� � �

 

Requiring this derivative to be non-negative yields: 

 

12
2 2 2 1 2 2 1 22

2 1 2 2 2
1

2 2 2 1 2 2 1 2
1

2 2 2 2 1 2 1 2
1

1 2
2

2 2 1 2

[ ( 1) ] 0
( )

( 1) 0

( 1)

( 1)
.

σ
σ σ σ σ σ

σ σ σ

σ σ σ σ σ

σ σ σ σ σ

σ σ

σ σ σ

α M c α p α σ p c α σ p
p α p α p

c α p α σ p c α σ p

c α p c α σ p α σ p

α σ p
c

α p α σ p

+

+

+

+

− − + ≥
+

⇒ − − + ≥

⇔ + ≥ −

−
⇔ ≥

+

�
� � �� �

� � �

� � �� �

� � �� �

�
�

� �

 

Through division by 2 ,σp�  this can finally be written as 

(5.17) 1 2
2 1

2 2 1

( 1)
.

σ

σ σ σ
α σ p

c
α p α σ−

−
≥

+

�
�

�
 

The latter form of the inequality shows that there exists a unique value 2p�  
for which the condition is fulfilled by equality: The r.h.s. of inequality (5.17) 
is strictly increasing in 2 ,p�  because the numerator is positive and increasing 
in 2 ,p�  and the denominator is positive and decreasing in 2 ;p�  both is due to 
σ > 1. Hence, the fraction in total is increasing in 2 .p�  I call the value of 2p�  for 
which (5.17) is fulfilled by equality 2 :maxp�  

(5.18) 1 2
2 1 2 2 2 2 1

2 2 1

( 1)
( , , , ) : .

σ
max

σ σ σ
α σ p

p α α σ c p c
α p α σ−

−
≡ =

+

�
� �� �

�
 

Note that 2
maxp�  is strictly increasing in 2c�  and independent of .M�  Furthermore, 

2 2lim max
c p→∞ = ∞� �  and 

2 0 2lim 0.max
c p→ =� �  
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5.2 Deriving the demand functions when loss aversion is present 

5.2.1 Outline of the derivation of demand curves under loss aversion 

We can now apply the general findings from Section  5.1 to our special model in 
which gain/loss utility is added to consumption utility. We are interested in an-
swering the question which branch is optimally chosen by the household for all 
possible combinations of income and prices, i.e. which of the branches defined 
in Section  4.3 yields the highest utility. To do this, we have to proceed in three 
steps: 

1 We will have to find out for all possible price–income combinations 
2

2( , ) ,p M +∈�� \  which of the branches are feasible. I call a branch “feasible” if 
the budget restriction, fulfilled by equality, allows for being on that branch. 

2 For each feasible branch, we will have to calculate the optimal consumption 
bundle, given that the agent is on that branch and given that she behaves ac-
cording to an interior solution of the optimization problem. This will yield 
conditions on 2( , )p M��  for which the respective branch is not only feasible, 
but also optimal. 

3 In a third step, we will have to determine the optimal behavior for all price–
income combinations 2( , )p M��  for which no interior solution exists. 

5.2.2 Step 1: The feasible branches 

For carrying out step 1, it is helpful to look at Figure 5.2. The reference point r 
divides the non-negative quadrant of the real plain into four quadrants: 

1 quadrant i, where x1 ≥ r1 and x2 ≥ r2; 
2 quadrant ii, where x1 < r1 and x2 ≥ r2; 
3 quadrant iii, where x1 ≥ r1 and x2 < r2; 
4 quadrant iv, where x1 < r1 and x2 < r2. 

Of course, the agent cannot spend more on consumption than her income. On 
the other hand, since u is strictly increasing in both arguments, at the optimum 
the entire income will be exhausted. Thus, five cases arise (see Figure 5.2): 

1 If 1 2 2 ,M r p r≥ +� �  branches i, ii, and iii are feasible. 
2 If 1M r≥�  and 2 2 1 2 2 ,p r M r p r< < +�� �  branches ii, iii, and iv are feasible. 
3 If 1M r≥�  and 2 2 ,M p r<� �  branches iii and iv are feasible. 
4 If 1M r<�  and 2 2 ,M p r≥� �  branches ii and iv are feasible. 
5 If 1M r<�  and 2 2 ,M p r<� �  only branch iv is feasible. 
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5.2.3 Step 2 (a): The interior solution when being on a speci>c branch 

As already stated, in step 2 we have to find out the optimal branch among the 
feasible ones for each of the five cases. In preparation of carrying out step 2, 
let us rearrange (4.8) slightly: 

Case 1 

x1

x2

r1

r2

M
�

III

IIIIV

x1

x2

 
 

Case 2 

x1

x2

r1

r2

M
�

M
�
� p�2 III

IIIIV

x1

x2

 
 

Case 3 

x1

x2

r1

r2

M
�

M
�
� p�2

III

IIIIV

x1

x2

 
 

Case 4 

x1

x2

r1

r2

M
�

III

IIIIV

x1

x2

 
 

Case 5 

x1

x2

r1

r2

M
�

M
�
� p�2

III

IIIIV

x1

x2

 
 

Figure  5.2: The four quadrants created by the reference point. 
Shaded are those quadrants in which the optimal consumption bundle 

can lie for the respective combination of M�  and .p2�  
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(5.19) 

1 1 2 21 2

1 1 2 21 2 1

1 1 2 21 2 2

1 1 2 21 2 1 2

( | )

(1 ) if , 

(1 ) (1 ) if , 
.

(1 )(1 ) (1 ) if , 

(1 ) (1 )(1 ) (1 ) if , 

ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ ρ

u

αx α x x r x r

λ α x α x λαr x r x r

αx λ α x λ α r x r x r

λ α x λ α x λαr λ α r x r x r

=

⎧ + − ≥ ≥
⎪
⎪ + + − − < ≥⎪
⎨

+ + − − − ≥ <⎪
⎪

+ + + − − − − < <⎪⎩

x r

 

Now, every branch has the form 

 const,2211 −+ ρρ xαxα  

where “const” denotes a term that depends on (r1, r2) but is independent of 
(x1, x2). This enables us to apply the results derived in Section  5.1.1 [i.e., formu- 
lae (5.6) and (5.7)] directly. Under the condition that we are on the respective 
branch i, ii, iii, or iv, the demand functions in the case of an interior solution 
are 

(5.20) 1 2 1
2

( , ) ;
(1 )

σ

σ σ σ
αx p M M

α α p −= ⋅
+ −

� ��
�

i  

(5.21) 2 2 1
2 2

(1 )( , ) ;
(1 )

σ

σ σ σ σ
M αx p M
p α α p −

−
= ⋅

+ −

���
� �

i  

(5.22) 1 2 1
2

[(1 ) ]
( , ) ;

[(1 ) ] (1 )

σ

σ σ σ
λ α

x p M M
λ α α p −

+
= ⋅

+ + −
� ��

�
ii  

(5.23) 2 2 1
2 2

(1 )( , ) ;
[(1 ) ] (1 )

σ

σ σ σ σ
M αx p M
p λ α α p −

−
= ⋅

+ + −

���
� �

ii  

(5.24) 1 2 1
2

( , ) ;
[(1 )(1 )]

σ

σ σ σ
αx p M M

α λ α p −= ⋅
+ + −

� ��
�

iii  

(5.25) 2 2 1
2 2

[(1 )(1 )]
( , ) ;

[(1 )(1 )]

σ

σ σ σ σ
λ αMx p M

p α λ α p −
+ −

= ⋅
+ + −

���
� �

iii  

(5.26) 1 2 1
2

( , ) ;
(1 )

σ

σ σ σ
αx p M M

α α p −= ⋅
+ −

� ��
�

iv  

(5.27) 2 2 1
2 2

(1 )( , ) .
(1 )

σ

σ σ σ σ
M αx p M
p α α p −

−
= ⋅

+ −

���
� �

iv  

5.2.4 Step 2 (b): Consistency 

It has to be ensured that the above listed interior solutions (5.20)–(5.27) indeed 
fall into the range of x1 and x2 for which they were derived. This can be done 
by application of formulae (5.8), (5.9) and (5.13) and using the definitions of *

2p�  
and *

2p�  in formulae (5.10) and (5.14), respectively: 



 40 

• Branch i (x1 ≥ r1 and x2 ≥ r2): 

(5.28) x1 ≥ r1: 1M r>�  and *
2 2( , 1 , )p p α α M≥ − �� �  must hold; 

 x2 ≥ r2: **
2 2 ( , 1 , )p p α α M≤ − �� �  must hold. 

• Branch ii (where x1 < r1 and x2 ≥ r2): 

(5.29)  x1 < r1: it must hold that 1M r≤�  

  or 1M r>�  and *
2 2((1 ) , 1 , );p p λ α α M< + − �� �  

  x2 ≥ r2: **
2 2 ((1 ) , 1 , )p p λ α α M≤ + − �� �  must hold. 

• Branch iii (where x1 ≥ r1 and x2 < r2): 

(5.30) x1 ≥ r1: 1M r>�  and *
2 2( , (1 )(1 ), )p p α λ α M≥ + − �� �  must hold; 

 x2 < r2: **
2 2 ( , (1 )(1 ), )p p α λ α M> + − �� �  must hold. 

• Branch iv (where x1 < r1 and x2 < r2): 

(5.31)  x1 < r1: it must hold that 1M r≤�  

  or 1M r>�  and *
2 2( , 1 , );p p α α M< − �� �  

  x2 < r2: **
2 2 ( , 1 , )p p α α M> − �� �  must hold. 

Condition (5.31) is a reduced version of these original inequalities: 

 *
2 2((1 ) , (1 )(1 ), );p p λ α λ α M< + + − �� �  and 

 **
2 2 ((1 ) , (1 )(1 ), ).p p λ α λ α M> + + − �� �  

Since I will have to refer frequently to the various lower and upper bounds im-
posed by these conditions on 2 ,p�  I define 

(5.32) 
, *

22 ( , 1 , );lbp p α α M≡ − �� �i
 

(5.33) 
, **

22 ( , 1 , );ubp p α α M≡ − �� �i
 

(5.34) 
, * **

2 22 min{ ((1 ) , 1 , ), ((1 ) , 1 , )};ubp p λ α α M p λ α α M≡ + − + −� �� � �ii
 

(5.35) 
, * **

2 22 max{ ( , (1 )(1 ), ), ( , (1 )(1 ), )};lbp p α λ α M p α λ α M≡ + − + −� �� � �iii
 

(5.36) 
, **

22 ( , 1 , );lbp p α α M≡ − �� �iv
 

(5.37) 
, *

22 ( , 1 , ).ubp p α α M≡ − �� �iv
 

5.2.5 Step 3: Corner solutions 

It can be shown that the above conditions do not overlap—which is done in 
Appendix A. On the contrary, combinations 2( , )p M��  exist for which no interior 
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solution on the various branches is attained. For these combinations 2( , ),p M��  
the agent chooses a corner solution on one of the branches. Remembering that 
the branches are distinguished via the criteria 1 1x r  and 2 2 ,x r  it becomes 
clear that a corner solution is characterized by x1 = r1 or x2 = r2. Hence, I define 
two consumption bundles 

(5.38) 1 2 1 1 2( , ) ( , ( )/ )x x r M r p≡ ≡ −a aa � �  and 

(5.39) 1 2 2 2 2( , ) ( , ).x x M p r r≡ ≡ −b bb � �  

The following proposition describes the conditions under which bundle a 
or b is a consumed as an optimal solution. 

Proposition 1. 

Claim 1. For all 2( , )p M��  that fulfill 

(5.40) 1 2 2M r p r≥ +� �  and 

 

1/( 1) 1/( 1)

2
1 1

(1 ) (1 ) ,
[ (1 )] / [ (1 )] /

σ σσ σ

σ σ σ σ
α αp

α λ M r α λ α M r α

− −⎛ ⎞ ⎛ ⎞− −
≤ ≤⎜ ⎟ ⎜ ⎟⎜ ⎟+ − + −⎝ ⎠⎝ ⎠
�

� �   

consuming bundle 1 2 1 1 2( , ) ( , ( )/ )x x r M r p≡ ≡ −a aa � �  is the optimal choice. 
Proof. See Appendix A. 

Claim 2. For all 2( , )p M��  that fulfill 

(5.41) 1 2 2M r p r≥ +� �  as well as 

 2 2
2

(1 )
(1 )

σ
σ σ σ α Mα p α p

r
−

+ − ≥
�

� �  and 

 2 2
2

[(1 )(1 )]
[(1 )(1 )] ,

σ
σ σ σ α λ M

α p α λ p
r

− +
+ − + ≤

�
� �  

consuming bundle 1 2 2 2 2( , ) ( , )x x M p r r≡ ≡ −b bb � �  is the optimal choice. 
Proof. See Appendix A. 

Claim 3. For all 2( , )p M��  that fulfill 

(5.42) 1 1 2 2r M r p r< < +� �  and 

 

1/( 1) 1/( 1)

2
1 1

[(1 )(1 )](1 ) ,
/ /

σ σσσ

σ σ σ σ
λ αα p

α M r α α M r α

− −
⎛ ⎞ ⎛ ⎞+ −−

≤ ≤⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
�� �   

consuming bundle a is the optimal choice. 
Proof. See Appendix A. 
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Claim 4. For all 2( , )p M��  that fulfill 

(5.43) 2 2 1 2 2p r M r p r< < +�� �  as well as 

 2 2
2

(1 )[ (1 )] (1 )
σ

σ σ σ α Mα λ p α p
r

−
+ + − ≥

�
� �  and 

 2 2
2

(1 )(1 ) ,
σ

σ σ σ α Mα p α p
r

−
+ − ≤

�
� �  

consuming bundle b is the optimal choice. 
Proof. See Appendix A. 

The intuition behind these corner solutions is as follows: At x1 = r1 and 
x2 = r2, n1(x1 | r1) and n2(x2 | r2), respectively, are kinked. That is, the marginal 
utility from increasing the consumption of a good is lower when the respective 
reference level is exceeded than when the consumption of that good falls short 
of its reference level. This has the consequence that x1 = r1 as long as the mar-
ginal utility of consuming good 2 is lower than the marginal disutility from x1 
falling below r1 and at the same time higher than the marginal utility that would 
be gained from increasing x1 above r1. 

Formally, x1 = r1 (bundle a is consumed) if 1 2 2x p x M+ = ��  and 

 2 1 1 2 1 1
2

( | )( ) (1 ) ( ),up m x p λ m x
x

∂′ ′≤ ≤ +
∂

x r� �  

Vice versa, x2 = r2 (bundle b is consumed) if 1 2 2x p x M+ = ��  and 

 2 2 2 2
2 1 2

( | )1 1( ) (1 ) ( ).um x λ m x
p x p

∂′ ′≤ ≤ +
∂

x r
� �  

                                                                            
 18 The plot was created using r1 = 16, r2 = 4, α = ⅔, ρ = ½, λ = ½. 
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Figure  5.3: An example of the demand function’s composition 
from various branches and the bundles a and b.18 
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5.2.6 Summary: The complete demand functions for both goods 

To be able to write the demand functions in a compact way, define the vector 
of demand for the two goods: 

(5.44) 2 2 21 2( , ) ( ( , ), ( , ))j jj p M x p M x p M≡x � � �� � �  for all j ∈ { i, ii, iii, iv }. 

Combining the results from the entire Section  5.1.3 up to here, we can write the 
demand functions for the two goods as follows: 

(5.45) 

2

2

2
2

2

1 1 2

( , ) if condition ( ) holds

( , ) if condition ( ) holds

( , ) if condition ( ) holds
( , )

( , ) if condition ( ) holds

( , ( )/ ) if condition ( ) or ( ) 

p M

p M

p M
p M

p M

r M r p

=

−

x

x

x
x

x

��
��
��

��
��

� �

i

ii

iii

iv

5.28

5.29

5.30

5.31

5.40 5.42

2 2 2

;

holds

( , ) if condition ( ) or ( ) holdsM p r r

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ −⎩
� � 5.41 5.43

 

This formula serves its purpose in summarizing all necessary information 
in a compact way—e.g., it can serve as the basis for the implementation of nu-
merical examples with a mathematical software.19 It is, however, difficult to in-
terpret, since they do not reveal the sequence in which the branches will be cho-
sen, when holding M�  constant and increasing 2p�  continuously, starting from a 
value close to zero. 

This information is only revealed after a couple of additional deliberations 
that are summarized in the following proposition. 

Proposition 2. 

In formula (5.15) the value *
1 2( , )M α α�  was defined. Using this formula, 

I define 

(5.46) 2* *
1

1

(1 )
( , 1 ) 1 ;

ρ

ρ
α r

M M α α r
αr

⎛ ⎞−
≡ − ≡ +⎜ ⎟⎜ ⎟

⎝ ⎠
� �

i  

(5.47) 2* *
1

1

(1 )
((1 ) , 1 ) 1 ;

(1 )

ρ

ρ
α r

M M λ α α r
λ αr

⎛ ⎞−
≡ + − = +⎜ ⎟⎜ ⎟+⎝ ⎠

� �
ii  

(5.48) 2* *
1

1

(1 )(1 )
( ,(1 )(1 )) 1 ;

ρ

ρ
λ α r

M M α λ α r
αr

⎛ ⎞+ −
≡ + − = +⎜ ⎟⎜ ⎟

⎝ ⎠
� �

iii  

(5.49) 2* * *
1

1

(1 )(1 )
((1 ) , (1 )(1 )) 1 .

(1 )

ρ

ρ
λ α r

M M λ α λ α r M
λ αr

⎛ ⎞+ −
≡ + + − = + =⎜ ⎟⎜ ⎟+⎝ ⎠

� � �
iv i  

                                                                            
 19 For instance, Figure 5.3 has been created using formula (5.45) (more accurately, the formula’s 
Mathematica equivalent). 
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Since λ > 0, the four values * * * *
1, ( ), ,r M M M M=� � � �

i iv ii iii  can be ordered as fol-
lows: 

(5.50) * * *
1 .r M M M< < <� � �

ii i iii  

This gives rise to a set of five intervals, for each of which a separate claim 
follows below20. For each interval, the branches and bundles are chosen 
in a different sequence in the course of increasing 2p�  continuously, start-
ing from a value slightly above zero: 

Claim 1. If 1M r≤�  (“case a”), then the agent chooses sequentially the 
branches/bundles ii – b – iv in the course of increasing 2p�  continuously 
on the interval (0, ∞). This translates to the following demand function: 

(5.51) 
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��� � �

a

ii

iv

;  

Proof. See Appendix A. 

                                                                            
 20 On the page of each claim, an example demand function for the respective case is depicted. 
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Figure  5.4: Example of a demand function of good 2 (blue indicates the 
segment stemming from branch ii, red from bundle b, and orange from branch iv) 

and of combined demand of goods 1 and 2 in case a. 
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Claim 2. If *
1r M M< ≤� �

ii  (“case b”), then the agent chooses sequentially the 
branches/bundles ii – b – iv – a – iii in the course of increasing 2p�  continu-
ously on the interval (0, ∞). This translates to the following demand func-
tion: 

(5.52) 
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;  

Proof. See Appendix A. 
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Figure  5.5: Example of a demand function of good 2 (blue indicates the 
segment stemming from branch ii, red from bundle b, orange from branch iv, 

green from bundle a, and purple from branch iii) and combined demand 
of goods 1 and 2 in case b. 
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Claim 3. If * *M M M< ≤� � �
ii i  (“case c”), then the agent chooses sequentially 

the branches/bundles ii – a – b – iv – a – iii in the course of increasing 2p�  
continuously on the interval (0, ∞). This translates to the demand function 

(5.53) 
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Proof. See Appendix A. 

2 4 6 8 10
p�2

10
20
30
40
50
60

x2�p
�

2, 19�

 5 10 15 20 25
x1�p
�

2, 19�

5

10

15

20

25
x2�p
�

2, 19�

III

IIIIV

r1

r2

p�2�0.26

p�2�35

 
 

Figure  5.6: Example of a demand function of good 2 (blue indicates the 
segment stemming from branch ii, green from bundle a, red from bundle b, 
orange from branch iv, green from bundle a again, purple from branch iii) 

and of combined demand of goods 1 and 2 in case c. 
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Claim 4. If * *M M M< ≤� � �
i iii  (“case d”), then the agent chooses sequentially 

the branches/bundles ii – a – i – b – a – iii in the course of increasing 2p�  
continuously on the interval (0, ∞). This translates to the demand function 

(5.54) 
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Proof. See Appendix A. 
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Figure  5.7: Example of a demand function of good 2 (blue indicates the 
segment stemming from branch ii, green from bundle a, black from branch i, 

red from bundle b, green from bundle a again, and purple from branch iii) 
and combined demand of goods 1 and 2 in case d. 
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Claim 5. If *M M<� �
iii  (“case e”), then the agent chooses sequentially the 

branches/bundles ii – a – i – b – iii in the course of increasing 2p�  con-
tinuously on the interval (0, ∞). This translates to the following demand 
function: 

(5.55) 
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Proof. See Appendix A. 
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Figure  5.8: Example of a demand function of good 2 (blue indicates the 
segment stemming from branch ii, green from bundle a, black from branch i, 

red from bundle b, and purple from branch iii) and combined demand 
of goods 1 and 2 in case e. 
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The reader might wonder why we obtain such different demand functions 
for different income levels. This phenomenon is caused by the steepness of 
the agent’s indifference cuves in the quadrants i–iv (as they were defined in 
Figure 5.2) in combination with the steepness of the budget line. Let me illus-
trate this with the help of an example: 

Recall that the highest value of 2p�  for which an interior solution on 
branch ii is attained, is 

, * **
2 22 min{ ((1 ) , 1 , ), ((1 ) , 1 , )};ubp p λ α α M p λ α α M≡ + − + −� �� � �ii

 

see equation (5.34). Recall that *
2p�  decreases and **

2p�  increases in ,M�  and that 
the two values coincide when * .M M=� �

ii  Thus, if * ,M M<� �
ii  then ** *

2 2,p p<� � and 
the interior solution on branch ii connects to bundle b. Conversely, if * ,M M>� �

ii  
the interior solution on branch ii connects to bundle a. 

In quadrant ii (where x1 < r1 and x2 ≥ r2), the agent’s indifference curves are 
relatively steep, see Figure 4.1. For a relatively low income, * ,M M<� �

ii  the budget 
restriction has to be relatively steep as well (i.e., 2p�  is small) in order to cut 
through quadrant ii at all. In combination, this leads to the fact that the two 
curves are tangent as long as long as **

2 2 .p p<� �  Quite the reverse, for a relatively 
high income, * ,M M>� �

ii  the budget restriction is comparatively flat when cutting 
through quadrant ii. In combination with the steep indifference cuve, this leads 
to the fact that the two curves are tangent as long as long as *

2 2 .p p<� �   
Analogous reasoning can be applied for the other branches. The results were 

collected in Proposition 2. 

5.2.7 Continuity of the demand functions 

The results from the two previous subsections combined show that for any 
price–income combination 2( , ),p M��  a unique demand vector exists. Further-
more, the demand functions for the two goods are continuous. 

Proposition 3. The demand functions for good 1 and for good 2 are con-
tinuous in 2p�  and in .M�  

Proof. See Appendix A. 

Knowing that the demand functions are continuous will facilitate solving the 
profit-maximization problem of the producer of good 2. 

5.3 Solving the pro>t maximization problem of >rm 2 

 

Since firm 2 is assumed to be the only producer of good 2, it possesses market 
power and can choose the price of good 2 to maximize its profits. What we are 
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interested in is whether the profit-maximizing price exhibits stickiness, i.e. non-
responsiveness to a changing environment. As a benchmark, consider the stan-
dard monopoly model without information or menu costs: here, any change in 
the monopoly’s marginal cost changes the profit-maximizing price. Thus, any 
non-responsiveness of the profit-maximizing price to cost changes in my model 
is caused by the introduction of loss-averse consumers. 

This is exactly the kind of stickiness that occurs in the models by Sibly 
(2002) and by H&K: Changes of the marginal cost inside certain intervals do 
not translate to changes of the profit-maximizing price. Since the consumers’ 
demand curves generated by my model are kinked, my model has the potential 
of generating price stickiness, too. 

To determine its profit-maximizing price, firm 2 has to know which of the 
five cases a–e outlined in Proposition 2 prevails. It is important for the mono-
polist to distinguish between these cases, since a consumer’s demand function 
changes its shape quite drastically across the different situations (see Figures 
5.4–5.8). 

In every case a–e, the price 22 ( , , )max, globalp c M r�� �  which maximizes profits 
globally can be determined unanimously, however only numerically. Therefore, 
I cannot provide a functional form for 22 ( , , ),max, globalp c M r�� �  but will have to de-
scribe the way to solve the profit maximization problem with the help of an ex-
ample. In the example, the values are chosen such that case d prevails, i.e. 

* * .M M M< ≤� � �
i iii  Doing the analysis for this case is instructive, since it can be ap-

plied to all other cases analogously. 
Assume that the parameters take on the following values: α = ⅔, ρ = ½ (i.e. 

σ = 2), λ = ½. Furthermore, the agent has reference levels r1 = 16, r2 = 4, and in-
come 21.M =�  

For these parameter values, we get * 2
318 ,M =�

ii
* 20,M =�
i

* 22.M =�
iii  As stated 

above, the agent’s demand function in this example is that of case d, which is 
given by formula (5.54). In case d, the agent chooses sequentially the branches/
bundles ii – a – i – b – a – iii in the course of increasing 2p�  continuously on the 
interval (0, ∞). Profit could potentially be maximized at any of these branches/
bundles, because 

2 0 2lim 0max
c p→ =� �  and 

2 2lim .max
c p→∞ = ∞� �  Hence, for each 

branch/bundle, the locally highest attainable profit has to be determined. After-
wards, to find the global maximum, all local maxima have to be compared. 

Several profit functions, associated with different cost levels, are drawn in 
Figure 5.9. From the figure it can be seen that for low unit costs (0.015 and 0.05) 
the profit is maximized for prices 2p�  somewhere between 0 and 0.2. For inter-
mediate unit costs (0.15, 0.25, 0.5, and 0.75), the profit-maximizing price equals 
1.8; and for 2 1,c =�  profit is maximized at a price above 2. 
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Recall the definition of max
2 1 2 2( , , , )p α α σ c� �  in formula (5.18): 

 1 2max
2 1 2 2 2 2 1

2 2 1

( 1)
( , , , ) : .

σ

σ σ σ
α σ p

p α α σ c p c
α p α σ−

−
≡ =

+

�
� �� �

�
 

Since α1 and α2 vary across the different branches in the way determined in 
Section  5.2.3, the formula for 2

maxp�  differs across the four branches. I define 

(5.56) 
max,

2 22 ( , 1 , , );maxp p α α σ c≡ −� � �i
 

(5.57) 
max,

2 22 ((1 ) , 1 , , );maxp p λ α α σ c≡ + −� � �ii
 

(5.58) 
max,

2 22 ( , (1 )(1 ), , );maxp p α λ α σ c≡ + −� � �iii
 

(5.59) 
max,

2 2 2 22 ((1 ) , (1 )(1 ), , ) ( , 1 , , ).max maxp p λ α λ α σ c p α α σ c≡ + + − = −� � �� �iv
 

Of course, we have to check for consistency again: It can happen that the profit-
maximizing price defined on a certain branch lies outside the condition which 
has to be met for an interior solution to be attained on the respective branch. 
Based on the reasoning in Section  5.1.3, the following holds: 

0.5 1 1.5 2 2.5 3 3.5
p�2

10

20

30

40

50

60
x2�p
�

2, 21�

 

0.5 1 1.5 2 2.5 3 3.5
p�2

�5

�2.5

2.5

5

7.5

10

Π�2�p
�

2, 21�

 
 

Figure  5.9: Demand function and pro>t functions of >rm 2 for the hypothetical 
parameter values assumed throughout Section  5.3. The cost functions are drawn 

for 2c~ equal to 0.015, 0.05, 0.15, 0.25, 0.5, 0.75 and 1 (ordered from top to bottom). 
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• If max, ,
2 2 ,lbp p<� �i i  then firm 2’s profit, given that the consumer is on branch i, 

is maximized by setting 2p�  equal to ,
2 .lbp� i  

If max, ,
2 2 ,ubp p>� �i i then firm 2’s profit, given that the consumer is on branch i, 

is maximized by setting 2p�  equal to ,
2 .ubp� i  

• If max, ,
2 2 ,ubp p>� �ii ii  then firm 2’s profit, given that the consumer is on 

branch ii, is maximized by setting 2p�  equal to ,
2 .ubp� ii  

• If max, ,
2 2 ,lbp p<� �iii iii  then firm 2’s profit, given that the consumer is on 

branch iii, is maximized by setting 2p�  equal to ,
2 .lbp� iii  

• For max,
2p� iv  and branch iv the same as for max,

2p� i  and branch i holds. 

In the next—and final—step, the profit-maximizing price, given that the 
agent consumes bundle a or b, is calculated. If the agent consumes bundle a, 
firm 2’s profit is 

 1 1
2 2 1 2

2 2
( ) ,

M r M rp c M r c
p p
− −

− = − −
� ��� � �
� �  

which is obviously strictly increasing in 2 .p� If the agent consumes bundle b, 
firm 2’s profit is 

 2 2 2( ) ,p c r−� �  

which is strictly increasing in 2p�  as well. Therefore, firm 2 sets the price equal to 
the upper bound of the interval on which it is optimal for the agent to consume 
bundle a or b, respectively. Now, the upper bound of an interval on which it is 
optimal to consume a or b is always either ,

2 ,lbp� i ,
2 ,lbp� iii  or ,

2 .lbp� iv Hence, the 
profit-maximizing price, given that the agent consumes a or b, is already among 
the profit-maximizing prices determined for the branches i, ii, iii, and iv. 

Furthermore, from the above list of potentially profit-maximizing prices, 
the values ,

2 ,ubp� i ,
2 ,ubp� ii  and ,

2
ubp� iv  can be excluded: At these upper bounds, ei-

ther bundle a or bundle b is consumed. For the two bundles, we have just found 
out that the price is pushed upward until the lower bound of the neighboring 
branch is reached. Hence, the profit-maximizing price can never be attained at 
the upper bound of a branch—is attained either at an interior solution on one 
of the four branches or at the lower bound of branch i, iii, or iv. 

For the given parameter values, the branches i, ii, and iii are feasible, whose 
upper and lower bounds as follows [given by formula (5.54)]: 

• upper bound of the interval on which an interior solution on branch ii is at-
tained: ,

2 0.355556;ubp� �ii  
• lower bound of the interval on which an interior solution on branch i is at-

tained: ,
2 0.8;lbp� �i  respective upper bound: ,

2 1.02744;ubp� �i  
• lower bound of the interval on which an interior solution on branch iii is at-

tained: ,
2 1.8.lbp� �iii  
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By plugging these four values into (5.18), we obtain the unit costs at which 
exactly these four prices are the profit-maximizing ones, given that the agent is 
at the respective interior solution: 

• ,
2 0.153754;ubc� �ii  

• ,
2 0.345946;lbc� �i   ,

2 0.458001;ubc� �i  
• ,

2 0.778378.lbc� �iii  

Hence, to obtain the price that maximizes firm 2’s profits globally, the following 
comparisons have to be carried out: 

• If ,
2 2 ,ubc c≤� �ii  

the profits made at max,
2 ,p� ii  at ,

2 ,lbp� i  and at ,
2

lbp� iii  have to be compared. 
• If , ,

22 2 ,ub lbc c c≤ ≤� � �ii i  
the profits made  at ,

2
lbp� i  and at ,

2
lbp� iii  have to be compared. 

• If , ,
22 2 ,lb ubc c c≤ ≤� � �i i  

the profits made  at max,
2p� i  and at ,

2
lbp� iii  have to be compared. 

• If , ,
22 2 ,ub lbc c c≤ ≤� � �i iii  

the profit made    at ,
2

lbp� iii  has to be calculated. 
• If ,

22 ,lbc c≤� �iii  
the profit made    at max,

2p� iii  has to be calculated. 

Out of the potential maximizers for a given 2 ,c�  the one that yields the highest 
profit is 22 ( , , ).max, globalp c M r�� �  
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6 Model results 

6.1 Non-responsiveness of the pro>t-maximizing price to cost changes 

 

At the end of the previous section (Section  5.3), it was demonstrated with the 
help of an example case how to find the price which maximizes firm 2’s profits. 
For the parameter constellation already assumed in Section  5.3, Section  6 pre-
sents results regarding non-responsiveness of 22 ( , , )max, globalp c M r�� �  with respect 
to cost changes. 

Figure 6.1 depicts 22 ( , 21, (16, 4)).max, globalp c� �  The most important thing about 
this plot is that it is horizontal for ,

2 2[0.07235, ] [0.07235, 0.77838],lbc c∈ =� �iii  i.e., 
it indeed reveals non-responsiveness of the profit-maximizing price with re-
spect to changes in firm 2’s unit costs, as long as the original and the changed 
cost lie inside a certain interval. The profit-maximizing price throughout this 
interval of unit costs is 1.8. 

This corresponds to the results we obtained earlier from visual inspection 
of Figure 5.9: There, for 2c�  equal to 0.15, 0.25, 0.5, and 0.75, the profit-maximiz-
ing price was found to be 1.8. 

The results for other hypothetical incomes (such that the cases a, b, c, and e, 
respectively, hold) are presented in Figure 6.2. It is obvious that the profit-maxi-
mizing price is non-responsive with respect to cost changes inside a certain in-
terval for the cases a, b, c, and e, too. 
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Figure  6.1: The pro>t-maximizing price 

as a function of marginal cost in case d ( = 21)�M . 
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Case a ( = 15)�M  
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Case c ( = 19)�M  
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Case e ( = 25)�M  

0.5 1 1.5 2
c�2

1

2

3

4

p�2
max, global

 
Figure  6.2: The pro>t-maximizing price as a function of marginal cost 

in cases a, b, c, and e. 

 
 
Since the 2

maxp�  of each branch and bundle is non-decreasing in 2c�  (see Sec-
tion  5.1.3), it is possible to state that 2

max, globalp�  is non-decreasing in 2 .c�  
In contrast, no such monotonicity exists in the connection between 

2
max, globalp�  and the household’s income .M�  This is illustrated by the upper panel 

of Figure 6.3: there are income levels for which 2 (0.15, , (16, 4))max, globalp M��  does 
not respond to changes in .M�  This non-responsiveness is due to the fact that 
(5.18) is independent of ,M�  which is an artifact of the assumed utility function 

2
max,globalp�  2

max,globalp�

2
max,globalp�  2
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m(x). Consequently, without loss aversion, the plot in the upper panel of Figure 
6.3 would be entirely flat. This means that loss aversion, while reducing one 
kind of responsiveness—to cost changes—creates another kind of responsive-
ness—to changes in income. 

The lower panel of Figure 6.3 shows a plot of 2 2( (0.15, , (16, 4))).max, globalx p M��  
For the horizontal parts in the plot of 2 (0.15, , (16, 4)),max, globalp M�� any increase 
in M� has a positive impact on the output level x2. However, for the ranges of in-
come inside which 2

max, globalp�  reacts to changes in ,M�  the positive impact that 
a higher M�  could have on output is totally offset by price increases. 

This finding has an important implication for the role of monetary policy: 
Over a wide range of incomes, an increase in income only increases 2 ,p�  but not 
production and consumption x2. That is, in my model, expansionary monetary 
policy—increasing nominal income —hasM�  in many cases no real, but only 
inflationary effects. 

                                                                            
 21 The plot was created using r1 = 16, r2 = 4, α = ⅔, ρ = ½, λ = ½, and 2 0.15.c =�  
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Figure  6.3: Non-monotonic dependence of the pro>t-maximizing 
price and of the associated output x2 on income M.� 21 
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6.2 Simulation of a price series 

 

In order to illustrate the elaboration in Sections  5.3 and  6.1, a numerical example 
is analyzed. In this example the parameters and reference levels take on the 
same hypothetical values that were already used in Section  5: α = ⅔, ρ = ½ (i.e., 
σ = 2), λ = ½, r1 = 16, and r2 = 4. As in Section  5.3, I furthermore assume the 
agent’s income to be 21.M =�  Regarding the distribution of c2 the following as-
sumptions are made: σc = 0.9 and μc = log 0.15 so that E[c2] = exp(μc) = 0.15. The 
number of simulated periods is set to T = 200. 

A simulated time series of unit costs and of the profit-maximizing prices 
associated with these cost realizations is shown in Figure 6.4.22 To examine 
the robustness of the model’s results, a second simulation was done, in which 
the mean and the variance of the ar(1) process were increased: μc = log 0.25 and 
σc = 1.1. The result of this simulation is presented in Figure 6.5. 

6.3 Discussion of the model’s properties 

 

Comparison of Figure 6.4 with the actual price series depicted in Figure 3.1 re-
veals that the actual and the simulated price series are quite similar. Both ex-
hibit constancy of the good’s price over a large number of periods. This con-
stancy is in both cases interrupted by short periods of downward deviations, 
with quick return to the price that prevailed before. 

                                                                            
 22 The simulation of the two time series was programmed in the mathematical software Mathematica 
(version 5.0). The Mathematica code of the simulation is not provided as a printout, but it is contained 
in the cd-rom to be found at the back cover of this thesis. 
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Figure  6.4: Simulated time series of unit costs 2�c  (dashed line) 
and of the pro>t-maximizing price 2�p  (solid line); μc = log 0.15 and σc = 0.9. 
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The fact that we do not observe upward deviations of the price from its 
“regular” level in Figure 6.4 is due to the choice of the mean and standard devia-
tion of the cost distribution. This is demonstrated by Figure 6.5: Here, upward 
deviations of the price from the “regular” price can be observed as well as 
downward deviations. 

This leads us to the shortcomings of the model as it is specified so far. Four 
major weaknesses are important to mention: 

1 While the model is able to create constancy in the profit-maximizing price 
of a consumer good, for certain values of μc and σc , it creates too many up-
ward deviations of the actual price from the “regular price” in comparison 
with empirical data. In empirical data, such upward deviations are observed 
rather rarely [see Figure 3.1: once in panel a (week 85), twice in panel b 
(weeks 190 and 220) only]. 

2 If the mean of the cost distribution did not fall into the range [0.07235, 
0.77838] much less price rigidity would be observable, because in this case 
the assumed ar(1) process would create many cost realizations outside this 
interval. 

3 In addition, Figure 3.1 reveals that the “regular price” also changes from time 
to time. Since in my model so far, constancy of the reference levels is as-
sumed, neither the interval of costs for which the “regular price” is chosen 
nor the “regular price” itself varies over time, contradicting the empirical 
data. This is accompanied by another contradiction to the empirical data: 
As presented in Section  3.3, Levy et al. (2004) found that small price in-
creases are more frequent than small price decreases. In my simulations, the 
price always returns to the invariable “regular price”, thereby leading to an 
identical number of price increases and price decreases of the same size. 
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Figure  6.5: Simulated time series of unit costs 2�c  (dashed line) 
and of the pro>t-maximizing price 2�p  (solid line); μc = log 0.25 and σc = 1.1. 
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4 Yet another shortcoming of the model so far, could be that the demand side 
is represented by a single consumer. The modeled consumer was interpreted 
as a representative agent. However, it is doubtful whether such a representa-
tive agent should be equipped with preferences incorporating loss aversion, 
since loss aversion describes a characteristic of individual behavior. For ex-
ample, if incomes or reference levels vary across agents, all individual de-
mand curves are kinked, but at different consumption levels, thus making 
aggregate demand look rather smooth. 

To overcome the first three shortcomings, in Section  7.1 the reference points 
are no longer given exogenously, but made dependent on the consumer’s past 
consumption. Shortcoming no. 4 is tackled in Section  7.2. There, it is examined 
how individual loss aversion is reflected in the collective demand curve result-
ing from aggregation over a large number agents with idiosyncratic income and 
reference levels. 
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7 Variations 

7.1 Extended model i: Making the reference points endogenous 

7.1.1 Motivation of the extended model i 

Up to now, the reference point was given exogenously and not allowed to 
change throughout the T = 200 simulated periods. Several authors (Bell and 

Lattin, 2000; Bidwell et al., 1995; Kó́szegi and Rabin, 2004; Munro and 

Sugden, 2003; Slonim and Garbarino, 1999) stressed, however, that reference 
points change over time, and arious suggestions on the evolution of reference 
points have been made. 

In their seminal paper, Tversky and Kahneman (1991, p. 1046) admit ex-
plicitly that “[t]he question of the origin and the determinants of the reference 
state lies beyond the scope of the present article”. Still, referring to the findings 
of other researchers, they state that “the reference state usually corresponds to 
the decision maker’s current position”, notwithstanding that “it can also be in-
fluenced by aspirations, expectations, norms, and social comparisons”. Indeed, 
Bowman et al. (1999) solve a theoretical model in which the current reference 
point is equal to past consumption, and they present evidence from five coun-
tries that confirms the predictions of their model. 

Bidwell et al. (1995, p. 290–291) and Kó́szegi and Rabin (2004, pp. 2 and 
14–17), in contrast, suggest that an agent’s reference point is given by her expec-
tations of future prices and, thus, future consumption. While being very appeal-
ing due to its forward-looking character, this, of course, entails new conceptual 
problems, because the individual formation of expectations has to be modeled 
appropriately. Furthermore, it is unclear which role the current reference point 
should play in the calculation of expected future consumption; this issue is to 
be discussed in detail in Section  8. 

Due to the empirical evidence and the problems of the alternative proposed 
by Kó́szegi and Rabin, in the modification of my model which I present below, 
I therefore assume that the representative consumer’s reference levels at a given 
period depend on past consumption. The way I model this dependence rests 
on the hypothesis that the reference levels are rather stable, i.e. they do not ad-
just immediately each time that actual consumption deviates from the reference 
levels. 

My assumption on the stability of reference levels is motivated by the con-
sideration that people are normally able to distinguish between temporary price 
changes—e.g., a sales activity—and persistent trends in the price. Imagine, for 
instance, that a product goes on temporary sale—which is usually indicated 
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as such by price tags in eye-catching colors etc.—and the agent chooses to con-
sume more than her average during the sales period. Her reference level for the 
respective product will probably be the same after the sale as it was before, be-
cause she knew from the start that the price decrease would be only temporary 
and that she would not be able to purchase a large amount of the good perma-
nently. 

7.1.2 Speci>cation of the extended model i 

On the basis of these considerations, I model the connection between past con-
sumption and current reference levels as follows: At any period t, actual con-
sumption in the past tcomp periods is compared to the reference levels during 
these periods. (If tcomp < t, then comparison is carried out over the previous 
t periods.) Only if during all tcomp periods actual consumption of a good i, xi, t − τ, 
τ = 1, …, tcomp, deviated from the respective reference level ri, t − τ by more than 
d %, then a new reference level ri, t is set. A new reference level is assumed to 
be given by the consumption of the previous period, ri, t = xi, t − 1, otherwise 
ri, t = ri, t − 1, 

In general, the new reference level might as well be average consumption 
over a couple of previous periods. However, if the adaptation of a new reference 
level is interpreted as a reaction to a suspected trend in prices, it would not be 
logical for the consumer to calculate average consumption over amounts which 
she already suspects to be lower or higher than her future consumption. Of 
course, the same argument applies to taking last period’s consumption as the 
new reference level. Therefore, setting the current reference level equal to last 
period’s consumption should be understood as a simple formalization of the 
heuristic, “I noticed that prices have decreased (increased). This means, I will 
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Figure  7.1: Simulated time series of unit costs 2�c  (dashed line) 
and of the pro>t-maximizing price 2�p  (solid line) when the reference levels 

adjust to past consumption; μc = log 0.15 and σc = 0.9. 
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be able to consume more (less) of good i during the upcoming periods, and 
I would like to consume in the future at least as much as I consume today.” 

7.1.3 Results of the extended model i 

The results of incorporating the above described connection between past con-
sumption and current reference levels in my model are shown in Figures 7.1 
and 7.2. For the two simulations the same parameter values were used as in Sec-
tion  6.2, with the difference that the initial reference point r1 = (r1, 1, r2, 1) was not 
set to (16, 4) but to (0, 0). This reflects the notion that reference levels are con-
nected to a consumer’s becoming accustomed to consuming a certain amount 
of the goods available. Hence, at the beginning there is nothing yet that the con-
sumer could have become used to consuming. (Any other initial reference point 
changes the numerical results, but not the qualitative properties of the simula-
tion.) The simulated cost series which firm 2 faces are the same ones as used for 
the simulations in Section  6.2, with the parameters of the cost distribution be-
ing μc = log 0.15 and σc = 0.9 for the first simulated cost series (Figure 7.1) and 
μc = log 0.25 and σc = 1.1 for the second one (Figure 7.2). 

Like in the price series generated by the original model, there are times 
at which the simulated profit-maximizing price stays constant over several pe-
riods, interrupted by short deviations. In contrast to the original model, the 
extended model also generates shifts of the “regular price” to higher or lower 
levels, just as observed in empirical data (see Figure 3.1, especially panel a). In-
terestingly, the simulations create more small price increases than small price 
decreases, as found in empirical data by Levy et al. (2004). 

The extended model i illustrates yet another interesting point in which the 
theory of reference-dependent preferences deviates from standard consumer 
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Figure  7.2: Simulated time series of unit costs 2�c  (dashed line) 
and of the pro>t-maximizing price 2�p  (solid line) when the reference levels 

adjust to past consumption; μc = log 0.25 and σc = 1.1. 
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theory: the attitude towards risk over price changes. Standard theory posits that 
agents are risk-loving w.r.t. price changes: A direct utility function that is con-
cave in the quantities of the consumed goods gives rise to an indirect utility 
function which is convex in the goods’ prices. By application of eut, agents with 
standard preferences prefer a “price lottery” with mean p  over paying the price 
p  with certainty. 

Under loss aversion, this is locally just the other way round: As Figure 7.3 
shows, the indirect utility function is locally concave in prices. The figure was 
created as follows: For an agent with α = ⅔, ρ = ½, λ = 2, r1 = r2 = 0, and 20,M =�  
the optimal consumption bundle for 2 1p =�  was calculated—which yields 
x = (16, 4). The consumption bundle x was then taken to be the new reference 
level r. With r = (16, 4) and all other parameters left unchanged, the agent’s indi-
rect utility for 2 [0,2]p ∈�  was plotted. One can see that the kink in the indirect 
utility function occurs at 2 1,p =�  the very price that gave rise to the reference 
level r = (16, 4). 

Thus, under loss aversion, price rigidities can increase agents’ average utility. 
They might, therefore, be desirable. 

7.1.4 Discussion of the extended model i 

Unfortunately, the majority of small price increases over small price decreases 
is matched by the opposite proportion of large price decreases and large price 
increases; this is not observed in real-world retail prices. In addition, this 
asymmetry feature of the simulated price series is an artifact of the assumed 
cost distribution—which is right-skewed—rather than of the model’s core 
properties. 

0.5 1 1.5 2
p�2

1

2

3

4

5

6

7

8
u

 
 

Figure  7.3: Local risk aversion over price changes around 
the price which generated the reference point. 
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Despite that, we can conclude that allowing the reference levels to vary in-
creases the similarity between the simulated price series and the empirical 
ones—the weaknesses no. 1 and 3 of the original model have been overcome. 

This is also true for weakness no. 2 (which stated that in the original model 
it is a matter of chance only whether the mean of the cost distribution falls in-
side the interval for which the profit-maximizing price is constant or not). By 
incorporating a dependence of the current reference levels on past consump-
tion, it is the last periods’ prices which determine today’s reference levels. Since 
the prices during the previous periods reflect the firm’s cost distribution, the 
reference levels ultimately depend on the firm’s cost distribution. This mecha-
nism makes sure that in a large of periods, the reference levels are such that the 
costs are inside the interval for which the profit-maximizing price is constant. 

7.2 Extended model ii: Allowing for consumer heterogeneity 

7.2.1 The extended model ii 

The phenomenon that the profit-maximizing price which a monopolist facing 
a loss-averse representative consumer chooses is identical for a range of unit 
costs, is caused by the fact that the demand of a loss-averse consumer is per-
fectly inelastic inside a certain interval of prices, determined by the reference 
levels. Therefore, if a firm faces not only one consumer but a large number of 
consumers with idiosyncratic reference levels, the phenomenon of price sticki-
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Figure  7.4: The pro>t-maximizing price as a function of marginal cost 
in the case of consumers with idiosyncratic (randomly determined) 
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ness might disappear: The kinks and inelastic segments of the demand func-
tions do not coincide, but are attained at different prices. Hence, the kink 
in the firm’s profit function, generating the same profit-maximizing price for 
a range of production costs (recall Figure 5.9), disappears. This is confirmed 
by Figure 7.4: in contrast to Figure 6.1, there is no interval of costs any more 
for which the profit-maximizing price is constant—Figure 7.4 has no horizon-
tal part. It was generated by aggregating demand over n = 50 consumers who 
differed with regard to income and reference levels. To make Figure 7.4 compa-
rable to Figure 6.1, the income jM�  of each consumer j, j = 1, …, n, was drawn 
from the following log-normal distribution: log jM�  ~ N(3.045, 0.3); hence, the 
mean income was e3.045 ≈ 21. (The sample mean turned out to be 21.34.) Each 
agent’s reference levels were then calculated as random fractions of the agent’s 
income. 

However, this argumentation is not valid any more, when current reference 
levels likely depend on past consumption. In extended model ii, the connection 
between past consumption and current reference levels was assumed to be 
the same as in extended model i. As already argued in Section  7.1.4, this makes 
the reference levels depend ultimately on the producer’s cost distribution. This, 
in turn, has the consequence that a large share of the reference points is coordi-
nated. It is still true that different households’ reference levels differ from each 
other. However, the reference levels were the optimal consumption choices 
of many households for a given price in a previous period. This means that 
around this price, all these households stick to their reference levels. Hence, 
despite heterogeneity in the reference levels, there is a range of prices for which 
all these households consume their reference levels, and the upper bound of 
this range is under certain circumstances the price which globally maximizes 
profits. Through this channel, it is the fact that a price was once set in the past 
which makes this very price the profit-maximizing one in future periods.  

7.2.2 Results of the extended model ii 

To make the plots comparable, the simulation shown in Figure 7.5 was created 
using the parameter values introduced in Section  6.2. As well, the cost series is 
the same that was already employed previously and the list of random incomes 
is the same as used for Figure 7.4. Total demand was generated by aggregating 
the individual demand curves of n = 50 consumers. Hence, as a consequence 
of the train of thought in Section  7.2.1, any stickiness of the profit-maximizing 
price must be triggered by the assumed dependence of consumers’ idiosyncratic 
reference points on past consumption. 
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The simulated series of profit-maximizing prices resulting from these as-
sumptions indeed exhibits the familiar “regular price” phenomenon. Further-
more, temporary downward deviations from and return to the “regular price” 
can be observed. 

For this model, it is practically impossible to obtain analytical conditions 
determining the profit-maximizing price in the form of those derived in Sec-
tion  5.3. Therefore, in every period, I calculated aggregate demand and the re-
sulting profit for all 2 2, 2,{ /200 | /200 10 };t tp k k c k c∈ ∈ ∧ ≤ ≤� � �`  from this set 
of prices, I chose the one with the highest profit. While it is theoretically possi-
ble that the profit-maximizing price lies above the upper bound 210 ,c� this is 
virtually excluded for the assumed values of α and σ. Admittedly, a finer grid 
of prices at which profit is evaluated yields more accurate results. To check 
whether such refinement changes anything significantly, I decreased the incre-
ment between subsequent prices at which profit is evaluated, to 1/1000. Neither 
did the qualitative properties change nor did the profit-maximizing price on 
the finer grid deviate from that on the coarser grid by more than the increment 
of the coarser grid, indicating that indeed the same optimal price is approxi-
mated. On top, in practice there is also a lower bound (1 cent) on price differen-
tiation; thus, the numerical search for the profit-maximizing price might even 
increase rather than decrease the model’s realism. 

7.2.3 Discussion of the extended model ii 

Just like the two previous versions, extended model ii, in which reference levels 
differ across consumers but change over time in a similar manner for all con-
sumers, creates a profit-maximizing price which is non-responsive to changes 
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Figure  7.5: Simulated time series of unit costs 2�c  (dashed line) and 
of the pro>t-maximizing price 2�p  (solid line) when the reference levels adjust 

to past consumption and consumers have idiosyncratic reference levels; 
μc = log 0.15 and σc = 0.9. 
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in production costs within a certain interval. However, compared to the series 
depicted in Figure 7.1, the series with heterogeneous consumers is much more 
volatile. 

This means that for purely qualitative analysis, it is possible to use extended 
model i instead of extended model ii. Using extended model i has the advan-
tage that a representative agent is analyzed instead of a large number of hetero-
geneous agents. This enables us to calculate the range of costs for which the 
profit-maximizing price is non-responsive, without having to rely on numerical 
simulation. Analyzing model i is, thus, much easier than analyzing model ii. 

This is especially important because the model still lacks a lot of features 
that should be incorporated in upcoming versions, such as forward-looking be-
havior of both consumers and producers (expectations; saving; maximization 
of the discounted sum of profits over all periods instead of maximizing in each 
period separately). Incorporating forward-looking behavior is mandatory, since 
it is obvious that in the extended versions, the price setting of today is likely 
to influence demand and, thus, profits tomorrow via changing in the reference 
levels. More specifically, there exists a trade-off between current profits and 
future profits, because low prices today mean high exploitable reference levels 
tomorrow, and vice versa. For empirical evidence on this relationship, see 
Slonim and Garbarino (2000, pp. 3 and 12). 
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8 Discussion 
 
This discussion focuses on three topics related to the model I presented and 
solved in the previous sections: 

1 its behavioral basis, especially the question of reference quantities vs. refer-
ence prices and the determinants of the reference point; 

2 the model’s time series properties and its ability to explain the empirically 
observed price setting of firms, contrasted by the predictions of competing 
theories; 

3 shortcomings of the model and possible extensions in the future. 

Regarding topic 1, it can be said that the behavioral basis of the way I model 
consumer behavior has been the subject of various studies which, without ex-
ception, answered the question whether people exhibit loss aversion in the af-
firmative. This evidence on the relevance of loss aversion was presented in 
Sections  2.2.2 and  2.2.4. Admittedly, none of these studies examined reference 
dependence in the very context that I model—repeat purchase of consumer 
goods. Instead, its relevance for financial markets, the choice of insurances, and 
enrollment in health plans was studied. 

There is, however, one study which lends support to the hypotheses on 
which my model is built, i.e. to the assumptions that people are also loss-averse 
over everyday consumption, and that the current reference point depends on 
past consumption: it is Bowman et al.’s (1999) model of loss-averse consumers 
who have to decide on how to react to changes in their permanent income. In 
the model, the current reference point is assumed to be equal to past consump-
tion. Bowman et al.’s result is that agents are reluctant to decrease current con-
sumption in response to bad news about future income, given that there is suffi-

cient uncertainty about future income (see p. 956). Bowman et al. find empiri-
cal evidence supporting this prediction from five different countries. Hence, 
their joint hypothesis of loss aversion over income and the reference point be-
ing equal to past consumption seems to hold. 

Two possible alternatives to my specification suggested by other researchers 
were presented in Section  2.3: one is to conceive of loss aversion not over the 
quantities consumed of a certain good, but over the price of that good. This is 
done by Sibly (2002) and by several empirical studies cited in Section  2.2.4. The 
second alternative is to stay in the framework of loss aversion over quantities, 
but assume the reference levels to be determined through expected consump-
tion in a rational-expectations equilibrium. This is the approach taken by Heid-

hues and Kó́szegi (2004). 
Both these approaches, however, suffer from weaknesses, as I will argue in 

the following. The most important argument against modeling loss aversion 



 69 

over prices is that this is in stark contrast to the original meaning of loss aver-
sion. Actually, for certain prices, Sibly’s model predicts the outright opposite 
of my model with loss aversion over quantities: Loss aversion in the sense of 
Tversky and Kahneman (1991) implies that for a certain range of prices of 
a good, the demand for the respective good is totally inelastic. Sibly’s demand 
function, in contrast, is elastic everywhere, and there exists a price above which 
demand becomes even more elastic. Hence, the only thing that “loss aversion” 
over prices and loss aversion over quantities have in common is the assumption 
that the human decision-making process comprises two steps: First, forming 
a reference point and, second, comparing the actual numbers (items consumed 
or price, respectively) to that reference point. 

In order to avoid such confusion of the two distinct concepts of reference 
dependence, it is in order not to speak of “loss aversion” in the case of reference 
prices. Instead, the term “customer anger at price increases” should be used, as 
it is done by Rotemberg (2003). Rotemberg (p. 12, footnote 11) even explicitly 
mentions the proximity between his model and Sibly’s: 

The optimization problem of a firm setting a new price is then very similar to 
the optimization considered in Sibly (2002) for the case when consumers are 
“loss averse.” 

Of course, it sounds comprehensible that customers are reluctant to buy a good 
they discover to cost more than the reference price. However, it is also compre-
hensible that, when being accustomed to a certain level of consumption, this re-
luctance to buy after a price increase is transient. That is, after a couple of days, 
consumers do not care about the fact that the price has increased any further, 
because they do not want consumption to fall short of their reference levels. 

Indeed, any large aversion to price increases is hard to reconcile with the 
finding by Levy et al. (2004) that I presented in Section  3.3: small price in-
creases are more frequent than price decreases. Now, a price increase is unlikely 
to boost profits if demand decreases substantially in response to it. Thus, if it 
were true that consumers react strongly to price increases, it would be surpris-
ing that price increases are as common as Levy et al. discover. 

However, one possibility remains to reconcile large demand decreases in 
response to price increases with Levy et al.’s finding: Firms might actually 
be forced to carry out desired price increases in small steps just because of 
the presence of customer anger: producers hope that many small increases go 
through with their customers unnoticed, thus preventing the harsh reaction 
that might follow a single large increase. This idea is the heart of Rotemberg’s 
“customer anger” model and of Reis’s (2004) model of rationally inattentive 
consumers. To explain their empirical findings, Levy et al. present a model 
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of “rationally inattentive” consumers of their own. However, their model is so 
simplistic and their solution so flawed23 that it has to be refuted out of hand. 

Put aptly, in my opinion the simple models by Sibly and Levy et al. have 
to be rejected. The first one cannot be reconciled with the facts, and both have 
serious theoretical shortcomings. In contrast, the more sophisticated models 
by Rotemberg and Reis make predictions similar to those of my own model. 
However, they do so on the basis of entirely different assumptions about agents’ 
behavior—full knowledge of price changes and loss aversion in my case, unno-
ticed price changes and no loss aversion in the case of Reis (2004) and Rotem-

berg (2003). Hence, the three distinct approaches should be seen as competi-
tors, with each of them yielding useful insights. 

I will now turn to discussing the differences between my model and that 
by H&K. In line with K&R (pp. 2 and 14–17), H&K suggest that the reference 
point is formed by the agent’s expectations of future consumption. This is very 
appealing due to its forward-looking character, but it also entails new concep-
tual problems, since the individual formation of expectations has to be modeled 
appropriately. 

Another at least equally important criticism is that the way h&k model the 
determination of the reference point seems inconsistent with the very notion 
of loss aversion. In their determination of a new reference point, the current 
reference point plays no role at all. The new reference point is determined in 
“personal equilibrium”: what the agent expects to do, given the reference point, 
has to equal the reference point. Of course, this is a reasonable property, since—
in Bidwell et al.’s (1995, p. 291) words—it “precludes behavior that implies 
self-deception”. 

My point of criticism is another: If people are loss-averse over the quantities 
they consume, why should they readily abandon reference levels they have en-
tertained in the past? H&K’s hypothesis that the reference point is purely for-
ward-looking implies that the reference point for the next period changes in-
stantaneously when new information arrives. For example, when the relative 
price changes in the two-goods case, ceteris paribus, one reference level will 
probably go up, and the second one will probably go down. But shouldn’t the 
agent suffer loss aversion in this case, too? Loss aversion means that an agent 
is reluctant to let a good’s consumption fall short of its reference level. It seems 
reasonable that such an agent is also reluctant to let consumption in the near 
future, as she expects it today, fall short of today’s reference level. Granting that 
agents may be able to foresee—and sometimes even bring about—changes in 
their preferences (i.e., reference points), one should at least require that these 
changes be not be too drastic within a short period of time. 

                                                                            
 23 For instance, they call a situation (the fact that the consumer does not change its consumption de-
spite a price increase and already knows this in advance, p. 20) an equilibrium which clearly is none. 
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Introducing loss aversion to the determination of expectations-based refer-
ence levels may have important consequences: Imagine, for instance, the situa-
tion that an agent expects her future income to drop. Ceteris paribus, according 
to H&K’s model, she would adjust the reference levels for all the goods she con-
sumes downward. Now, assume instead that the agent is reluctant to let future 
reference levels decrease below current reference levels. With the value function 
for each good being convex in the domain of losses, she might decide to de-
crease a few reference levels drastically in order to keep all remaining ones at 
their previous levels—instead of lowering all levels by a small amount. 

Hence, it is reasonable to assume that the reference levels valid in one period 
influence the subsequent ones—as captured by my model, while being ignored 
by H&K. Since the aim is to construct a formal model of human behavior, this 
dispute cannot, of course, be resolved by purely theoretical deliberations. In the 
end, it is necessary to find out empirically which hypothesis regarding the foun-
dation of reference levels better describes human decision making. 

Turning to topic 2—the properties of the time series of profit-maximizing 
prices generated by my model—it can be stated that the simulated price series 
resemble time series of actual market prices quite accurately. At least, this is true 
with respect to the qualitative properties: a “regular price” is observable which 
is constant over a couple of periods, interrupted by short downward deviations 
and immediate returns (“sales periods”). I have to admit, of course, that in this 
early stage of research I have not yet examined the quantitative properties of 
these time series, e.g. minimum and maximum price, variance/mean ratio, serial 
correlations. It would be important to calibrate the model such that these values 
equal those of real price series. Once this is done, one can find out if the nu-
merical value of σ, which determines the curvature of the consumption utility 
function, has a reasonable size and if the calibration’s coefficient of loss aversion 
λ takes on a reasonable value as well. Simultaneously, size and variance of the 
unit costs creating sufficient variability in the profit-maximizing price have to 
be examined as well. 

Nevertheless, it can be noted that my model has an edge over the contend-
ing models employing time-dependent or state-dependent sticky prices. State-
dependent price setting has difficulties explaining the frequent occurrence of 
sales periods, which my model can explain. Time-dependent sticky price mod-
els were found by Bils and Klenow (2004) to create too low volatility and too 
much persistence in inflation. My model does not create such inertia: Firms 
can reset prices whenever this increases their profits. It is important to note 
that what appears to be “stickiness” of prices in my model is non-responsiveness 
to cost shocks only. As soon as, e.g., a change in the price of the other good or 
in the agent’s wage changes her income ,M�  the profit-maximizing price will 
likely adjust to this change. This is illustrated by the upper panel of Figure 6.3: 
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While the profit-maximizing price is independent of M�  for very low and very 
high incomes, in a quite large intermediate range it responds to any change in 
income, however small the change is. 

That is, my model combines one kind of non-responsiveness of the profit-
maximizing price (to cost shocks) with another kind of immediate responsive-
ness (to changes in demand). Through this combination, price series generated 
by my model exhibit short-run price stickiness and long-run price flexibility, 
just like empirical findings on real markets. This has crucial implications for 
monetary policy: a change in nominal income due to a monetary contraction 
or expansion has over a wide range of M�  no real, but only inflationary effects 
(see the lower panel of Figure 6.3), despite the observation that prices are con-
stant over several periods. 

Let us finally turn to topic 3 of this discussion: shortcomings of the model 
and suggestions for further research. The most obvious shortcoming is the fact 
that both firms and consumers are assumed to suffer from myopia—imposed 
in my model by not allowing consumers to save: neither firms nor consumers 
take into account the consequences of their current behavior for consumers’ fu-
ture preferences. However, these consequences exist through the dependence 
of reference levels on past consumption. Thus, any firm that maximizes profits 
and expects to exist more than a single period should not maximize each pe-
riod’s profit separately, but the sum of all periods’ discounted profits jointly. 
Analogously, the same holds true for the consumers and their utility maximi-
zation. 

In upcoming versions of the model, such forward-looking behavior of both 
producers and consumers should be incorporated. Furthermore, based on the 
analysis of the partial equilibrium in this thesis, a general-equilibrium model 
should be developed. After this has been done, a calibrated version of the model 
can be compared with actual data on prices and costs, as I already outlined in 
this discussion when dealing with topic 2. 

Apart from this theoretical work, a lot of empirical research—in experi-
ments and field studies—on the origins and effects of reference points has to 
be conducted, so that it can be decided what role past consumption and ex-
pected future consumption play in the determination of the reference point. 
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9 Summary and conclusion 
 
 

This thesis dealt with two controversies that have been subject of debate in eco-
nomic research for a long time: first, the source and extent of rigidity of nomi-
nal prices and second, the constancy of agents’ preferences. A model was devel-
oped which assumes reference-dependent preferences and loss aversion in the 
style of Tversky and Kahneman (1991). The question it tried to answer is 
whether the dependence of preferences on reference points in connection with 
loss aversion leads to price stickiness, assuming that firms maximize profits. 

Therefore, consumers’ demand functions under loss aversion were derived 
and shown to be kinked at the reference levels. In the next step, a monopolistic 
firm with constant marginal cost serving the loss-averse consumers was intro-
duced. It was shown that the firm’s profit-maximizing price does not respond 
to changes in marginal cost as long as the cost lies inside a certain interval. 
This was interpreted as a form of “price stickiness”, i.e. non-responsiveness of 
the price to a shock on another variable. 

Using pseudo-randomly drawn unit costs, a time series of profit-maximiz-
ing prices was simulated and compared to time series of actual market prices. 
The simulated and the real-world price series were found to have very similar 
qualitative properties: Both are characterized by the emergence of a “regular 
price”, where a price is called “regular price” when it is attained a couple of peri-
ods in a row, and/or if deviations from it occur, they last for only a few periods. 

The model was presented first in a basic version, where a representative 
agent was assumed whose reference point was given exogenously and not al-
lowed to vary over time. Since studies on reference-dependent preferences fre-
quently emphasize that the reference levels change over time, in an extended 
version, the reference point was made dependent on past consumption. It was 
shown via a simulated time series of profit-maximizing prices that the quality 
of the model’s predictions on price setting improves in comparison with the ba-
sic model. The way I model the determination of the reference points was de-
fended against the two competing hypotheses about their nature put forth by 
Sibly (2002) and by Heidhues and Kó́szegi (2004). 

Using the same dependence of the reference point on past consumption as 
in the first extended version, in a second extended version, the representative 
consumer was replaced by a number of heterogeneous consumers with idiosyn-
cratic reference levels. This way, it was shown that the results of the first ex-
tended version survive aggregation, because their qualitative properties do not 
change. Due to this result, I argued that customer heterogeneity can be ne-
glected and the model can be used in its representative-agent version, which is 
much easier to solve than the version incorporating consumer heterogeneity. 
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The main result of my model is that it combines one kind of non-respon-
siveness of the profit-maximizing price—to cost shocks—with another kind 
of immediate responsiveness—to changes in demand. Such changes in demand 
occur, e.g., when the agents’ nominal income changes. I showed that expansion-
ary monetary policy has over a wide range of nominal incomes no real, but only 
inflationary effects, despite the observation that prices are constant over longer 
periods of time. In addition, just like empirical findings on real market prices, 
price series generated by my model exhibit short-run price stickiness and long-
run price flexibility. 

Finally, I discussed shortcomings of my model and suggested topics for fur-
ther research: The present model suffers from not allowing for forward-looking 
behavior, neither on the side of the consumers nor on the side of the firm. In 
upcoming versions of the model, forward-looking behavior of both firms and 
consumers should be incorporated, and the analysis should be extended from 
partial equilibrium to general equilibrium. When this has been achieved, a cali-
brated version of the model should be compared with actual data on prices and 
costs in order to check that price rigidity also occurs when plugging in realistic 
values for the coefficient of loss aversion and the variance of unit costs. In addi-
tion to this theoretical work, further empirical research on the origins and ef-
fects of reference points is deemed necessary. 
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1 1 1

2 12
( 1)

1 2
1 1( 1)

12

/

/

ρσ σ

σ σ σ

ρσ σ

σ σ σ

ρσ σ ρ

σ σ ρ

ρσρ σ

σρ σ

ρσ ρ

σ ρ

M
r

α α M M
r rα M r α α

α α r
rα α M r α

α r M r
r rα

α r M r
r rα

α r r M r
rα

−

−

−

−

−

−

⎛ ⎞ ⎡ ⎤
⇔ ⋅ =⎜ ⎟ ⎢ ⎥⎜ ⎟− ⎣ ⎦⎝ ⎠

⎛ ⎞
⇔ =⎜ ⎟⎜ ⎟−⎝ ⎠

⎛ ⎞−
⇔ = ⋅⎜ ⎟

⎝ ⎠

⎛ ⎞ −
⇔ = ⋅⎜ ⎟

⎝ ⎠

⎛ ⎞
⇔ = −⎜ ⎟

⎝ ⎠

� �
�

�

�

�

�

(1/(1 ))( 1)
1 2

1 1(1/(1 ))( 1)
12

ρρ ρ

ρ ρ
α rr r M

rα

− −

− −
⎛ ⎞

⇔ + =⎜ ⎟
⎝ ⎠

�
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1
1 2

1 11
12

.
ρ

α rr r M
rα

−

−
⎛ ⎞

⇔ + =⎜ ⎟
⎝ ⎠

�  

We finally obtain formula (5.15): 

2 2
1

1 1
1 .

ρ

ρ
α r

r M
α r

⎛ ⎞
+ =⎜ ⎟⎜ ⎟

⎝ ⎠
�  

Combinations p M2
��( , )  for which no interior solution is attained 

 

• Branches i and ii: The conditions admitting for an interior solution on 
branch i or ii exclude each other: the first part of (5.28) and the first part 
of (5.29) combined would require that 

 

1/( 1)1/( 1)

1 1

(1 ) (1 ) .
/ [ (1 )] / [ (1 )]

σσσ σ

σ σ σ σ
α α

α M r α α λ M r α λ

−− ⎛ ⎞⎛ ⎞− −
< ⎜ ⎟⎜ ⎟ ⎜ ⎟− + − +⎝ ⎠ ⎝ ⎠

� �  

This cannot be fulfilled, since λ > 0. Consequently, for 

(a.1) 

1/( 1) 1/( 1)

2
1 1

(1 ) (1 ) ,
[ (1 )] / [ (1 )] /

σ σσ σ

σ σ σ σ
α αp

α λ M r α λ α M r α

− −⎛ ⎞ ⎛ ⎞− −
< <⎜ ⎟ ⎜ ⎟⎜ ⎟+ − + −⎝ ⎠⎝ ⎠
�� �  

an interior solution is attained neither on branch i nor on branch ii. 

• Branches i and iii: The conditions admitting for an interior solution on 
branch i or iii exclude each other, since (5.28) and (5.30) cannot be fulfilled 
simultaneously. The second part of (5.30) can be rearranged to give 

 2
2

2

(1 )(1 ) .
(1 )

σ σ σ
σ

σ
α p α Mα p

rλ
−

+ − >
+

�� �  

Combined with the second part of (5.28) this requires 

 2
2 2 2(1 ) (1 ) .

(1 )

σ σ
σ σ σ σ

σ
α p α p α p α p

λ
+ − > + −

+

� � � �  

This is impossible to fulfill as long as λ > 0. Consequently, for 

(a.2) 2 2
2

(1 )(1 )
σ

σ σ σ α Mα p α p
r

−
+ − >

�
� �  and 

 2 2
2

[(1 )(1 )]
[(1 )(1 )] ,

σ
σ σ σ α λ M

α p α λ p
r

− +
+ − + <

�
� �  

an interior solution is attained neither on branch i nor on branch iii. 
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• Branches i and iv: The conditions admitting for an interior solution on 
branch i or iv, (5.28) and (5.31), state exactly the opposite of each other, 
thereby excluding the possibility of being fulfilled simultaneously. 

 
• Branches ii and iii: Again, the conditions admitting for an interior solution 

on branch ii or iii, (5.29) and (5.30), contradict each other. Unlike in the 
cases of the other branches, here the first as well as the second parts of the 
conditions exclude each other. The first parts would require that 

 

1/( 1) 1/( 1)

1 1

[(1 )(1 )] (1 ) ,
/ [ (1 )] / [ (1 )]

σ σσ σ

σ σ σ σ
α λ α

α M r α α λ M r α λ

− −
⎛ ⎞ ⎛ ⎞− + −

<⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− + − +⎝ ⎠ ⎝ ⎠
� �  

which is impossible as long as λ > 0. Hence, for 

(a.3) 

1/( 1) 1/( 1)

2
1 1

[(1 )(1 )](1 ) ,
[ (1 )] / [ (1 )] /

σ σσσ

σ σ σ σ
α λα p

α λ M r α λ α M r α

− −
⎛ ⎞ ⎛ ⎞− +−

< <⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ − + −⎝ ⎠ ⎝ ⎠
�� �  

an interior solution is attained neither on branch ii nor on branch iii. 

As far as the second parts of conditions (5.29) and (5.30) are concerned, 
divide the second part of condition (5.30) by (1 + λ)σ to get 

 2
2

2

(1 )(1 ) .
(1 )

σ σ σ
σ

σ
α p α Mα p

rλ
−

+ − >
+

�� �  

Combined with the second part of (5.29), this requires that 

 2 2 2 2(1 ) [ (1 )] (1 ) ,
(1 )

σ
σ σ σ σ σ

σ
α p α p α λ p α p

λ
+ − > + + −

+
� � � �  

which is impossible as long as λ > 0. Hence, for 

(a.4) 2 2
2

(1 )[ (1 )] (1 )
σ

σ σ σ α Mα λ p α p
r

−
+ + − >

�
� �  and 

 2 2
2

[(1 )(1 )]
[(1 )(1 )] ,

σ
σ σ σ α λ M

α p α λ p
r

− +
+ − + <

�
� �  

an interior solution is attained neither on branch ii nor on branch iii. Note 
that the intervals (a.3) and (a.4) include the intervals on which an interior 
solution on branch i or branch iv, respectively, exists. 
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• Branches ii and iv: Conditions (5.29) and (5.31) exclude each other, because 
the right-hand sides of their second parts are identical and, therefore, re-
quire that  

 2 2 2 2(1 ) [ (1 )] (1 ) ,σ σ σ σ σ σα p α p α λ p α p+ − > + + −� � � �  

which is not the case if, as assumed, λ > 0. Consequently, branches ii and iv 
do not overlap either, and for 

(a.5) 2 2
2

(1 )[ (1 )] (1 )
σ

σ σ σ α Mα λ p α p
r

−
+ + − >

�
� �  and 

 2 2
2

(1 )(1 ) ,
σ

σ σ σ α Mα p α p
r

−
+ − <

�
� �  

an interior solution is attained neither on branch ii nor on branch iv. 

• Branches iii and iv: Conditions (5.30) and (5.31) contradict each other: Their 
first parts require that, 

 

1/( 1)1/( 1)

1 1

[(1 )(1 )](1 ) ,
/ /

σσ σσ

σ σ σ σ
α λα

α M r α α M r α

−− ⎛ ⎞− +⎛ ⎞−
> ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

� �  

which is not fulfilled if λ > 0, which we assumed to be the case. Consequent-
ly, branches iii and iv do not overlap either, and for 

(a.6) 

1/( 1) 1/( 1)

2
1 1

[(1 )(1 )](1 ) ,
/ /

σ σσσ

σ σ σ σ
λ αα p

α M r α α M r α

− −
⎛ ⎞ ⎛ ⎞+ −−

< <⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
�

� �  

an interior solution is attained neither on branch iii nor on branch iv. 

• In summary: The conditions for obtaining an interior solution are mutually 
exclusive for all branches i–iv. 
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Proposition 1 

Claim 1 

For all 2( , )p M��  that fulfill 

(a.7) 1 2 2M r p r≥ +� �  and 

 

1/( 1) 1/( 1)

2
1 1

(1 ) (1 ) ,
[ (1 )] / [ (1 )] /

σ σσ σ

σ σ σ σ
α αp

α λ M r α λ α M r α

− −⎛ ⎞ ⎛ ⎞− −
≤ ≤⎜ ⎟ ⎜ ⎟⎜ ⎟+ − + −⎝ ⎠⎝ ⎠
�� �   

consuming bundle 1 2 1 1 2( , ) ( , ( )/ )x x r M r p≡ ≡ −a aa � �  is the optimal choice. 

Proof. In the situation that 1M r≥�  and , furthermore, that 2p�  is low enough so 
that 1 2 2,M r p r≥ +� �  branches i, ii, and iii are feasible. In this case, it is possible 
to consume of both goods at least or more than the reference levels. Hence, 
there is no trade-off of the sort that a gain in one good is met by a loss in the re-
spective other good. 

It has to be shown that when consuming bundle a, neither shifting resources 
from the consumption of good 1 towards good 2 nor in the opposite direction 
can improve the agent’s utility for 2p�  inside the interval defined by (a.7). For 
this purpose, let us calculate the utility that the agent would get from consum-
ing 1 2 2 1 1 2( , / ) ( , ( )/ ),x δ x δ p r δ M r δ p+ − = + − −a a �� �  δ > 0: Since 1 2 2 ,M r p r≥ +� � for 
a sufficiently small δ, of both goods more than the respective reference level is 
consumed, i.e. 2 2 2/ .x δ p r− ≥a �  Therefore, n1(x1 | r1) = n2(x2 | r2) = 0, so that the 
utility is given by 

(a.8) 1 1 2 1 2 1 1 2( , ( )/ | , ) ( ) (1 )[( )/ ] .ρ ρu r δ M r δ p r r α r δ α M r δ p+ − − = + + − − −� �� �  

Furthermore, we will need the change in this utility when δ is marginally in-
creased: 

(a.9) 

1 1 2 1 2

1
1 1

1
2 2

d ( , ( )/ | , )
d

1( ) (1 ) .
ρ

ρ

u r δ M r δ p r r
δ

M r δαρ r δ α ρ
p p

−
−

+ − −

⎛ ⎞− −
= + − − ⎜ ⎟

⎝ ⎠

� �

�
� �

 

For the bundle 1 1 2( , ( )/ )r δ M r δ p+ − −� �  to be optimal, increasing δ must not pay 
off, i.e. this derivative has to be non-positive: 

(a.10) 

1
1 1

1
2 2

1( ) (1 ) 0.
ρ

ρ M r δαρ r δ α ρ
p p

−
− ⎛ ⎞− −

+ − − ≤⎜ ⎟
⎝ ⎠

�
� �  
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This inequality can be reduced by the factor ρ, and in the special case of bun-
dle a, δ equals zero, so that the condition simplifies to 

(a.11) 

1
1 1

1
2 2

1(1 ) 0.
ρ

ρ M rαr α
p p

−
− ⎛ ⎞−
− − ≤⎜ ⎟

⎝ ⎠

�
� �  

Solving this inequality for 2 :p�  

 

1
11

1
2

1
1

2
1

( 1)/1/
1

2
1

( )
(1 )

1

1 .

ρ
ρ

ρ

ρ
ρ

ρ ρρ

M r
αr α

p

M rαp
α r

M rαp
α r

−
−

−

−

−
≤ −

⎛ ⎞−−
⇔ ≤ ⎜ ⎟

⎝ ⎠

⎛ ⎞−−⎛ ⎞⇔ ≤ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

�

�

�
�

�
�

 

With ρ = (σ − 1) / σ, this condition can be rewritten as: 

 

1/(1 )/( 1)
1

2
1

1/(1 )/( 1)

2
1

1/( 1)/( 1)

2
1

1

1 1

1 1 .
/ 1

σσ σ

σσ σ

σσ σ

M rαp
α r

α Mp
α r

αp
α M r

−−

−−

−−

⎛ ⎞−−⎛ ⎞≤ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞−⎛ ⎞⇔ ≤ −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞−⎛ ⎞⇔ ≤ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

�
�

�
�

� �

 

This finally delivers 

(a.12) 

1/( 1)

2
1

(1 ) .
/

σσ

σ σ
αp

α M r α

−
⎛ ⎞−

≤ ⎜ ⎟⎜ ⎟−⎝ ⎠
� �  

Hence, for 2p�  below this threshold, the utility cannot be increased by shifting 
consumption from good 2 in favor of good 1, starting from 1 1 2( , ( )/ ).r M r p≡ −a � �  

In the next step, it has to be proven that when consuming bundle a, utility 
cannot be increased by shifting consumption in the opposite direction, i.e. from 
good 1 towards good 2, either. For this purpose, let us calculate the utility that 
the agent would get from consuming 1 1 2( , ( )/ ),r δ M r δ p− − +� �  δ > 0. Since now 
x1 < r1 and x2 > r2,  n1(x1 | r1) = 1 1( )ρ ρλ αx αr−  and n2(x2 | r2) = 0; thus, the utility is 
given by 

(a.13) 
1 1 2 1 2

1 1 2 1

( , ( )/ | , )

(1 ) ( ) (1 )[( )/ ] .ρρ ρ

u r δ M r δ p r r

λ α r δ α M r δ p λαr

− − +

= + − + − − + −

� �

� �
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The derivative of this utility level w.r.t. δ is 

(a.14) 

1 1 2 1 2

1
1 1

1
2 2

d ( , ( )/ | , )
d

1(1 ) ( ) (1 ) .
ρ

ρ

u r δ M r δ p r r
δ

M r δλ αρ r δ α ρ
p p

−
−

− − +

⎛ ⎞− +
= − + − + − ⎜ ⎟

⎝ ⎠

� �

�
� �

 

For the bundle 1 1 2( , ( )/ )r δ M r δ p− − +� �  to be optimal, increasing δ must not pay 
off, i.e. this derivative has to be non-positive: 

(a.15) 

1
1 1

1
2 2

1(1 ) ( ) (1 ) 0.
ρ

ρ M r δλ αρ r δ α ρ
p p

−
− ⎛ ⎞− +

− + − + − ≤⎜ ⎟
⎝ ⎠

�
� �  

This inequality can be reduced by the factor ρ, and in the special case of bun-
dle a, δ equals zero, so that the condition simplifies to 

(a.16) 

1
1 1

1
2 2

1(1 ) (1 ) 0.
ρ

ρ M rλ αr α
p p

−
− ⎛ ⎞−

− + + − ≤⎜ ⎟
⎝ ⎠

�
� �  

Solving this inequality for 2 :p�  

 

1
11

1
2

1
1

2
1

1/ ( 1)/
1

2
1

( )
(1 ) (1 )

1
(1 )

1 .
(1 )

ρ
ρ

ρ

ρ
ρ

ρ ρ ρ

M r
λ αr α

p

M rαp
λ α r

M rαp
λ α r

−
−

−

−

−
+ ≥ −

⎛ ⎞−−
⇔ ≥ ⎜ ⎟+ ⎝ ⎠

⎛ ⎞ ⎛ ⎞−−
⇔ ≥ ⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

�

�

�
�

�
�

 

With ρ = (σ − 1) / σ, this condition can be rewritten as: 

 

/( 1) 1/(1 )
1

2
1

/( 1) 1/(1 )

2
1

1/( 1)/( 1)

2
1

1
(1 )

1 1
(1 )

1 1 .
(1 ) / 1

σ σ σ

σ σ σ

σσ σ

M rαp
λ α r

α Mp
λ α r

αp
λ α M r

− −

− −

−−

⎛ ⎞ ⎛ ⎞−−
≥ ⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞−
⇔ ≥ −⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞−
⇔ ≥ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠

�
�

�
�

� �

 

This finally delivers the condition that 

(a.17) 

1/( 1)

2
1

(1 ) .
[(1 ) ] / [(1 ) ]

σσ

σ σ
αp

λ α M r λ α

−
⎛ ⎞−

≥ ⎜ ⎟⎜ ⎟+ − +⎝ ⎠
� �  
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Hence, for 2p�  above this threshold, the utility cannot be increased by shifting 
consumption from good 1 in favor of good 2, starting from 1 1 2( , ( )/ ).r M r p≡ −a � �  

Combining conditions (a.12) and (a.17) delivers the interval of 2p�  for which 
it pays off neither to shift consumption from good 1 towards good 2 nor the op-
posite direction, starting from bundle a. This is the interval for which bundle a 
is optimal, as asserted in Proposition 1. 

Claim 2 

For all 2( , )p M��  that fulfill 

(a.18) 1 2 2M r p r≥ +� �  as well as 

 2 2
2

(1 )(1 )
σ

σ σ σ α Mα p α p
r

−
+ − ≥

�
� �  and 

 2 2
2

[(1 )(1 )]
[(1 )(1 )] ,

σ
σ σ σ α λ M

α p α λ p
r

− +
+ − + ≤

�
� �  

consuming bundle 2 2 2( , )M p r r≡ −b � �  is the optimal choice. 

Proof. It has to be shown that when consuming bundle b, neither shifting re-
sources from the consumption of good 1 towards good 2 nor in the opposite di-
rection can improve the agent’s utility for 2p�  inside the interval defined by 
(a.18). For this purpose, let us calculate the utility that the agent would get from 
consuming 1 2 2 2 2 2( , ) ( ( ), ),x p δ x δ M p r δ r δ− + = − + +b b �� �  δ > 0: Since 1 2 2 ,M r p r≥ +� �  
for a sufficiently small δ, of both goods more than the respective reference level 
is consumed, i.e. 1 2 1.x p δ r− ≥b �  Therefore, n1(x1 | r1) = n2(x2 | r2) = 0, so that the 
utility is given by 

(a.19) 2 2 2 1 2 2 2 2( ( ), | , ) ( ( )) (1 )( ) .ρ ρu M p r δ r δ r r α M p r δ α r δ− + + = − + + − +� �� �  

Furthermore, we will need the change in this utility when δ is marginally in-
creased: 

(a.20) 

2 2 2 1 2

1 1
2 2 2 2

d ( ( ), | , )
d

( ( )) (1 ) ( ) .ρ ρ

u M p r δ r δ r r
δ

α p ρ M p r δ α ρ r δ− −

− + +

= − − + + − +

� �

�� �
 

For the bundle 2 2 2( ( ), )M p r δ r δ− + +� �  to be optimal, increasing δ must not pay 
off, i.e. this derivative has to be non-positive: 

(a.21) 1 1
2 2 2 2( ( )) (1 ) ( ) 0.ρ ρα p ρ M p r δ α ρ r δ− −− − + + − + ≤�� �  
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This inequality can be reduced by the factor ρ, and in the special case of bun-
dle b, δ equals zero, so that the condition simplifies to 

(a.22) 11
2 2 2 2( ) (1 ) 0.ρρα p M p r α r −−− − + − ≤�� �  

This inequality cannot be solved analytically for 2 ;p�  still, it yields a condition 
of which we can conclude that a unique lower bound on 2p�  exists and that 
for 2p�  not below this lower bound, the inequality holds. Rearranging gives 

 

11
2 2 2 2

11 1 1 1
2 2 2 2

11
2 2 2 2

( ) (1 )

( ) (1 )

(1 )( ) ,

ρρ

ρρ

ρρ

α p M p r α r

α p M p r α r

α M p r α p r

−−

−− − − −

−−

− ≥ −

⇔ − ≤ −

⇔ − − ≤

�� �

�� �

� � �

 

which, since ρ = (σ − 1) / σ, translates to 

 

1/ 1/
2 2 2 2

2 2 2 2

2 2
2

2

2 2
2

(1 )( )

(1 ) ( )

(1 )

(1 ) .

σ σ

σ σ σ

σ σ σ

σ σ σ

α M p r α p r

α M p r α p r

M p r
α p α

r

Mα p α p
r

− − ≤

⇔ − − ≤

−
⇔ ≥ −

⎛ ⎞
⇔ ≥ − −⎜ ⎟

⎝ ⎠

� � �
� � �

� �
�

�
� �

 

This finally gives rise to 

(a.23) 2 2
2

(1 )(1 ) .
σ

σ σ σ α Mα p α p
r

−
+ − ≥

�
� �  

Hence, for 2p�  above this threshold, utility cannot be increased by shifting con-
sumption from good 1 in favor of good 2, starting from 2 2 2( , ).M p r r≡ −b � �  

In the next step, it has to be proven that when consuming bundle b, utility 
cannot be increased by shifting consumption in the opposite direction, i.e. from 
good 2 towards good 1, either. For this purpose, let us calculate the utility that 
the agent gets from consuming 2 2 2( ( ), ),M p r δ r δ− − −� �  δ > 0. Since now x1 > r1 
and x2 < r2, n1(x1 | r1) = 0 and 2 2 2 2 2( | ) ((1 ) (1 ) );ρ ρn x r λ α x α r= − − −  thus, the utility 
is given by 

(a.24) 
2 2 2 1 2

2 2 2 2

( ( ), | , )

( ( )) (1 )(1 )( ) (1 ) .ρ ρ σ

u M p r δ r δ r r

α M p r δ λ α r δ λ α r

− − −

= − − + + − − − −

� �
� �
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The derivative of this utility level w.r.t. δ is 

(a.25) 

2 2 2 1 2

1 1
2 2 2 2

d ( ( ), | , )
d

( ( )) (1 )(1 ) ( ) .ρ ρ

u M p r δ r δ r r
δ

α p ρ M p r δ λ α ρ r δ− −

− − −

= − − − + − −

� �

�� �
 

For the bundle 2 2 2( ( ), )M p r δ r δ− − −� �  to be optimal, increasing δ must not pay 
off, i.e. this derivative has to be non-positive: 

(a.26) 1 1
2 2 2 2( ( )) (1 )(1 ) ( ) 0.ρ ρα p ρ M p r δ λ α ρ r δ− −− − − + − − ≤�� �  

This inequality can be reduced by the factor ρ, and in the special case of bun-
dle b, δ equals zero, so that the condition simplifies to 

(a.27) 11
2 2 2 2( ) (1 )(1 ) .ρρα p M p r λ α r −−− ≤ + −�� �  

This inequality cannot be solved analytically for 2 ;p�  still, it yields a condition 
of which we can conclude that a unique upper bound on 2p�  exists and that 
for 2p�  not above this upper bound, the inequality holds. Rearranging gives 

 

11 1 1 1 1
2 2 2 2

11
2 2 2 2

( ) (1 ) (1 )

(1 )(1 )( ) ,

ρρ

ρρ

α p M p r λ α r

λ α M p r α p r

−− − − − −

−−

− ≥ + −

⇔ + − − ≥

�� �

� � �
 

which, since ρ = (σ − 1) / σ, translates to 

 

1/ 1/
2 2 2 2

2 2 2 2

2 2
2

2

2 2
2

(1 )(1 )( )

[(1 )(1 )] ( )

[(1 )(1 )]

[(1 )(1 )] .

σ σ

σ σ σ

σ σ σ

σ σ σ

λ α M p r α p r

λ α M p r α p r

M p r
α p λ α

r

Mα p λ α p
r

+ − − ≥

⇔ + − − ≥

−
⇔ ≤ + −

⎛ ⎞
⇔ ≤ + − −⎜ ⎟

⎝ ⎠

� � �
� � �

� �
�

�
� �

 

This finally gives rise to 

(a.28) 2 2
2

[(1 )(1 )]
[(1 )(1 )] .

σ
σ σ σ λ α M

α p λ α p
r

+ −
+ + − ≤

�
� �  

Hence, for 2p�  below this threshold, utility cannot be increased by shifting con-
sumption from good 2 in favor of good 1, starting from 2 2 2( , ).M p r r≡ −b � �  

Combining conditions (a.23) and (a.28) delivers the interval of 2p�  for which 
it pays off neither to shift consumption from good 1 towards good 2 nor the op-
posite direction, starting from bundle b. This is the interval for which bundle b 
is optimal, as asserted in Proposition 2. 
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Claim 3 

For all 2( , )p M��  that fulfill 

(a.29) 1 1 2 2r M r p r< < +� �  and 

 

1/( 1) 1/( 1)

2
1 1

[(1 )(1 )](1 ) ,
/ /

σ σσσ

σ σ σ σ
λ αα p

α M r α α M r α

− −
⎛ ⎞ ⎛ ⎞+ −−

≤ ≤⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
�� �   

consuming bundle 1 1 2( , ( )/ )r M r p≡ −a � �  is the optimal choice. 

Proof. The first part of condition (a.29) can be achieved by 1M r≥�  and 2p�  being 
relatively high so that 1 2 2 ;M r p r< +� �  alternatively, 1,M r<�  but 2p�  is low enough 
so that 2 2 ,M p r≥� �  and at the same time high enough so that 1 2 2 .M r p r< +� �  Then, 
branches ii, iii, and iv, or iii and iv, or ii and iv are feasible. 

In this case, it is impossible to simultaneously consume of both goods more 
than the reference levels. It is possible, however, to consume more than the ref-
erence level of one good, when consuming less than the reference level of the 
respective other good. Hence, there is a trade-off of the sort that a gain in one 
good is met by a loss in the respective other good. This trade-off changes the 
intervals on which it is optimal to consume bundle a or b vis-à-vis the situation 
in claims 1 and 2, where of both goods more than the reference levels could be 
consumed simultaneously. 

It has to be shown that when consuming bundle a, neither shifting resources 
from the consumption of good 1 towards good 2 nor in the opposite direction 
can improve the agent’s utility for 2p�  inside the interval defined by (a.29). For 
this purpose, let us calculate the utility that the agent would get from consum-
ing 1 2 2 1 1 2( , / ) ( , ( )/ ),x δ x δ p r δ M r δ p+ − = + − −a a �� �  δ > 0. Since 1 1 2 2 ,r M r p r< < +� �  
consuming x1 = r1 means that x2 < r2. Therefore, n1(x1 | r1) = 0 and 2 2 2( | )n x r =  

2 2((1 ) (1 ) ),ρ ρλ α x α r− − −  so that the utility is given by 

(a.30) 
1 1 2 1 2

1 1 2 2

( , ( )/ | , )

( ) (1 )(1 )[( )/ ] (1 ) ρρ ρ

u r δ M r δ p r r

α r δ α λ M r δ p λ α r

+ − −

= + + − + − − − −

� �

� �
. 

Furthermore, we will need the change in this utility when δ is marginally in-
creased: 

(a.31) 

1 1 2 1 2

1
1 1

1
2 2

d ( , ( )/ | , )
d

1( ) (1 )(1 ) .
ρ

ρ

u r δ M r δ p r r
δ

M r δαρ r δ α λ ρ
p p

−
−

+ − −

⎛ ⎞− −
= + − − + ⎜ ⎟

⎝ ⎠

� �

�
� �
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For the bundle 1 1 2( , ( )/ )r δ M r δ p+ − −� �  to be optimal, increasing δ must not pay 
off, i.e. this derivative has to be non-positive: 

(a.32) 

1
1 1

1
2 2

1( ) (1 )(1 ) 0.
ρ

ρ M r δαρ r δ α λ ρ
p p

−
− ⎛ ⎞− −

+ − − + ≤⎜ ⎟
⎝ ⎠

�
� �  

This inequality can be reduced by the factor ρ, and in the special case of bun-
dle a, δ equals zero, so that the condition simplifies to 

(a.33) 

1
1 1

1
2 2

1(1 )(1 ) 0.
ρ

ρ M rαr α λ
p p

−
− ⎛ ⎞−
− − + ≤⎜ ⎟

⎝ ⎠

�
� �  

Solving this inequality for 2p�  is analogous to solving the inequality involved 
in the proof of Proposition 1, with the factor 1 − α replaced by (1 − α) (1 + λ). 
This delivers 

(a.34) 

1/( 1)

2
1

[(1 )(1 )]
.

/

σσ

σ σ
α λ

p
α M r α

−
⎛ ⎞− +

≤ ⎜ ⎟⎜ ⎟−⎝ ⎠
� �  

Hence, for 2p�  below this threshold, the utility cannot be increased by shifting 
consumption from good 2 in favor of good 1, starting from 1 1 2( , ( )/ ).r M r p≡ −a � �  

In the next step, it has to be proven that when consuming bundle a, utility 
cannot be increased by shifting consumption in the opposite direction, i.e. from 
good 1 towards good 2, either. For this purpose, let us calculate the utility that 
the agent gets from consuming 1 1 2( , ( )/ ),r δ M r δ p− − +� �  δ > 0. Since now x1 < r1 
and, for sufficiently small δ, x2 < r2, gain–loss utility is 1 1 1 1 1( | ) ( )ρ ρn x r λ αx αr= −  
and 2 2 2( | )n x r =  2 2((1 ) (1 ) );ρ ρλ α x α r− − −  thus, total utility is given by 

(a.35) 
1 1 2 1 2

1 1 2 1 2

( , ( )/ | , )

(1 )( ) (1 )(1 )[( )/ ] (1 )ρ ρρ ρ

u r δ M r δ p r r

α λ r δ α λ M r δ p λαr λ α r

− − + =

+ − + − + − + − − −

� �

� �
 

The derivative of this utility level w.r.t. δ is 

(a.36) 

1 1 2 1 2

1
1 1

1
2 2

d ( , ( )/ | , )
d

1(1 ) ( ) (1 )(1 ) .
ρ

ρ

u r δ M r δ p r r
δ

M r δλ αρ r δ α λ ρ
p p

−
−

− − +

⎛ ⎞− +
= − + − + − + ⎜ ⎟

⎝ ⎠

� �

�
� �

 

For the bundle 1 1 2( , ( )/ )r δ M r δ p− − +� �  to be optimal, increasing δ must not pay 
off, i.e. this derivative has to be non-positive: 

(a.37) 

1
1 1

1
2 2

1(1 ) ( ) (1 )(1 ) 0.
ρ

ρ M r δλ αρ r δ α λ ρ
p p

−
− ⎛ ⎞− +

− + − + − + ≤⎜ ⎟
⎝ ⎠

�
� �  
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This inequality can be reduced by the factors 1 + λ and ρ, and in the special case 
of bundle a, δ equals zero, so that the condition simplifies to 

(a.38) 

1
1 1

1
2 2

1(1 ) 0.
ρ

ρ M rαr α
p p

−
− ⎛ ⎞−

− + − ≤⎜ ⎟
⎝ ⎠

�
� �  

This is the same condition as (a.11), with the inequality holding in just the op-
posite direction. Therefore, the solution of the inequality is given by a reversed 
version of (a.12): 

(a.39) 

1/( 1)

2
1

(1 ) .
/

σσ

σ σ
αp

α M r α

−
⎛ ⎞−

≥ ⎜ ⎟⎜ ⎟−⎝ ⎠
� �  

Combining conditions (a.34) and (a.39) delivers the interval of 2p�  for which 
it pays off neither to shift consumption from good 1 towards good 2 nor the op-
posite direction, starting from bundle a. This is the interval for which bundle a 
is optimal, as asserted in Proposition 3. 

Claim 4 

For all 2( , )p M��  that fulfill 

(a.40) 2 2 1 2 2p r M r p r< < +�� �  as well as 

 2 2
2

(1 )
[ (1 )] (1 )

σ
σ σ σ α Mα λ p α p

r
−

+ + − ≥
�

� �  and 

 2 2
2

(1 )(1 ) ,
σ

σ σ σ α Mα p α p
r

−
+ − ≤

�
� �  

consuming bundle 2 2 2( , )M p r r≡ −b � �  is the optimal choice. 

Proof. It has to be shown that when consuming bundle b, neither shifting re-
sources from the consumption of good 1 in favor of good 2 nor in the opposite 
direction can improve the agent’s utility for 2p�  inside the interval defined by 
(a.40). For this purpose, let us calculate the utility that the agent gets from con-
suming 2 2 2( ( ), ),M p r δ r δ− + +� �  δ > 0. Since 2 2 1 2 2 ,p r M r p r< < +�� �  consuming 
x2 = r2 means that x1 < r1. Therefore,  1 1 1 1 1( | ) ( )ρ ρn x r λ αx αr= −  and n2(x2 | r2) = 0; 
thus, the utility is given by 

(a.41) 
2 2 2 1 2

2 2 2 2 2

( ( ), | , )

(1 )( ( )) (1 )( ) ( ( )) .ρ ρ ρ

u M p r δ r δ r r

α λ M p r δ α r δ λα M p r δ

− + +

= + − + + − + − − +

� �
� �� �
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Furthermore, we will need the change in this utility when δ is marginally in-
creased: 

(a.42) 

2 2 2 1 2

1 1
2 2 2 2

d ( ( ), | , )
d

(1 ) ( ( )) (1 ) ( ) .ρ ρ

u M p r δ r δ r r
δ

α λ p ρ M p r δ α ρ r δ− −

− + +

= − + − + + − +

� �

�� �
 

For the bundle 2 2 2( ( ), )M p r δ r δ− + +� �  to be optimal, increasing δ must not pay 
off, i.e. this derivative has to be non-positive: 

(a.43) 1 1
2 2 2 2(1 ) ( ( )) (1 ) ( ) 0.ρ ρα λ p ρ M p r δ α ρ r δ− −− + − + + − + ≤�� �  

This inequality can be reduced by the factor ρ, and in the special case of bun-
dle b, δ equals zero, so that the condition simplifies to 

(a.44) 11
2 2 2 2(1 ) ( ) (1 ) 0.ρρα λ p M p r α r −−− + − + − ≤�� �  

This inequality is the same as (a.22), with the factor −α replaced by −α (1 + λ). 
Therefore, the rearrangements can be carried out analogously to the proof of 
Proposition 1 and finally give rise to 

(a.45) 2 2
2

(1 )[ (1 )] (1 ) .
σ

σ σ σ α Mα λ p α p
r

−
+ + − ≥

�
� �  

Hence, for 2p�  above this threshold, utility cannot be increased by shifting con-
sumption from good 1 in favor of good 2, starting from 2 2 2( , ).M p r r≡ −b � �  

In the next step, it has to be proven that when consuming bundle b, utility 
cannot be increased by shifting consumption in the opposite direction, i.e. from 
good 2 towards good 1, either. For this purpose, let us calculate the utility that 
the agent gets from consuming 2 2 2( ( ), ),M p r δ r δ− − −� �  δ > 0. Since now, x2 < r2 
and, for sufficiently small δ, x1 < r1, gain–loss utility is 1 1 1 1 1( | ) ( )ρ ρn x r λ αx αr= −  
and 2 2 2 2 2( | ) ((1 ) (1 ) );ρ ρn x r λ α x α r= − − −  thus, total utility is given by 

(a.46) 
2 2 2 1 2

2 2 2 1 2

( ( ), | , )

(1 ) ( ( )) (1 )(1 )( ) (1 ) .ρ ρ σ σ

u M p r δ r δ r r

λ α M p r δ λ α r δ λαr λ α r

− − − =

+ − − + + − − − − −

� �
� �

 

Furthermore, we will need the change in this utility when δ is marginally in-
creased: 

(a.47) 

2 2 2 1 2

1 1
2 2 2 2

d ( ( ), | , )
d

(1 ) ( ( )) (1 )(1 ) ( ) .ρ ρ

u M p r δ r δ r r
δ

λ α p ρ M p r δ λ α ρ r δ− −

− − −

= + − − − + − −

� �

�� �
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For the bundle 2 2 2( ( ), )M p r δ r δ− − −� �  to be optimal, increasing δ must not pay 
off, i.e. this derivative has to be non-positive: 

(a.48) 1 1
2 2 2 2(1 ) ( ( )) (1 )(1 ) ( ) 0.ρ ρλ α p ρ M p r δ λ α ρ r δ− −+ − − − + − − ≤�� �  

This inequality can be reduced by the factors 1 + λ and ρ, and in the special case 
of bundle b, δ equals zero, so that the condition simplifies to 

(a.49) 11
2 2 2 2( ) (1 ) .ρρα p M p r α r −−− ≤ −�� �  

This inequality is the same as condition (a.22), with the inequality in the oppo-
site direction. Thus, it gives rise to a reversed version of (a.23): 

(a.50) 2 2
2

(1 )(1 ) .
σ

σ σ σ α Mα p α p
r

−
+ − ≤

�
� �  

Hence, for 2p�  below this threshold, utility cannot be increased by shifting con-
sumption from good 2 in favor of good 1, starting from 2 2 2( , ).M p r r≡ −b � �  

Combining conditions (a.45) and (a.50) delivers the interval of 2p�  for which 
it pays off neither to shift consumption from good 1 towards good 2 nor the op-
posite direction, starting from bundle b. This is the interval for which bundle b 
is optimal, as asserted in Claim 4. 

Proposition 2 

Arguments common to the proofs of all >ve claims 

In formula (5.15) the value *
1 2( , )M α α�  was defined by 

 2 2*
1 2 1

1 1
( , ) 1

ρ

ρ
α r

M α α r
α r

⎛ ⎞
≡ +⎜ ⎟⎜ ⎟

⎝ ⎠
�  

We have on branch i that α1 = α and α2 = 1 − α. I will denote the value 
*( , 1 )M α α−�  by *:M� i  

(a.51) 2* *
1

1

(1 )
( , 1 ) 1

ρ

ρ
α r

M M α α r
αr

⎛ ⎞−
≡ − ≡ +⎜ ⎟⎜ ⎟

⎝ ⎠
� �

i  

On branch iv it holds that α1 = (1 + λ) α and α2 = (1 + λ) (1 − α). Since *M ≡�
iv  

* *((1 ) , (1 )(1 )) ( ,1 ),M λ α λ α M α α+ + − = −� � *M� i  and *M� iv  are identical. There-
fore, *M� i  separates two situations: 

1 If *,M M>� �
i  their exists a non-empty interval of prices 2p�  for which 

of both goods more than their reference levels is consumed. That is, 
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if *,M M>� �
i  the agent attains for suitable 2p�  an interior solution on 

branch i. At the same time, an income *M M>� �
i  has the consequence that 

the interval of prices 2p�  for which an interior solution on branch iv 
could be attained is empty. 

2 Vice versa, if *,M M≤� �
i  the interval of prices 2p�  for which an interior solu-

tion on branch i is attained is empty. At the same time, if *,M M≤� �
i  the in-

terval of prices 2p�  for which an interior solution on branch iv is attained 
is non-empty. 

In analogy to this calculation for the branches i and iv, one can determine 
the values of *M�  for the branches ii and iii. In the case of the branches ii and 
iii, comparing M�  and *M�  tells us something different, however, than it does 
in the case of branches i and iv: Here, it is not the emptiness of the branches 
that is checked. Rather, the question is answered which of the two bundles a 
or b is consumed at the upper bound of branch ii and at the lower bound of 
branch iii (see my elaboration on p. 49). 

Branch ii does not impose a lower bound on 2p�  but only an upper bound, 
see condition (5.29). Recall the definition of the values *

2 1 2( , , )p α α M��  and 
*
2 1 2( , , )p α α M��  from Section  5.1.2. On branch ii, α1 = (1 + λ) α and α2 = 1 − α, 

so that the upper bound of branch ii, provided that 1,M r>�  is given by 

* **
2 2min{ ((1 ) , 1 , ), ((1 ) , 1 , )}.p λ α α M p λ α α M+ − + −� �� �  

Let *M� ii  denote the value of M�  at which *
2((1 ) , 1 , )p λ α α M+ − ��  and 

**
2 ((1 ) , 1 , )p λ α α M+ − ��  coincide. Then the following relations hold: 

• If * ,M M<� �
ii  then , **

22 ((1 ) , 1 , ),ubp p λ α α M= + − �� �ii  so that at ,
2 ,ubp� ii  x2 = r2 and 

x1 < r1 are consumed (bundle b). 
• If * ,M M=� �

ii  then *
2((1 ) , 1 , )p λ α α M+ − ��  and **

2 ((1 ) , 1 , )p λ α α M+ − ��  coincide, 
and it holds that ,

2 2 1 2 1 2lim ( , ) ( , ).ubp p x x r r=/� � ii  
• If * ,M M>� �

ii  then , *
2 2((1 ) , 1 , ),ubp p λ α α M= + − �� �ii  so that ,

2 2 1 1lim ubp p x r=/� � ii  and 
,

2 2 2 2lim ubp p x r>/� � ii  (bundle a). 

*M� ii  is given by 

(a.52) 2* *
1

1

(1 )
((1 ) , 1 ) 1 .

(1 )

ρ

ρ
α r

M M λ α α r
λ αr

⎛ ⎞−
≡ + − = +⎜ ⎟⎜ ⎟+⎝ ⎠

� �
ii  

Being at an interior solution on branch iii does not impose an upper bound 
on 2p�  but only a lower bound, see condition (5.30). On branch iii, α1 = α and 
α2 = (1 + λ) (1 − α), so that this lower bound, provided that 1,M r>�  is given by 

* **
2 2max{ ( , (1 )(1 ), ), ( , (1 )(1 ), )}.p α λ α M p α λ α M+ − + −� �� �  
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Let *M� iii  denote the value of M�  at which *
2( , (1 )(1 ), )p α λ α M+ − ��  and 

**
2 ( , (1 )(1 ), )p α λ α M+ − ��  coincide. Then the following relations hold:  

• If * ,M M<� �
iii  then , *

22 ( , (1 )(1 ), ),lbp p α λ α M= + − �� �iii  so that at ,
2 ,lbp� iii  x1 = r1 and 

x2 < r2 are consumed (bundle a). 
• If * ,M M=� �

iii  then *
2( , (1 )(1 ), )p α λ α M+ − ��  and **

2 ( , (1 )(1 ), )p α λ α M+ − ��  coincide 
and it holds that ,

2 2 1 2 1 2lim ( , ) ( , ).lbp p x x r r=2� � iii  
• If * ,M M>� �

iii  then , **
22 ( , (1 )(1 ), ),lbp p α λ α M= + − �� �iii  so that ,

2 2 2 2lim lbp p x r=2� � iii  
and ,

2 2 1 1lim lbp p x r>2� � iii  (bundle b). 

*M� iii  is given by 

(a.53) 2* *
1

1

(1 )(1 )
( ,(1 )(1 )) 1 .

ρ

ρ
λ α r

M M α λ α r
αr

⎛ ⎞+ −
≡ + − = +⎜ ⎟⎜ ⎟

⎝ ⎠
� �

iii  

Since λ > 0, the four values r1, *,M� i
* ,M� ii  and *M� iii  can be ordered as follows: 

(a.54) * * *
1 .r M M M< < <� � �

ii i iii  

Claim 1 

If 1M r≤�  (“case a”), then the agent chooses sequentially the branches/bundles ii 
– b – iv in the course of increasing 2p�  continuously on the interval (0, ∞). This 
translates to the following demand function: 

(a.55) 

2

2 2 2
2

2 2
2

2 2 2

2 2
2

2 2 2
2

( , )

(1 )( , ) if  [(1 ) ] (1 )

(1 )if  [(1 ) ] (1 )
(( ), )

(1 )and  (1 )

(1 )( , ) if  (1 )

σ
σ σ σ

σ
σ σ σ

σ
σ σ σ

σ
σ σ σ

p M

α Mp M λ α p α p r

α Mλ α p α p r
M p r r

α Mα p α p r

α Mp M α p α p r

=

⎧ −
+ + − ≤⎪

⎪
⎪ −⎪ + + − >
⎪ −⎨ −⎪ + − ≤
⎪
⎪

−⎪ + − >⎪⎩

x

x

x

��

��� � �

�
� �

� � �
� �

��� � �

a

ii

iv

;  

Proof. In case a, only branches ii and iv are feasible. Branch ii imposes an upper 
bound on 2p�  only—in case a, the second part of condition (5.29)—while 
branch iv imposes a lower bound—in case a, the second part of condition 
(5.30). As has been shown above (in this appendix), none of the intervals inside 
which interior solutions are attained overlap. The gap between the intervals of 
branches ii and iv is equal to condition (5.43), under which it is optimal to con-
sume bundle b according to Proposition 1. 
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Claim 2 

If *
1r M M< ≤� �

ii  (“case b”), then the agent chooses sequentially the branches/
bundles ii – b – iv – a – iii in the course of increasing 2p�  continuously on the 
interval (0, ∞). This translates to the following demand function: 

(a.56) 

2

2 2 2
2

2 2
2

2 2 2

2 2
2

2 2
2

2

2

( , )

(1 )( , ) if  [(1 ) ] (1 )

(1 )if  [(1 ) ] (1 )
( , )

(1 )and  (1 )

(1 )if  (1 )
( , )

(1 )and  

σ
σ σ σ

σ
σ σ σ

σ
σ σ σ

σ
σ σ σ

σ

p M

α Mp M λ α p α p r

α Mλ α p α p r
r M p r

α Mα p α p r

α Mα p α p r
p M

αp

=

−
+ + − ≤

−
+ + − >

−
−

+ − ≤

−
+ − >

−
<

x

x

x

��

��� � �

�
� �

� � �
� �

�
� �

��
�

b

ii

iv
1/( 1)

1
1/( 1) 1/( 1)

1 1 2 2
1 1

1/( 1)

2 2
1

/

[(1 )(1 )](1 )( , ( )/ ) if  
/ /

[(1 )(1 )]
( , ) if  

/

σ

σ σ

σ σσσ

σ σ σ σ

σσ

σ σ

α M r α

λ ααr M r p p
α M r α α M r α

λ α
p M p

α M r α

−

− −

−

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪ ⎛ ⎞
⎪ ⎜ ⎟

−⎪ ⎝ ⎠
⎪

⎛ ⎞ ⎛ ⎞⎪ + −−
− ≤ <⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟ ⎜ ⎟− −⎪ ⎝ ⎠ ⎝ ⎠

⎪
⎛ ⎞⎪ + −

≥ ⎜ ⎟⎪ ⎜ ⎟−⎪ ⎝ ⎠⎩
x

�

� � �
� �

�� �
�

iii

;  

Proof. In case b, branches ii and iii are feasible, and i and iv are potentially fea-
sible. Since * *,M M M≤ <� � �

ii i an interior solution on branch i is excluded, but will 
be attained on branch iv. 

The three feasible bundles will be chosen in the sequence ii – iv – iii. This 
is due to the fact that the intervals inside which interior solutions are attained 
do not overlap, as has been proven above (in this appendix). Given that the 
intervals do not overlap, the conditions for being at an interior solution on 
the respective branch allow only for the sequence ii – iv – iii: Branch ii only 
imposes an upper bound on 2p� —in case c, the second part of condition (5.29)

—while branch iv imposes an upper as well as a lower bound—condition (5.31)

—and branch iii imposes only a lower bound—in case b, the first part of condi-
tion (5.30). 

It now has to be shown that condition (5.43) describes exactly the gap be-
tween the intervals for which interior solutions on the branches ii and iv are 
attained and that (5.42) describes exactly the gap between the intervals for 
which interior solutions on the branches iv and iii are attained. 

As far as the gap between branches ii and iv is concerned, it is obvious 
that the upper bound on 2p�  allowing for an interior solution on branch ii, 
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**
2 ( , (1 )(1 ), ),p α λ α M+ − ��  is the same as the lower bound above which bundle b 

is optimal. It is equally obvious that the upper bound of the interval inside 
which b is optimal, **

2 ( , 1 , ),p α α M− ��  is also the lower bound of branch iv. 
It remains to be shown that inside the interval **

2[ ((1 ) , 1 , ),p λ α α M+ − ��
**
2 ( , 1 , )],p α α M− ��  the requirements 2 2p r M< ��  and 1 2 2M r p r< +� �  are both fulfilled 

so that the entire condition (5.43) holds. The first one, 2 2 ,p r M< ��  is indeed 
fulfilled, because at the highest eligible 2 ,p�  i.e. at **

2 2 ( , 1 , ),p p α α M= − �� �  it holds 
that 

2 2
2

2 2 2 2

2 2
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(1 )
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σ
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σ

σ

α Mα p α p
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αp r M p r
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⇒ <

�
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The second one, 1 2 2 ,M r p r< +� �  holds as well, since the lowest eligible 2 ,p�  i.e. 
**

2 2 ((1 ) , 1 , ),p p λ α α M= + − �� �  is simultaneously the upper bound of the interior 
solution on branch ii. At that 2 ,p�  by the construction of condition (5.29), x2 = r2 
and 1 1.x r<  Since 1 2 2 ,x M p r= −� �  we get that 2 2 1 1 2 2.M p r r M r p r− < ⇔ < +� �� �  

Turning to the gap between branches iv and iii, it can be stated that it is ob-
vious that the upper bound on 2p�  allowing for an interior solution on branch iv, 

*
2( , 1 , ),p α α M− ��  is the same as the lower bound above which bundle a is optimal 

according to (5.42). It is equally obvious that the upper bound of the interval 
inside which a is optimal, *

2( , (1 )(1 ), ),p α λ α M+ − ��  is also the lower bound of 
branch iii. 

It remains to be shown that inside the interval *
2[ ( , 1 , ),p α α M− ��

*
2( , (1 )(1 ), )],p α λ α M+ − ��  the requirement 1 2 2M r p r< +� �  is fulfilled so that the en-

tire condition (5.42) holds. This is indeed the case, because the lowest eligible 

2 ,p�  i.e. *
2 2( , 1 , ),p p α α M= − �� �  is simultaneously the upper bound of the interior 

solution on branch iv. At that 2 ,p�  by the construction of condition (5.31), x1 = r1 
and x2 < r2. Since 2 1 2( )/ ,x M r p= −� �  we get that 1 2 2( )/M r p r− <� � ⇔ 1 2 2.M r p r< +� �  
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Claim 3 

If * *M M M< ≤� � �
ii i  (“case c”), then the agent chooses sequentially the branches/

bundles ii – a – b – iv – a – iii in the course of increasing 2p�  continuously on 
the interval (0, ∞). This translates to the demand function 

(a.57) 
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Proof. In case c, branches ii and iii are feasible, and i and iv are potentially fea-
sible. Since *,M M≤� �

i an interior solution on branch i is excluded, but it will be 
attained on branch iv. 

The three feasible bundles will be chosen in the sequence ii – iv – iii. This 
is due to the fact that the intervals inside which interior solutions are attained 
do not overlap, as has been proven above (in this appendix). Given that the 
intervals do not overlap, the conditions for being at an interior solution on 
the respective branch allow only for the sequence ii – iv – iii: Branch ii only 
imposes an upper bound on 2p� —in case c, the first part of condition (5.29)—
while branch iv imposes an upper as well as a lower bound—condition (5.31)—
and branch iii imposes only a lower bound—in case c, the first part of condi-
tion (5.30). 

Now, two things have to be shown: 
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1 that the combination of conditions (5.40) and (5.43) describes exactly 
the gap between the intervals on which interior solutions on the 
branches ii and iv are attained; 

2 that condition (5.42) describes exactly the gap between the intervals on 
which interior solutions on the branches iv and iii are attained. 

As far as the gap between branches ii and iv is concerned, it is obvious 
that the upper bound on 2p�  allowing for an interior solution on branch ii, 

*
2((1 ) , 1 , ),p λ α α M+ − ��  is the same as the lower bound of the interval in which 

bundle a is optimal. It is equally obvious that the upper bound of the interval 
inside which a is optimal, **

2 ( , 1 , ),p α α M− ��  is also the lower bound of branch iv. 
It remains to be shown that the interval *

2[ ((1 ) , 1 , ),p λ α α M+ − ��
**
2 ( , 1 , )]p α α M− ��  includes the value 2p�  at which 1 2 2.M r p r= +� � This is indeed 

the case, because *
2((1 ) , 1 , )p λ α α M+ − ��  is simultaneously the upper bound on 

the existence of an interior solution on branch ii. At that 2 ,p�  by the construction 
of condition (5.29), x1 = r1 and x2 > r2. Since 2 1 2( )/ ,x M r p= −� �  we get that 

1 2 2 1 2 2( )/M r p r M r p r− > ⇔ > +� �� �  at *
2((1 ) , 1 , ).p λ α α M+ − ��  The largest eligible 2 ,p�  

**
2 ( , 1 , ),p α α M− ��  is simultaneously the lower bound of branch iv. At that 2 ,p�  by 

the construction of condition (5.31), x2 = r2 and x1 < r1. Since 1 2 2 ,x M p r= −� �  we 
get that 2 2 1 1 2 2M p r r M r p r− < ⇔ < +� �� �  at **

2 ( , 1 , ).p α α M− ��  Hence, the interval 
*
2[ ((1 ) , 1 , ),p λ α α M+ − �� **

2 ( , 1 , )]p α α M− ��  includes the value 2p�  at which 

1 2 2.M r p r= +� �  The segment *
2[ ((1 ) , 1 , ),p λ α α M+ − �� 1 2( )/ ]M r r−�  is contained 

in condition (5.40), hence for that segment consuming bundle a is optimal; 
the segment 1 2[( )/ ,M r r−� **

2 ( , 1 , )]p α α M− ��  is contained in condition (5.43), hence 
for this segment consuming bundle b is optimal. 

Turning to the gap between branches iv and iii, it becomes obvious that in 
case c, the conditions that have to fulfilled are the very same as in the gap be-
tween branches iv and iii in case b. Therefore, the proof that in this gap con-
suming bundle a is optimal is the same as in the proof of Claim 2. 
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Claim 4 

If * *M M M< ≤� � �
i iii  (“case d”), then the agent chooses sequentially the branches/

bundles ii – a – i – b – a – iii in the course of increasing 2p�  continuously on 
the interval (0, ∞). This translates to the demand function 

(a.58) 
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Proof. In case d, branches ii and iii are feasible, and i and iv are potentially fea-
sible. Since *,M M>� �

i  an interior solution on branch iv is excluded, but it will be 
attained on branch i. 

The three feasible bundles will be chosen in the sequence ii – i – iii. This 
is due to the fact that the intervals inside which interior solutions are attained 
do not overlap, as has been proven above (in this appendix). Given that the 
intervals do not overlap, the conditions for being at an interior solution on 
the respective branch allow only for the sequence ii – i – iii: Branch ii only im-
poses an upper bound on 2p� —in case d, the first part of condition (5.29)—
while branch i imposes an upper as well as a lower bound—condition (5.28)—
and branch iii imposes only a lower bound—in case d, the first part of condi-
tion (5.30). 

Now, two things have to be shown: 
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1 that condition (5.40) describes exactly the gap between the intervals on 
which interior solutions on the branches ii and i are attained; 

2 that the combination of conditions (5.41) and (5.42) describes exactly 
the gap between the intervals on which interior solutions on the 
branches i and iii are attained. 

As far as the gap between branches ii and i is concerned, it is obvious 
that the upper bound on 2p�  allowing for an interior solution on branch ii, 

*
2((1 ) , 1 , ),p λ α α M+ − ��  is the same as the lower bound of the interval in which 

bundle a is optimal. It is equally obvious that the upper bound of the interval 
inside which a is optimal, *

2( , 1 , ),p α α M− ��  is also the lower bound of branch i. 
It remains to be shown that for all 2p�  in *

2[ ((1 ) , 1 , ),p λ α α M+ − ��
*
2( , 1 , )],p α α M− ��  it holds that 1 2 2 ,M r p r≥ +� �  so that the entire condition (5.40) 

is fulfilled. This is indeed the case, because *
2((1 ) , 1 , )p λ α α M+ − ��  is simultane-

ously the upper bound on the existence of an interior solution on branch ii. 
At that 2 ,p�  by the construction of condition (5.29), x1 = r1 and x2 > r2. Since 

2 1 2( )/ ,x M r p= −� �  we get that 1 2 2 1 2 2( )/M r p r M r p r− > ⇔ > +� �� �  at 
*
2((1 ) , 1 , ).p λ α α M+ − ��  The largest eligible 2 ,p� *

2( , 1 , ),p α α M− ��  is simultaneously 
the lower bound of branch i. At that 2 ,p�  by the construction of condition (5.28), 
x1 = r1 and x2 > r2. Since 2 1 2( )/ ,x M r p= −� �  we get that 1 2 2( )/M r p r− >� � ⇔

1 2 2M r p r> +� �  at *
2( , 1 , ).p α α M− ��  Hence, throughout the interval 

*
2[ ((1 ) , 1 , ),p λ α α M+ − �� *

2( , 1 , )],p α α M− �� it holds that 1 2 2.M r p r> +� �
 

Turning to the gap between branches i and iii, it is obvious that the upper 
bound on 2p�  allowing for an interior solution on branch i, **

2 ( , 1 , ),p α α M− ��  is 
the same as the lower bound of the interval in which bundle b is optimal. It is 
equally obvious that the upper bound of the interval inside which a is optimal, 

*
2( , (1 )(1 ), ),p α λ α M+ − ��  is also the lower bound of branch iii. 

It remains to be shown that the interval **
2[ ( , 1 , ),p α α M− ��

*
2( , (1 )(1 ), )]p α λ α M+ − ��  includes the value 2p�  at which 1 2 2.M r p r= +� � This is in-

deed the case, because **
2 ( , 1 , )p α α M− ��  is simultaneously the upper bound on 

the existence of an interior solution on branch i. At that 2 ,p�  by the construction 
of condition (5.28), x2 = r2 and x1 ≥ r1. Since 1 2 2 ,x M p r= −� � we get that 

2 2 1M p r r− ≥� � ⇔ 1 2 2M r p r≥ +� �  at **
2 ( , 1 , ),p α α M− ��  the lowest eligible 2 .p�  The 

largest eligible 2 ,p� *
2( , (1 )(1 ), ),p α λ α M+ − ��  is simultaneously the lower bound 

of branch iii. At that 2 ,p�  by the construction of condition (5.30), x1 = r1 and 
x2 < r2. Since 2 1 2( )/ ,x M r p= −� �  we get that 1 2 2( )/M r p r− <� � ⇔ 1 2 2M r p r< +� �  
at *

2( , (1 )(1 ), ).p α λ α M+ − ��  Hence, the interval **
2[ ( , 1 , ),p α α M− ��

*
2( , (1 )(1 ), )]p α λ α M+ − ��  includes the value 2p�  at which 1 2 2.M r p r= +� � The seg-

ment **
2[ ( , 1 , ),p α α M− �� 1 2( )/ ]M r r−�  is contained in condition (5.41), hence 

for that segment consuming bundle b is optimal; the segment 1 2[( )/ ,M r r−�
*
2( , (1 )(1 ), )]p α λ α M+ − ��  is contained in condition (5.42), hence for this segment 

consuming bundle a is optimal. 
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Claim 5 

If *M M<� �
iii  (“case e”), then the agent chooses sequentially the branches/bundles 

ii – a – i – b – iii in the course of increasing 2p�  continuously on the interval 
(0, ∞). This translates to the following demand function: 

(a.59) 
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Proof. In case e, branches ii and iii are feasible, and i and iv are potentially fea-
sible. Since * *,M M M> >� � �

iii i  an interior solution on branch iv is excluded, but it 
will be attained on branch i. 

The three feasible bundles will be chosen in the sequence ii – i – iii. This 
is due to the fact that the intervals inside which interior solutions are attained 
do not overlap, as has been proven above (in this appendix). Given that the 
intervals do not overlap, the conditions for being at an interior solution on 
the respective branch allow only for the sequence ii – i – iii: Branch ii only im-
poses an upper bound on 2p� —in case e, the first part of condition (5.29)—while 
branch i imposes an upper as well as a lower bound—condition (5.28)—and 
branch iii imposes only a lower bound—in case e, the second part of condi-
tion (5.30). 

It now has to be shown that condition (5.40) describes exactly the gap be-
tween the intervals for which interior solutions on the branches ii and i are at-
tained and that (5.41) describes exactly the gap between the intervals for which 
interior solutions on the branches i and iii are attained. 

As far as the gap between branches ii and i is concerned, it becomes obvious 
that in case e, the conditions that have to fulfilled are the very same as in the 
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gap between branches ii and i in case d. Therefore, the proof that in this gap 
consuming bundle a is optimal is the same as in the proof of Claim 4. 

Turning to the gap between branches i and iii, it can be stated that it is ob-
vious that the upper bound on 2p�  allowing for an interior solution on branch i, 

**
2 ( , 1 , ),p α α M− ��  is the same as the lower bound of the interval inside which 

bundle b is optimal according to (5.41). It is equally obvious that the upper 
bound of the interval inside which b is optimal, **

2 ( , (1 )(1 ), ),p α λ α M+ − ��  is also 
the lower bound of branch iii. 

It remains to be shown that inside the interval **
2[ ( , 1 , ),p α α M− ��

**
2 ( , (1 )(1 ), )],p α λ α M+ − ��  the requirement 1 2 2M r p r≥ +� �  is fulfilled so that the en-

tire condition (5.41) holds. This is indeed the case, because the highest eligible 

2 ,p�  i.e. **
2 2 ( , (1 )(1 ), ),p p α λ α M= + − �� �  is simultaneously the lower bound of the in-

terior solution on branch iii. At that 2 ,p�  by the construction of condition (5.30), 
x2 = r2 and x1 ≥ r1. Since 1 2 2 ,x M p r= −� �  we get that 2 2 1M p r r− ≥� � ⇔ 1 2 2.M r p r≥ +� �  

Proposition 3 

 

The demand functions for good 1 and for good 2 are continuous in 2p�  and 
in .M�  

Proof. The five cases a–e introduced in Section  5.2.6 define demand functions 
for all non-negative values of 2p�  and .M�  Furthermore, in the framework of each 
case, a unique branch or bundle is assigned to each non-negative price–income 
combination 2( , ).p M��  Therefore, the demand function combined over all cases 
a–e covers the entire non-negative quadrant of the real plane with axes 2p�  
and .M�  

Under these circumstances, proving that the demand functions for good 1 
and good 2 are continuous in 2p�  as well as in M�  can be done in two steps: 

1 For every case a–e, it must be shown that the demand functions are con-
tinuous in 2( , ).p M��  

2 Afterwards, it has to be proven that when switching from one case to 
the next, i.e. when M�  equals * * *

1, , ,  or ,r M M M� � �
ii i iii  no discontinuities arise. 

Step 1: Using the proofs of the five claims of Proposition 2, it can be shown 
that the demand functions of goods 1 and 2 are indeed continuous in 2( , ):p M��  

• In case a, the branches/bundles chosen are, ordered by increasing 2,p�  
ii – b – iv. It has been shown in the first subsection (“Arguments common 
to the proofs of all >ve claims”) of the proof of Proposition 2 that in case a 
at the upper bound of branch ii and at the lower bound of branch iv, bun-
dle b is consumed. This is equal to the bundle consumed in the gap between 



 a-26 

branches ii and iv. 
Therefore, the demand for both goods is continuous in 2p�  and .M�  

• In case b, the branches/bundles chosen are, ordered by increasing 2,p�  
ii – b – iv – a – iii. It has been shown in the first subsection of the proof of 
Proposition 2 that in case b at the upper bound of branch ii and at the lower 
bound of branch iv, bundle b is consumed. This is equal to the bundle con-
sumed in the gap between branches ii and iv. 
In case b at the upper bound of branch iv and at the lower bound of 
branch iii, bundle a is consumed. This is equal to the bundle consumed in 
the gap between branches iv and iii. 
Therefore, the demand for both goods is continuous in 2p�  and .M�  

• In case c, the branches/bundles chosen are, ordered by increasing 2,p�  
ii – a – b – iv – a – iii. It has been shown in the first subsection of the proof 
of Proposition 2 that in case c at the upper bound of branch ii, bundle a 
is consumed, while at the lower bound of branch iv, bundle b is consumed. 
In the proof of Claim 3 of Proposition 2 it is shown that from the upper 
bound of branch ii to 2 1 2( )/ ,p M r r= −�� bundle a is consumed. Between 

2 1 2( )/p M r r= −��  and the lower bound of branch iv, bundle b is consumed. 
Therefore, the demand functions are continuous at the upper bound 
of branch ii and at the lower bound of branch iv. At 2 1 2( )/ ,p M r r= −��  the 
bundles a and b are identical, hence the demand functions are also continu-
ous at 2 1 2( )/ .p M r r= −��  
In case c at the upper bound of branch iv and at the lower bound of 
branch iii, bundle a is consumed. This is equal to the bundle consumed in 
the gap between branches iv and iii. 
Therefore, the demand for both goods is continuous in 2p�  and .M�  

• In case d, the branches/bundles chosen are, ordered by increasing 2,p�  
ii – a – i – b – a – iii. It has been shown in the first subsection of the proof 
of Proposition 2 that in case d at the upper bound of branch ii and at the 
lower bound of branch i, bundle a is consumed. This is equal to the bundle 
consumed in the gap between branches ii and i. 
In case d at the upper bound of branch i, bundle b is consumed, while 
at the lower bound of branch iii, bundle a is consumed. In the proof of 
Claim 4 of Proposition 2 it is shown that from the upper bound of branch i 
to 2 1 2( )/ ,p M r r= −�� bundle b is consumed. Between 2 1 2( )/p M r r= −��  and the 
lower bound of branch iii, bundle a is consumed. Therefore, the demand 
functions are continuous at the upper bound of branch i and at the lower 
bound of branch iii. At 2 1 2( )/ ,p M r r= −��  the bundles b and a are identical, 
hence the demand functions are also continuous at 2 1 2( )/ .p M r r= −��  
Therefore, the demand for both goods is continuous in 2p�  and .M�  
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• In case e, the branches/bundles chosen are, ordered by increasing 2,p�  
ii – a – i – b – iii. It has been shown in the first subsection of the proof of 
Proposition 2 that in case e at the upper bound of branch ii and at the lower 
bound of branch i, bundle a is consumed. This is equal to the bundle con-
sumed in the gap between branches ii and i. 
In case e at the upper bound of branch i and at the lower bound of 
branch iii, bundle b is consumed. This is equal to the bundle consumed in 
the gap between branches i and iii. 
Therefore, the demand for both goods is continuous in 2p�  and .M�  

Thus, for each of the five cases a–e, the demand functions of both goods are 
continuously defined. 

Step 2: It remains to be shown that also when switching from one case to 
the other, no discontinuities occur. 

• Switch between cases a and b, i.e. 1:M r=�  
In case a the attained branches and bundles are ii – b – iv, while in case b 
they are ii – b – iv – a – iii. At 1M r=�  the intervals for attaining branch iii 
or bundle a in formula (a.56) are not defined. Therefore, for 1M r2�  the 
agent will be on branch ii or iv or consume bundle b. These branches and 
the bundle are those that are attained in case a. Hence, the switch from case 
a to b and vice versa occurs at a constellation for which the continuity in M�  
has already been shown above. 

• Switch between cases b and c, i.e. * :M M=� �
ii  

In case b the attained branches and bundles are ii – b – iv – a – iii, while 
in case c they are ii – a – b – iv – a – iii. At *M M=� �

ii  the two values 
*
2((1 ) , 1 , )p λ α α M+ − ��  and **

2 ((1 ) , 1 , )p λ α α M+ − ��  coincide, so that at the upper 
bound of branch ii, the bundle (r1, r2) is consumed. That is, at the upper 
bound of branch ii, it holds that 1 2 2 .r p r M+ = ��  This is the condition at which 
in case c the switch between bundles a and b occurs. Since at 1 2 2r p r M+ = ��  
the two bundles are identical, at that price–income combination 2( , )p M��  no 
discontinuity arises. For all other price–income combinations, the branches 
and the bundle attained are identical in the two cases. Hence, the switch 
from case b to c and vice versa occurs at a constellation for which the conti-
nuity in M�  has already been shown above. 

• Switch between cases c and d, i.e. *:M M=� �
i  

In case c the attained branches and bundles are ii – a – b – iv – a – iii, while 
in case d they are ii – a – i – b – a – iii. At *M M=� �

i  the conditions for being 
at an interior solution on the two branches i and iv collapse into a single 
combination 2( , )p M��  at which the bundle (r1, r2) is consumed. Therefore, at 
this combination, it holds that 1 2 2 .r p r M+ = ��  This is the condition at which 
in case d the switch between bundles a and b occurs. Since at 1 2 2r p r M+ = ��  
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the two bundles are identical, at that price–income combination 2( , )p M��  
no discontinuity arises. Furthermore, at that price–income combination, the 
only existing interior solution on branch i is attained. Hence, for *M M2� �

i  
branch i and bundle b both converge to bundle a, and the set of attained 
brunches/bundles in case d reduces to ii – a – iii. The same argumentation 
holds for case c: For *M M/� �

i  branch iv and bundle b both converge to bun-
dle a, and the set of attained brunches/bundles in case c reduces to ii – a – 
iii as well. For each case separately the continuity in M�  has already been 
shown above. Therefore, the switch from case c to d and vice versa causes 
no discontinuities. 

• Switch between cases d and d, i.e. * :M M=� �
iii  

In case d the attained branches and bundles are ii – a – i – b – a – iii. while 
in case e they are ii – a – i – b – iii. At *M M=� �

iii  the two values 
*
2( , (1 )(1 ), )p α λ α M+ − ��  and **

2 ( , (1 )(1 ), )p α λ α M+ − ��  coincide, so that at the 
lower bound of branch iii, the bundle (r1, r2) is consumed. That is, at the 
lower bound of branch iii, it holds that 1 2 2 .r p r M+ = ��  This is the condition at 
which in case d the switch between bundles b and a occurs. Since at 

1 2 2r p r M+ = ��  the two bundles are identical, at that price–income combina-
tion 2( , )p M��  no discontinuity arises. For all other price–income combina-
tions, the branches and the bundle attained are identical in the two cases. 
Hence, the switch from case d to e and vice versa occurs at a constellation 
for which the continuity in M�  has already been shown above. 

Gathering all results from step 1 and step 2, it can be concluded that the de-
mand for both goods is continuous in 2 0p >�  and 0.M ≥�  
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