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Abstract

Evidence from behavioral experiments suggests that intertemporal preferences reflect

hyperbolic rather than exponential discounting. This paper shows that consumers tend

to have a lower elasticity of intertemporal substitution under hyperbolic discount-

ing. Furthermore, in contrast to the standard case of exponential discounting with

iso-elastic utility, the elasticity of intertemporal substitution for hyperbolic consumers

depends on the duration of the change in the intertemporal relative price. In partic-

ular, lasting changes in the real interest rate are likely to generate a smaller degree

of intertemporal substitution in consumption than temporary changes. For plausible

parameter values, the extent of intertemporal substitution is about 20% smaller for a

permanent change than for a temporary change, so the effect is economically signifi-

cant.
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1 Introduction

Temptations are often irresistible. This inclination for immediate gratification reflects a

bias in intertemporal preferences towards present rewards. Behavioral evidence indicates

that intertemporal discount rates decline with the delay in rewards and are well-described

by a hyperbolic discount function. This paper builds on the seminal contributions by Laib-

son (1996, 1997) and shows that hyperbolic discounting fundamentally affects intertem-

poral substitution. In contrast to the familiar result under exponential discounting with

iso-elastic utility, the elasticity of intertemporal substitution for hyperbolic consumers de-

pends on the duration of the change in the intertemporal relative price. This holds for

both sophisticated consumers, who realize that they have dynamically inconsistent pref-

erences and rationally anticipate their future behavior, and naive consumers, who do not

foresee their future self-control problems and corresponding present bias. The result that

the elasticity of intertemporal substitution is sensitive to the duration of the intertemporal

price change is a novel theoretical finding that has important implications for the effects of

macroeconomic policy.

Intuitively, the intertemporal substitution of consumption depends on the difference be-

tween the real interest rate and the (effective) discount rate. With hyperbolic discounting

the discount rate declines as the time horizon increases and the effective discount rate is

a consumption-weighted average of the high short-run and the low long-run discount rate.

For a short change in the interest rate, future intertemporal trade-offs are not affected so the

effective discount rate remains constant. But a lasting interest rate change generally influ-

ences the effective discount rate, which alters the effect of the interest rate on intertemporal

substitution. In particular, when the income effect dominates the substitution effect of a

permanent increase in the real interest rate, the consumption rate rises, which increases the

effective discount rate towards the higher, short-run discount rate. This partially offsets the

increase in the real interest rate and diminishes the degree of intertemporal substitution.

The theoretical literature has identified several ways in which hyperbolic and expo-

nential consumers differ. Laibson (1998) provides a useful overview. One interesting

distinction is that hyperbolic discounting helps to explain the empirical anomaly that the

elasticity of intertemporal substitution is less than the inverse of the coefficient of relative

risk aversion. This was first shown by Laibson (1996) for a permanent change in the real

interest rate with sophisticated consumers in discrete time. The present paper establishes

that hyperbolic discounting has a more profound effect on intertemporal substitution. In

contrast to exponential discounting with iso-elastic utility, where the length of the change in

the real interest rate is immaterial, the elasticity of intertemporal substitution under hyper-

bolic discounting depends on the duration of the intertemporal price change. For plausible

levels of risk aversion, the elasticity of intertemporal substitution is smaller for more per-
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sistent changes. This result also applies to naive consumers, to exponential utility and to

continuous time.

Another interesting new finding of this paper is the possibility of negative elasticity

values for naive hyperbolic consumers with a low degree of self control. Together with the

importance of persistence for intertemporal substitution, this provides a potential explana-

tion for the wide range of estimates of the elasticity of intertemporal substitution in the

empirical literature.

These effects of hyperbolic discounting already hold for the standard infinite-horizon

model with one liquid asset and no financial market imperfections, for which the consump-

tion behavior of hyperbolic and exponential agents is otherwise indistinguishable. The

(quasi-) hyperbolic discrete-time model with sophisticated hyperbolic consumers with iso-

elastic utility and a time-varying interest rate is presented in section 2. The main result

of the paper, namely that the elasticity of intertemporal substitution under hyperbolic dis-

counting is likely to be smaller than under exponential discounting and decreasing in the

duration of the change in the interest rate, is established in section 3. Subsequently, section

4 shows that this result is robust: It also holds for naive consumers and for exponential util-

ity. It is also relevant for more realistic ‘buffer-stock’ models and it applies to continuous

time. The empirical and policy implications are addressed in the concluding section 5.

2 Hyperbolic Discounting

Intertemporal discounting has been studied extensively in psychology. Experiments re-

garding human (and animal) behavior show that the rate of time preference depends on the

time intervalτ between the moment of choice and the actual events (e.g. Ainslie 1992).

Imminent outcomes are discounted at a higher rate than payoffs in the distant future. This

can be described by the generalized hyperbolic discount functionφh(τ) = (1 + ατ)−γ/α

(Loewenstein and Prelec 1992). The corresponding discount rateγ/ (1 + ατ) decreases in

the delayτ , which is consistent with behavioral data (e.g. Thaler 1981, Benzion, Rapoport

and Yagil 1989).

Hyperbolic discounting gives rise to time-variant intertemporal preferences that feature

a systematic bias towards immediate gratification.1 Intertemporal choices in the distant

future are evaluated at a lower discount rate than immediate choices, which gives rise to

dynamic inconsistency. Since the currently optimal plan may no longer be optimal in the

future, it is useful to model an individual as distinct ‘temporal selves’ who are each in

control for one period. Generally, the optimal decision for the current self depends on the

anticipated behavior of future selves. A ‘sophisticated’ person has rational expectations of

1For a useful introduction to such time-variant preferences, see Rabin (1998, Section 4.D).
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future behavior, whereas a ‘naive’ person wrongly believes that future selves will act in the

interest of the current self (Strotz 1956, Pollak 1968).

Laibson (1996) analyzes a standard consumption model with a ‘quasi-hyperbolic’ dis-

count function that was first used by Phelps and Pollak (1968)

to model imperfect intergenerational altruism and that mimics the hyperbolic shape

of behavioral discount functions. In particular, it is assumed that each temporal selft

maximizes life-time utility

Ut = u (Ct) + β

∞∑
i=1

δiu (Ct+i) (1)

whereu (C) is the instantaneous utility from consumptionC; β is the degree of self-control

which reduces the ‘present bias’ in intertemporal preferences (0 < β ≤ 1);2 andδ is the

intertemporal discount factor (0 < δ < 1). Note that the quasi-hyperbolic specification

conveniently nests exponential discounting as the special case in which the present bias

parameterβ = 1.

For analytical convenience utility is assumed to be iso-elastic with constant relative risk

aversion (CRRA):

u (C) =
C1−ρ − 1

1− ρ
(2)

whereρ is the coefficient of relative risk aversion (ρ > 0). Each selfs is endowed with life-

time wealthWs and is in control to choose the consumption levelCs. Each selfs is able to

invest in one (liquid) asset and faces no credit market imperfections, so0 ≤ Cs ≤ Ws. The

subsequent period, selfs + 1 inherits the remaining wealth level

Ws+1 = Rs (Ws − Cs) (3)

whereRs is the gross real interest rate in periods. In contrast to Laibson (1996), who

considers a constant interest rate (Rs = R̄ for all s), this paper allows for a time-varying

(yet deterministic) interest rate to analyze the effect of the duration of interest rate changes

on intertemporal substitution. Finally, it is assumed that each selfs is sophisticated and

rationally anticipates the behavior of future selves. Extensions to this basic model are

discussed in section 4.

Without loss of generality, letλs denote the fraction of life-time wealthWs that is

consumed by selfs, so thatCs = λsWs, where0 ≤ λs ≤ 1. Then, dynamic programming

can be used to derive the intertemporal Euler equation for selfs:3

u′ (Cs) = Rs [λs+1βδ + (1− λs+1) δ] u′ (Cs+1) (4)

2The term ‘present-biased preferences’ was first coined by O’Donoghue and Rabin (1999), who analyzed

whether to do an activity now or later.
3The derivation is in appendix A.1.
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This resembles the Euler equation under exponential discounting, except that the discount

factor δ is replaced by the effective discount factorδH ≡ λs+1βδ + (1− λs+1) δ. The

standard exponential case is obtained forβ = 1. The hyperbolic Euler equation shows that

the intertemporal substitution of consumption depends on the real interest rateR and the

effective discount rateδH . The latter is a weighted average of the short-run and long-run

discount factorsβδ and δ, where the weights are the next period consumption rate and

saving rate,λt+1 and1− λt+1, respectively.

To find the optimal consumption rate, substitute (2),Cs = λsWs and (3) into (4), and

rearrange to get the following recursion formula forλs:

λs =
λs+1(

R1−ρ
s δ

)1/ρ
[1− (1− β) λs+1]

1/ρ + λs+1

(5)

When the horizon of the consumer is finite, the consumption rateλs can be computed re-

cursively for any time pattern of the interest rateRs using (5) and the fact thatλT = 1 in

the final periodT . In the infinite-horizon model, (5) can be used to derive the effect of

temporary changes in the interest rate. In particular, suppose there is a one-period change

in rs ≡ ln Rs, which is the continuously compounded real interest rate. Then, the fu-

ture consumption rateλs+1 is not affected and the effect on the current consumption rate,

∂λs/∂rs = Rs∂λs/∂Rs, can be found by differentiating (5), which gives after simplifying

∂λs

∂rs

=
ρ− 1

ρ
λs (1− λs) (6)

The effect of the real interest rate on the consumption rate depends on the coefficient of

relative risk aversionρ. Forρ > 1, an increase in the interest rate raises the consumption

rate (∂λs/∂rs > 0) as the income effect outweighs the intertemporal substitution effect.

For ρ < 1, an interest rate rise reduces the consumption rate (∂λs/∂rs < 0) as the in-

tertemporal substitution effect dominates. Forρ = 0, both effects offset each other and

the consumption rate is independent of the interest rate (∂λs/∂rs = 0). These results hold

regardless of the degree of self-controlβ. Nevertheless, there is an important difference

between exponential and hyperbolic consumers. It follows from (5) that the present-bias

under hyperbolic discounting (0 < β < 1) causes a higher consumption rateλs for a

given level ofλs+1. As a result, the quantitative effect of an interest rate change on the

consumption rate is different under hyperbolic discounting.

Before analyzing interest rate changes of various durations in the next section, it is

useful to consider the special case in which the gross real interest rate remains constant:

Rs = R̄ for all s. Then, the model reduces to the one analyzed by Laibson (1996). With

a constant interest rate, the consumer faces the same infinite-horizon problem for every

periods, so the consumption ratio satisfiesλs = λ̄ for all s, where0 < λ̄ < 1. Substituting
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this into (5) and rearranging yields4

λ̄ = 1− (
R̄1−ρδ

)1/ρ [
1− (1− β) λ̄

]1/ρ
(7)

This implicitly defines a unique optimal consumption rateλ̄, but typically no closed-form

solution exists.5 Forβ = 1, the outcome under exponential discounting emerges:

λ̄E = 1− (
R̄1−ρδ

)1/ρ
(8)

Since hyperbolic discounters have a lower degree of self-control (β < 1), they consume at

a higher rate than exponential discounters:λ̄ > λE.

Equipped with the expressions for the optimal consumption rate under hyperbolic dis-

counting, the analysis now turns to intertemporal substitution.

3 Intertemporal Substitution

Intertemporal substitution by consumers depends on the intertemporal relative price of cur-

rent consumption,R. The elasticity of intertemporal substitution measures how the in-

tertemporal consumption ratioCt+1/Ct is affected by the gross real interest rateR:

σ ≡ d (Ct+1/Ct)

dR

R

Ct+1/Ct

=
d ln (Ct+1/Ct)

d ln R

In the case of exponential discounting (β = 1), it is straightforward to use (2) and (4) to

show thatσE = 1/ρ. This is the familiar result that for iso-elastic utility, the elasticity

of intertemporal substitution equals the inverse of the coefficient of relative risk aversion

ρ. This result holds regardless of the duration of the change in the interest rateR. Under

exponential discounting, a one-period change and a permanent change in the intertemporal

priceR have exactly the same proportional effect on the intertemporal consumption ratio

Ct+1/Ct. However, it turns out that this no longer holds when consumers are hyperbolic

discounters. For hyperbolic consumers, the elasticity of intertemporal substitution gener-

ally depends on the duration of the change in the real interest rate.

Consider the effect of a change in the interest rateRt for τ periods. LetR denote the

changing gross real interest rate in periodss ∈ {t, t + 1, ..., t + τ − 1} and R̄ the con-

stant gross real interest rate in periodss ∈ {t + τ , t + τ + 1, ...}. This means that starting

in period t + τ , the consumer faces an infinite-horizon problem with a constant inter-

est rateR̄ so thatλs = λ̄ for s ∈ {t + τ , t + τ + 1, ...}, whereλ̄ is given by (7). For

4This expression corresponds to equation (9) in Laibson (1996).
5An exception is logarithmic utility (ρ = 1), in which casēλ = 1−δ

1−(1−β)δ .
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s ∈ {t, t + 1, ..., t + τ − 1}, the optimal consumption rateλs is given by the recursion for-

mula (5) withRs = R andλt+τ = λ̄. Using (2) and taking logs, the Euler equation (4)

becomes

ln (Ct+1/Ct) =
1

ρ
{ln R + ln δ + ln [1− (1− β) λt+1]} (9)

So, the elasticity of intertemporal substitution of sophisticated hyperbolic consumers in

response to a change in the gross real interest rateR is equal to

σS =
d ln (Ct+1/Ct)

dr
=

1

ρ
− 1

ρ

1− β

1− (1− β) λt+1

dλt+1

dr
(10)

wherer ≡ ln R denotes the continuously compounded real interest rate. In the case of

exponential discounting (β = 1), this expression reduces toσE = 1/ρ. However, under

hyperbolic discounting (β 6= 1) the elasticity of intertemporal substitutionσS depends on

dλt+1/dr, which generally depends on the durationτ of the change in the real interest rate

r. Let σS,τ denote the elasticity of intertemporal substitution of a sophisticated hyperbolic

consumer in response to a change in the real interest rater of τ periods. There is one special

case in which the elasticityσS is independent of the durationτ . Forρ = 1, the consumption

rate is independent of the interest rate (see (6)), so thatσS = 1/ρ = 1, regardless of the

duration of the interest rate change.

First, suppose the change in the interest rateR lasts one period (τ = 1) so thatR̄

prevails from periodt+1. Thenλt+1 = λ̄, which is independent ofR, sodλt+1/dr = 0. As

a result, the elasticity of intertemporal substitution for sophisticated hyperbolic consumers

in response to a one-period change inR is equal to

σS,1 =
1

ρ

This is identical to the outcome under exponential discounting. The reason is that for a

one-period change in the interest rate, the intertemporal Euler equation (4) for hyperbolic

consumers (with effective discount factorδ̄H ≡ λ̄βδ +
(
1− λ̄

)
δ) is observationally equiv-

alent to the one for exponential consumers (with discount factorδ), so that it implies the

same degree of intertemporal substitution.

Now, consider a two-period change in the real interest rate (τ = 2). This means thatλt

andλt+1 are given by (5), whereλt+2 = λ̄. So,dλt+2/dr = 0 anddλt+1/dr is given by

(6). Subsituting this into (10) gives the elasticity of intertemporal substitution

σS,2 =
1

ρ
− ρ− 1

ρ2

1− β

1− (1− β) λt+1

λt+1 (1− λt+1)

This shows that under hyperbolic discounting (0 < β < 1), the elasticity for a two-period

changeσS,2 differs from the elasticity for one-period changeσS,1, except whenρ = 1. In

particular,σS,2 < σS,1 = 1/ρ for ρ > 1, andσS,2 > σS,1 = 1/ρ for ρ < 1. To understand
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the intuition behind this result, consider a two-period increase in the real interest rateRt.

If the income effect dominates the substitution effect (ρ > 1), the increase inRt+1 raises

the consumption rateλt+1, which reduces the effective discount factorδH as it puts greater

weight on the short run discount factorβδ. This partially offsets the effect of the increase in

Rt and thereby diminishes the degree of intertemporal substitution. But, if the substitution

effect dominates (ρ < 1), the consumption rateλt+1 declines, which increases the effective

discount factorδH and reinforces the effect ofRt on intertemporal substitution.

Now, suppose that the change in the real interest rate lasts three periods (τ = 3). This

means thatλt, λt+1 andλt+2 are given by (5), whereλt+3 = λ̄. Now, dλt+3/dr = 0, so
dλt+1

dr
= ∂λt+1

∂r
+ ∂λt+1

∂λt+2

∂λt+2

∂r
, where∂λs/∂r is given by (6) fors ∈ {t + 1, t + 2}. Substi-

tuting this into (10) yields

σS,3 =
1

ρ
− ρ− 1

ρ2

1− β

1− (1− β) λt+1

[
λt+1 (1− λt+1) + λt+2 (1− λt+2)

∂λt+1

∂λt+2

]

This shows that the elasticity of intertemporal substitutionσS,3 is similar toσS,2, except

for the extra term in square brackets. It can be shown that∂λt+1/∂λt+2 > 0, so that this

extra term is strictly positive (also forβ = 1).6 This reflects the fact that a longer change

in the interest rater has a bigger effect on the consumption rateλt+1. Under hyperbolic

discounting, this induces a larger change in the effective discount factorδH . As a result,

σS,3 < σS,2 < σS,1 = 1/ρ for ρ > 1, andσS,3 > σS,2 > σS,1 = 1/ρ for ρ < 1. In

other words, the deviation of the hyperbolic elasticityσS,τ from the exponential elasticity

σE = 1/ρ is larger for a longer durationτ of the real interest rate change.

This result holds more generally. In fact, it is possible to derive an analytical expression

for σS,τ and show that it is monotonic inτ for ρ 6= 1.

Proposition 1 The elasticity of intertemporal substitution of a sophisticated hyperbolic

consumer with CRRA utility (2) in response to a change in the real interest rater of τ

periods is equal to

σS,τ =
1

ρ
− ρ− 1

ρ2

1− β

1− (1− β) λt+1

t+τ−1∑
i=t+1

λi (1− λi)
i−1∏

s=t+1

∂λs

∂λs+1

(11)

for τ ∈ {1, 2, 3, ...}, whereλs is given by (5) fors ∈ {t + 1, ..., t + τ − 1} andλt+τ = λ̄,

with λ̄ determined by (7). The elasticityσS,τ is monotonically decreasing (increasing) in

the durationτ if ρ > 1 (ρ < 1). For ρ = 1, σS,τ = 1 regardless ofτ .

The proof of this Proposition is in Appendix A.1. Intuitively, an increase in the real in-

terest rater raises the consumption rateλ when the income effect dominates the intertem-

poral substitution effect (ρ > 1). A longer interest rate increase causes a larger rise in the

6Differentiating (5) and simplifying gives∂λs

∂λs+1
= 1

ρ
λs(1−λs)

λs+1

(
ρ + (1−β)λs+1

1−(1−β)λs+1

)
> 0.
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consumption rate. Under hyperbolic discounting, the higher consumption rateλ induces

the consumer to put greater weight on the low, short-run discount factorβδ and less weight

on the high, long-run discount factorδ, which reduces in the effective hyperbolic discount

factorδH . This reduction in the effective discount factor partially offsets the effect of the

interest rate increase, thereby diminishing intertemporal substitution of consumption. This

effect is stronger for a more persistent increase in the interest rate. Hence, the elasticity

of intertemporal substitutionσS,τ is decreasing in the durationτ of the interest rate change

for ρ > 1. Similarly, when the intertemporal substitution effect dominates (ρ < 1), an in-

crease in the real interest rater reduces the consumption rateλ, which raises the effective

hyperbolic discount factorδH and reinforces the effect of the interest rate increase on the

intertemporal substitution of consumption. Again, this effect is stronger for a more persis-

tent increase in the interest rate, so thatσS,τ is increasing inτ for ρ < 1. Since the elasticity

of intertemporal substitution in response to a one-period change in the interest rateσS,1 is

equal to the exponential outcomeσE = 1/ρ, the monotonicy result in Proposition 1 implies

that the deviation of the hyperbolic elasticityσS,τ from the exponential elasticityσE is in-

creasing in the durationτ of the real interest rate change:|σS,τ+1 − 1/ρ| ≥ |σS,τ − 1/ρ|,
with strict inequality forρ 6= 1.

It is useful to consider the limiting case asτ → ∞, which means that the change

in the interest rate is permanent. This case corresponds to the Laibson (1996) model,

which assumes a constant interest rate. The elasticity of intertemporal substitution for a

sophisticated hyperbolic consumer in response to a permanent change in the real interest

rate equals7

σ̄S =
1

ρ
− ρ− 1

ρ

(1− β)
(
1− λ̄

)

ρ
[
1− (1− β) λ̄

]− (1− β)
(
1− λ̄

) (12)

It is possible to show thatlimτ→∞ σS,τ = σ̄S. Under exponential discounting (β = 1), σ̄S

reduces toσE = 1/ρ. But in a hyperbolic economy (0 < β < 1), σ̄S < 1/ρ if ρ > 1.8

So, the qualitative effect of a permanent change is the same as for temporary changes. But

the deviation from the exponential outcomeσE = 1/ρ is larger for a permanent change.

In particular, Proposition 1 implies that forρ > 1, σ̄S < ... < σS,2 < σS,1 = 1/ρ. This

means that the degree of intertemporal substitution becomes smaller as the persistence of

the real interest rate increases. In other words, a one-period change has the largest effect

on intertemporal substitution. Forρ < 1, the results are reversed and lasting changes are

more effective.

To assess whether the difference between the ‘permanent’ elasticityσ̄S and the ‘one-

7This expression, which corresponds to equation 15 in Laibson (1996), can be derived from (10) by using

λt+1 = λ̄ andR̄ = R, and differentiating (7) to obtaindλ̄/dR̄.
8This is Proposition 5 in Laibson (1996). Or, rewrite (12) to getσ̄S = 1

ρ+(ρ−1)(1−λ̄)(1−β)/β
, so forρ > 1,

0 < σ̄S < 1/ρ.
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Figure 1: Elasticity of intertemporal substitution for sophisticated hyperbolic consumers.

period’ elasticityσS,1 could be significant, suppose that the parameters areρ = 2, R =

1.028, δ = 0.96 andβ = 0.7. These values are taken from Laibson, Repetto and Tobacman

(2005), who estimateβ andδ with the Method of Simulated Moments, assuming a struc-

tural ‘buffer-stock’ consumption model and using US data from the Survey of Consumer

Finances (SCF) and the Panel Study of Income Dynamics (PSID). For these parameter val-

ues, a one-period change in the real interest rate givesσS,1 = 0.5, whereas a permanent

change yields̄σS = 0.415. This implies that the effect on the intertemporal consump-

tion ratio is 20.5% larger for a one-period change in the interest rate than for a permanent

change. So, the difference between the effect of a temporary and a lasting change on in-

tertemporal substitution could be economically significant.

An interesting question is how long the change in the interest rate needs to last to

move away from the exponential outcomeσE and get close tōσS. To investigate this,

the effect ofτ on σS,τ is analyzed numerically. In particular,σS,τ is computed using the
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expression in (11).9 Again, the baseline parameters areρ = 2, R = 1.028, δ = 0.96

andβ = 0.7, as estimated by Laibson et al. (2005). Figure 1 shows how the elasticity

of intertemporal substutionσS,τ for sophisticated hyperbolic consumers depends on the

durationτ of the change in the real interest rate. Forτ = 1, the exponential outcome

σE = 1/2 is obtained. As the durationτ of the interest rate change increases, the elasticity

of intertemporal substitutionσS,τ becomes smaller and gradually converges toσ̄S = 0.415.

However, very high values ofτ are required to get close tōσS. In particular, to achieve a

value ofσS,τ that bridges half of the gap betweenσS,1 andσ̄S, a durationτh of about 21

periods (years) is needed.

Using different parameter values gives qualitatively the same results, except forρ < 1,

when the elasticityσS,τ increases fromσE = 1/ρ to σ̄S asτ rises, and forρ = 1, when

σS,τ = 1 for all τ . But the ‘speed’ of the convergence ofσS,τ to σ̄S is sensitive to the

specific parameter values. In particular, higher levels ofρ and δ, and lower levels ofr

increase the durationτh required to make up half the difference betweenσS,1 andσ̄S. For

instance, increasingδ from 0.96 to 0.99 raisesτh from 21 to 38 years. Even for the lowest

plausible estimate forδ in the robustness check by Laibson et al. (2005, Table 5), namely

δ = 0.94, τh is still about 17 years. This suggests that a very long durationτ of the interest

rate change is needed to obtain a significant difference between the exponential elasticity

of intertemporal substitutionσE and the hyperbolic elasticityσS,τ .

4 Robustness

This section shows the robustness of the result that hyperbolic consumers exhibit an elas-

ticity of intertemporal substitution that depends on the persistence of the interest rate and

is smaller than for exponential consumers. Four variations on the baseline model in section

2 are considered. First, it is plausible that hyperbolic consumers may not be fully sophis-

ticated, so section 4.1 analyzes the model with naive consumers that fail to anticipate their

future self-control problems. Second, section 4.2 analyzes intertemporal substitution of so-

phisticated hyperbolic consumers with CARA utility. Third, section 4.3 discusses a richer,

buffer-stock model with stochastic income and liquidity constraints. Finally, section 4.4

considers sophisticated hyperbolic consumption in continuous time. In each of these cases,

the main results remain relevant.
9Alternatively,σS,τ could be approximated by computing the numerical derivative∆ln (Ct+1/Ct) /∆r

for small ∆r using (9). For∆r = 0.0001 (i.e. one basis point), this gives virtually the same numerical

results.
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4.1 Naive Consumers

Consider the basic consumption model in section 2 with the quasi-hyperbolic discount

function, one liquid asset and no credit market imperfections, but now suppose the con-

sumer is naive and incorrectly believes that future selves will act in the interest of the

current self. More precisely, each selft maximizes life-time utilityUt (1) and thinks that

future selvess ∈ {t + 1, t + 2, ...} also maximizeUt (instead ofUs). Although the current

self t knows that it is a hyperbolic discounter with an inclination for immediate gratifica-

tion, it naively believes that future selves do not have present-biased preferences but behave

as exponential discounters (β = 1). The formal analysis of the model with naive hyperbolic

consumers is in Appendix A.2.

The naive selft believes that future selvess ∈ {t + 1, t + 2, ...} have the same con-

sumption rate as exponential consumers, so theintendedfuture consumption rate equals

λ̃s =
λ̃s+1(

R1−ρ
s δ

)1/ρ
+ λ̃s+1

(13)

Believing that future selves setλ̃s, the current naive self chooses

λN,t =
λ̃t+1(

R1−ρ
t βδ

)1/ρ
+ λ̃t+1

(14)

This is theactualconsumption rate of all naive hyperbolic selves. Forβ = 1, (14) is equal

to the exponential outcome in (13). A lower degree of self-control (0 < β < 1) increases

the naive consumption rate so thatλN,t > λ̃t. This means that the naive hyperbolic con-

sumer is running down life-time wealth faster than an exponential consumer. Besides that

the naive consumption rateλN,t has the familiar property that it is increasing (decreasing)

in the real interest rateRt for ρ > 1 (ρ < 1), but independent ofRt for ρ = 1.

Suppose, as before, that the gross real interest rate equalsR in periodss ∈ {t, t + 1, ..., t + τ − 1}
andR̄ in periodss ∈ {t + τ , t + τ + 1, ...}. This means that starting in periodt + τ , the

intended consumption rate equals the exponential outcome with a constant interest rate in

(8). So,λ̃s = λ̄E for s ∈ {t + τ , t + τ + 1, ...}. Fors ∈ {t + 1, ..., t + τ − 1}, λ̃s is given

by the recursion formula in (13) withRs = R. The actual naive consumption rateλN,s is

given by (14) for all selvess.

To analyze intertemporal substitution for naive hyperbolic consumers one can no longer

rely on the intertemporal Euler equation for consumption. The reason is that it merely de-

scribes intended rather than actual intertemporal substitution for naive consumers. Instead,

actual consumption based on (14) needs to be used. This leads to an analytical expression

for the naive hyperbolic elasticity of intertemporal substitutionσN,τ , which has the same

monotonicity properties as the sophisticated hyperbolic elasticityσS,τ :

12



Proposition 2 The elasticity of intertemporal substitution of a naive hyperbolic consumer

with CRRA utility (2) in response to a change in the real interest rater of τ periods is equal

to

σN,τ =
1

ρ
− ρ− 1

ρ

λN,t+1 − λ̃t+1

1− λ̃t+1

t+τ−1∑
i=t+1

i∏
s=t+1

(
1− λ̃s

)
(15)

for τ ∈ {1, 2, 3, ...}, whereλN,t+1 is given by (14),̃λs is given by (13) fors ∈ {t + 1, ..., t + τ − 1},
and λ̃t+τ = λ̄E in (8). The elasticityσN,τ is monotonically decreasing (increasing) in the

durationτ if ρ > 1 (ρ < 1). For ρ = 1, σN,τ = 1 regardless ofτ .

The proof of this Proposition appears in Appendix A.2. In the absence of a present bias

(β = 1), the actual and intended naive consumption rates are equal (λN,s = λ̃s), so (15)

reduces to the exponential outcomeσE = 1/ρ. But under hyperbolic discounting (β < 1),

the naive consumption rate exceeds the exponential rate (λN,s > λ̃s). So, σN,τ < 1/ρ

for ρ > 1 andσN,τ > 1/ρ for ρ < 1, similar to the sophisticated case. In addition, the

elasticity of intertemporal substitutionσN,τ depends on the durationτ of the interest rate

change. The deviation from the exponential elasticityσE = 1/ρ is again increasing in the

durationτ : |σN,τ+1 − 1/ρ| ≥ |σN,τ − 1/ρ|, with strict inequality forρ 6= 1.

In the limiting case asτ → ∞, the change in the real interest rate is permanent. For

a constant interest ratēR, the naive hyperbolic consumption rate follows from substituting

λE in (8) for λ̃t+1 in (14):

λ̄N =
1− (

R̄1−ρδ
)1/ρ

1−
(
1− β1/ρ

) (
R̄1−ρδ

)1/ρ
(16)

Forβ = 1 this reduces to the exponential outcomeλ̄E = 1− (
R̄1−ρδ

)1/ρ
, which is also the

intended future consumption rate of the naive hyperbolic consumer. But the self-control

problem (β < 1) causes the naive hyperbolic discounter to consume more than intended in

every period (̄λN > λ̄E).10

The elasticity of intertemporal substitution for a naive hyperbolic consumer in response

to a permanent change in the real interest rate equals

σ̄N =
1

ρ
− ρ− 1

ρ

λ̄N − λ̄E

λ̄E

(17)

This can be derived from (15) aslimτ→∞ σN,τ = σ̄N .11 For β = 1, λ̄N = λ̄E so thatσ̄N

reduces toσE = 1/ρ. But in a hyperbolic economy (0 < β < 1), λ̄N > λ̄E so σ̄N < 1/ρ

10The naive consumption ratēλN is typically different from the sophisticated ratēλ. An exception is

logarithmic utility (ρ = 1), when (7) and (16) yield̄λ = 1−δ
1−(1−β)δ = λ̄N , so that naive and sophisticated

behavior coincide, as was first shown by Pollak (1968).
11Use the fact thatlimτ→∞ λ̃s = λ̄E andlimτ→∞ λN,s = λ̄N . Alternatively,Cs = λ̄NWs and (3) imply

Ct+1/Ct = R̄
(
1− λ̄N

)
, so σ̄N = 1 − 1

1−λ̄N

dλ̄N

dr̄ . Substitutingdλ̄N

dr̄ = ρ−1
ρ

λ̄N

λ̄E

(
1− λ̄N

)
from (16), and

rearranging gives (17).
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for ρ > 1 andσ̄N > 1/ρ for ρ < 1, just likeσN,τ for temporary interest rate changes. The

deviation from the exponential outcomeσE = 1/ρ is again largest for a permanent change.

In particular, Proposition 2 implies that forρ > 1, σ̄N < ... < σN,2 < σN,1 = 1/ρ, while

for ρ < 1, σ̄N > ... > σN,2 > σN,1 = 1/ρ. So, forρ > 1 a one-period change has the

strongest effect on intertemporal substitution, whereas forρ < 1 a permanent change is

most effective.

So far, the analysis suggests that the qualitative features of the sophisticated and naive

hyperbolic elasticitiesσS,τ andσN,τ are exactly the same. However, there is one interesting

difference. The naive elasticity of intertemporal substitutionσN,τ could actually be nega-

tive for ρ > 1 andβ sufficiently small. A lower degree of self-controlβ could increasēλN

so much that̄σN < 0 for ρ > 1.12 For example,ρ = 3, β = 0.2, δ = 0.99 andr = 3%

imply σ̄N = −0.122. Intuitively, when the income effect dominates the substitution effect

and the degree of self-control is small enough, an increase in the interest rate could raise

current consumption so much that wealth drops and the intertemporal consumption ratio

Ct+1/Ct actually declines.

There could be a major difference between the one-period elasticity and the permanent

elasticity for naive hyperbolic consumers. In the previous example,σN,1 = 0.333 versus

σ̄N = −0.122. This illustrates that the effect on intertemporal substitution could be both

quantitatively and qualitatively different for a one-period and a permanent interest rate

change when consumers are naive hyperbolic discounters. Using the baseline parameters

ρ = 2, R = 1.028, δ = 0.96 and β = 0.7, estimated by Laibson et al. (2005), the

naive elasticities are positive and the difference is considerably smaller:σN,1 = 0.5 versus

σ̄N = 0.406. Nevertheless, this implies that the effect on the intertemporal consumption

ratio for a one-period change in the interest rate is 23.2% larger than for a permanent

change. So, for plausible parameter values, temporary and lasting interest rate changes

have significantly different effects on the intertemporal substitution of naive hyperbolic

consumers.

The effect of the durationτ of the interest rate change on the naive elasticity of in-

tertemporal substitutionσN,τ is very similar to the sophisticated case. For the baseline

parametersρ = 2, R = 1.028, δ = 0.96 andβ = 0.7, the profile ofσN,τ is close to the one

depicted in Figure 1. Just like in the sophisticated case, very long interest rate changes are

needed to get close to the permanent elasticityσ̄N . In particular, to bridge the half the gap

betweenσN,1 andσ̄N again takes about 21 years for the baseline parameters.

This section has shown that the elasticities of intertemporal substitution for naive and

sophisticated hyperbolic consumers display the same qualitative features, with one excep-

tion. Naive hyperbolic consumers could actually have a negative elasticity of intertemporal

12More formally, using (16) and (17) giveslimβ→0 σ̄N = 1 − (ρ− 1) /ρλ̄E , so σ̄N < 0 for ρ >

1/
(
1− λ̄E

)
> 1 andβ close to0.
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substitution whenρ > 1 andβ is small. Besides that, intertemporal substitution by naive

and sophisticated hyperbolic consumers is quite similar. Compared to exponential dis-

counting, the elasticity of intertemporal substitution for hyperbolic discounting is generally

different, but there are two exceptions. First, for logarithmic utility (ρ = 1) the consump-

tion rateλ is independent of the real interest rateR, soσN,τ = σS,τ = σE = 1. Second,

for a one-period change in the real interest rate,σN,1 = σS,1 = σE = 1/ρ. However, for

ρ 6= 1 andτ 6= 1, Propositions 1 and 2 imply thatσN,τ andσS,τ always differ from the

exponential outcomeσE = 1/ρ and that they are monotonic in the durationτ of the inter-

est rate change. For the plausible case in whichρ > 1, σN,τ < σE andσS,τ < σE, which

means that there is less intertemporal substitution with hyperbolic than with exponential

discounters.

4.2 CARA Utility

The results so far have been derived for the constant relative risk aversion utility (2) and it

is natural to wonder to what extent the results extend to the constant absolute risk aversion

(CARA) utility function

u (C) = −1

θ
e−θC (18)

whereθ is the coefficient of absolute risk aversion (θ > 0). To derive optimal consumption

with CARA utility, postulate that consumption by selfs equalsCs = λsWs + κs. Then it

is easy to show that the Euler equation (4) continues to hold. To derive the optimalλs and

κs, substitute (18),Cs = λsWs + κs and (3) into (4), and rearrange to get the following

recursion formulas:

λs =
λs+1Rs

1 + λs+1Rs

(19)

κs =
1

1 + λs+1Rs

κs+1 − ln Rs + ln [λs+1βδ + (1− λs+1) δ]

θ (1 + λs+1Rs)
(20)

This shows that a lower degree of self-controlβ increases autonomous consumptionκs.

In the special case in which the real interest rate remains constant,Rs = R̄ for all s,

the consumer faces the same infinite-horizon problem for every periods, soλs = λ̄ and

κs = κ̄ for all s. Substituting this into (19) and (20) and rearranging yields

λ̄ =
R̄− 1

R̄
andκ̄ = − ln δ + ln

[(
R̄− 1

)
β + 1

]

θ
(
R̄− 1

) (21)

Thus, with CARA utility there is a closed-form solution for optimal consumption under hy-

perbolic discounting, as first shown by Maliar and Maliar (2004) for a model with stochas-

tic income shocks. Forβ = 1, the outcome under exponential discounting is obtained with

κ̄E = − ln δ+ln R̄

θ(R̄−1)
. Since hyperbolic discounters have a lower degree of self-control (β < 1),
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they have higher autonomous consumption (κ̄ > κ̄E), while their consumption rate is not

affected (̄λ = λ̄E).

As before, consider a change in the gross real interest rateR at timet for τ periods such

thatRs = R for s ∈ {t, t + 1, ..., t + τ − 1} andRs = R̄ for s ∈ {t + τ , t + τ + 1, ...}. To

determine the effect on intertemporal substitution of consumption, use (18) and rearrange

the Euler equation (4) to get

Ct+1

Ct

=
1

θCt

{ln R + ln δ + ln [1− (1− β) λt+1]}+ 1 (22)

This is very similar to (9), except that the constant coefficient of relative risk aversionρ

has been replaced by the relative risk aversion measureθCt. Although the term in curly

brackets is the same as for CRRA utility, interest rate changes also affect relative risk aver-

sionθCt under CARA utility, which could result in qualitatively different outcomes, even

with exponential discounting (β = 1). Unfortunately, the fact that relative risk aversion is

no longer constant greatly complicates the derivation of analytical results, so a numerical

analysis is performed instead.

The level of consumptionCt = λtWt +κt can be obtained using the recursion formulas

(19) and (20), withλs = λ̄ andκs = κ̄ for s ∈ {t + τ , t + τ + 1, ...}, whereλ̄ andκ̄ are

given by (21). The intertemporal consumption ratioCt+1/Ct follows from (22) and the

elasticity of intertemporal substitutionσS,τ for a change in the real interest rate of duration

τ is computed using the numerical derivative∆ ln (Ct+1/Ct) /∆r for ∆r = 0.0001.13

First, consider the baseline parametersR = 1.028, δ = 0.96 andβ = 0.7, use the

normalizationW = 100 and takeθ = 0.45353, which for a constant interest rate implies a

level of relative risk aversionθCt = 2, using (21). For these baseline settings, the elasticity

of intertemporal substitutionσS,τ under CARA utility looks very similar to the CRRA

outcome in Figure 1, withσS,1 = 0.507 but with an asymptotic minimum of 0.308.

However, the outcome for the elasticity of intertemporal substitutionσE,τ for exponen-

tial discounters (β = 1) is quite different with CARA utility. In particular,σE,τ is generally

no longer independent of the durationτ of the interest rate change. Intuitively, the dura-

tion τ generally affects consumptionCt, which determines relative risk aversionθCt and

thereby the elasticity of intertemporal substitution. For the baseline settings,σE,τ is non-

monotonic withσE,1 = 0.591, a maximum ofσE,17 = 0.598 and an asymptotic minimum

of σ̄E = 0.551. Nevertheless, it is still the case that the elasticity of intertemporal substi-

tution is smaller for sophisticated hyperbolic discounters than for exponential discounters:

σE,τ > σS,τ .

So, for the baseline parametersσS,τ continues to be decreasing inτ , with a larger

range thanσE,τ , while being less thanσE,τ . To establish whether these results continue

13As pointed out in footnote 9, using the numerical derivative with∆r = 0.0001 to computeσS,τ gives

very accurate results for CRRA utility.
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to hold for other reasonable parameter values, a numerical analysis has been conducted

for two different parameter spaces. The ‘full’ parameter space consists ofβ ∈ [0.5, 0.9],

δ ∈ [0.94, 0.98], R ∈ [1.004, 1.052] and θ ∈ [0.001, 1.555]. The latter amounts to a

range for relative risk aversion of[0.77, 5] under the baseline parameters with a constant

interest rate. The range forR implies a real interest rate between 0.40% and 5.1%, and it is

based on a one standard error deviation from the baseline estimate in Laibson et al. (2005).

The ranges forβ andδ roughly correspond to the 95% confidence intervals based on the

standard errors estimated by Laibson et al. (2005). The ‘core’ parameter space is defined

by β ∈ [0.6, 0.8], δ ∈ [0.95, 0.97], R ∈ [1.014, 1.040] andθ ∈ [0.0864, 1.1878]. The latter

corresponds to a range for relative risk aversion of[1, 4]. Besides that, the core parameter

space has a lower mean-preserving spread around the baseline parameters forβ, δ andR

compared to the full parameter space.

For each parameter space, 100,000 uniform random draws were made ofβ, δ, R and

θ.14 For each randomly drawn parameter configuration, the elasticities of intertemporal

substitutionσS,τ andσE,τ were computed numerically forτ ∈ {1, 2, ..., 500} and it was

checked whether the following three properties hold:15 (a)σS,τ is monotonically decreasing

in τ ; (b) σS,τ has a larger range overτ than σE,τ such thatmaxτ σS,τ − minτ σS,τ >

maxτ σE,τ −minτ σE,τ ; and (c)σS,τ is smaller thanσE,τ (i.e. σE,τ > σS,τ ). This gives rise

to the following findings.

Numerical Result 1With CARA utility, the elasticity of intertemporal substitutionσS,τ in

response to a change in the real interest rater of τ periods for a sophisticated consumer

with hyperbolic discounting

(a) is monotonically decreasing inτ for 73.3% of the full parameter space and 76.5% of

the core parameter space.

(b) has a larger range overτ than for a consumer with exponential discounting (β = 1) for

70.4% of the full parameter space and 78.4% of the core parameter space.

(c) is smaller than for a consumer with exponential discounting (β = 1) for 99.0% of the

full parameter space and 100% of the core parameter space.

This shows that the three properties frequently hold for the full parameter space and are

even more likely to be satisfied for the core parameter space.

Another interesting finding is that the elasticity of intertemporal substitution could be

14Since the results in Laibson et al. (2005) suggest a strong negative correlation between the estimates of

β andδ, the numerical analysis was also conducted for uniform random draws ofβ, δ, R andθ with a perfect

negative correlation betweenβ andδ, but the findings were quite similar.
15Since CARA utility could lead to negative levels of consumption, randomly drawn parameter configura-

tions for whichCs < 0 for anys were discarded. This occurred for only 0.19% of the full and 0% of the core

parameter space.
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negative with CARA utility, for both hyperbolic and exponential consumers. In fact, for

sufficiently largeτ , σS,τ < 0 andσE,τ < 0 for 30.1% and 26.2% of the full parameter

space and 14.8% and 7.3% of the core parameter space, respectively. This outcome is

more common for lower values ofR andθ. The fact thatσS,τ < 0 holds more frequently

thanσE,τ < 0 is not surprising since generally,σE,τ > σS,τ by Numerical Result 1(c).

To summarize the main findings, the elasticitity of intertemporal substitutionσS,τ for

sophisticated hyperbolic consumers with CARA utility is typically declining in the dura-

tion τ for reasonable parameter values. Although the elasticityσE,τ for consumers with

exponential discounting is no longer constant for CARA utility, the range overτ remains

larger for the hyperbolic elasticityσS,τ for a large majority of plausible parameter con-

figurations. The result that the elasticity of intertemporal substitutionσS,τ for hyperbolic

discounters is less than for exponential discounters continues to hold for virtually all rea-

sonable parameter values with CARA utility.

4.3 Buffer Stock Model

So far, the paper has considered a deterministic model in which consumers have access to

perfect credit markets. In practice, income is stochastic and consumers face liquidity con-

straints. In particular, suppose that labor incomeYt is stochastic and that the consumer can-

not borrow against uncertain future income so thatCt ≤ Xt, whereXt is cash-on-hand in

periodt, which satisfiesXt = R (Xt−1 − Ct−1) + Yt. Harris and Laibson (2001) show that

the hyperbolic Euler relation for sophisticated consumers in such a ‘buffer-stock’ model

similar to Carroll (1997) equals:16

u′ (c (Xt)) ≥ Et R [c′ (Xt+1) βδ + (1− c′ (Xt+1) δ)] u′ (c (Xt+1)) (23)

wherec (Xt) is the consumption function. For periods in which the liquidity constraint

is non-binding so thatc (Xt) < Xt, (23) holds with equality. This resembles the Euler

equation (??), but the fraction of life-time wealth consumedλ is now replaced by the

marginal propensity to consume out of cash-on-handc′ (Xt+1) because of the borrowing

constraint.

Intertemporal substitution in response to a permanent change in the real interest rate is

given by
∂ ln (Ct+1/Ct)

∂r
=

1

ρ
− 1

ρ

(1− β)

1− (1− β) c′ (Xt+1)

∂c′ (Xt+1)

∂r

which is the buffer-stock equivalent of (10). Forρ > 1, the income effect dominates the

substitution effect, so∂c′ (Xt+1) /∂r > 0 andσ̄S < 1/ρ (Laibson 1998, p. 867). Following

16To be precise, this is the ‘strong’ hyperbolic Euler relation formally derived by Harris and Laibson

(2001) and it assumes that the consumption functionc (.) is Lipschitz continuous, which holds in a neighbor-

hood ofβ = 1.
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the same approach as in section 3, (23) can be used to find thatσS = 1/ρ whenever the

consumer is not liquidity constrained. As a result, the conclusions of section 3 hold more

generally.

4.4 Continuous Time

As a further robustness check, consider a continuous-time version of the baseline model in

section 2. Harris and Laibson (2004) have adapted the quasi-hyperbolic discount function

to continuous time.17 They assume that time can be divided into the ‘present’ and the ‘fu-

ture’, which arrives with a stochastic hazard rate. The discount function is exponential and

the additional present bias factorβ applies to future utility flows. As the hazard rate in-

creases, the model converges to an ‘instantaneous gratification’ model in which the present

is infinitesimally short.

To complete the description of the continuous-time version of the basic model, the

change in life-time wealthW (t) is given by

Ẇ = rW (t)− C (t)

whereẆ ≡ dW (t) /dt. Finally, following Harris and Laibson (2004) it is assumed that

β > 1− ρ andγ > (1− ρ) r. These conditions are satisfied for plausible parameter values

for ρ, β, γ andr.

The elasticity of intertemporal substitution in response to an unanticipated permanent

change in the real interest rater equals18

σ̄c ≡ dĊ/C

dr
=

1

ρ + (ρ− 1) (1− β) /β
(24)

Forβ = 1 the familiar exponential result̄σE = 1/ρ emerges. With hyperbolic discounting

(β < 1), σ̄c < 1/ρ for ρ > 1, just like in the discrete-time model with sophisticated

consumers. In fact, rewriting (12) gives̄σS = 1

ρ+(ρ−1)(1−λ̄)(1−β)/β
, which shows that̄σc is

very similar toσ̄S. Although the deviation from the exponential outcomeσ̄E is larger in

continuous time (to be precise,|σ̄c − 1/ρ| > |σ̄S − 1/ρ|), the quantitative difference with

the discrete-time results tends to be small. For instance, forρ = 3, β = 0.6, δ = 0.9 and

r = 4%, the discrete-time model gives̄σS = 0.236, whereas̄σc = 0.231 in the continuous-

time model. For logarithmic utility (ρ = 1), σ̄c = σ̄S = σ̄E = 1.

The ‘instantaneous’ elasticity of intertemporal substitution in response to an unantici-

pated, infinitesimally short change in the real interest rater (t) from r to rs is again equal

17Barro (1999) and Luttmer and Mariotti (2003) present alternative approaches to modeling hyperbolic dis-

counting in continuous time, but the model by Harris and Laibson (2004) provides greater analytical tractabil-

ity, with closed-form solutions for iso-elastic utility.
18The results for the continuous-time model are derived in appendix A.3.
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to the exponential elasticity:

σc ≡ dĊ/C

drs

=
1

ρ
(25)

As a result, in the continuous-time hyperbolic model the elasticity of intertemporal substi-

tution also generally depends on the duration of the intertemporal price change. In particu-

lar, for the empirically likely case in whichρ > 1, the degree of intertemporal substitution

is smaller for more persistent changes.

5 Conclusion

Intertemporal substitution plays a key role in macroeconomics. For instance, it affects

the propagation mechanism in micro-founded business cycle models and it determines the

effectiveness of tax policies. This paper establishes that the elasticity of intertemporal

substitution exhibits novel features when consumers have a hyperbolic instead of an expo-

nential discount function. It is well-known that under exponential discounting the elasticity

of intertemporal substitution equals the inverse of the coefficient of relative risk aversion

for iso-elastic utility. This holds regardless of the length of the change in the intertemporal

price ratio. However, under hyperbolic discounting the intertemporal substitution elasticity

typically depends on the duration of the intertemporal price change.

For a one-period change in the real interest rate, the elasticity of intertemporal substitu-

tion with iso-elastic utility equals the inverse of the coefficient of relative risk aversion for

both exponential and hyperbolic discounters. Essentially, this is the structural preference

parameter that measures the curvature of the intertemporal indifference curves. However,

for a persistent change in the interest rate, the degree of intertemporal substitution is gener-

ally different for hyperbolic consumers because the effective discount rate is affected. The

reason is that a persistent interest rate change typically influences the future consumption

rate, which shifts the weight between the high short-run and the low long-run hyperbolic

discount rate. This adjustment in the effective discount rate alters the effect of a lasting

interest rate change on intertemporal substitution. For plausible values of risk aversion, the

elasticity of intertemporal substitution for hyperbolic consumers is monotonically decreas-

ing in the duration of the change in the real interest rate.

These results hold both for sophisticated hyperbolic discounters, who rationally antic-

ipate the dynamic inconsistency of their preferences, and for naive consumers, who do

not realize that the ‘present bias’ in their intertemporal preferences continues to exert it-

self in the future. In addition, the finding that the elasticity of intertemporal substitution

depends on the persistence of the interest rate change applies not only to the standard quasi-

hyperbolic discrete-time model but also to the continuous-time ‘instantaneous gratification’

model. It appears to be a fundamental property of hyperbolic discounting that already holds
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for a basic model with a single liquid asset and perfect credit markets. So, it does not rely

on the presence of (partial) commitment devices, such as illiquid assets, that is usually

required to distinguish (sophisticated) hyperbolic from exponential consumers. The result

is also relevant in more realistic ‘buffer-stock’ models that feature stochastic income and

liquidity constraints. Although the focus of the paper is on the intertemporal consump-

tion decision, a similar argument applies to the intertemporal substitution of leisure. It

appears to be a robust feature of hyperbolic discounting that the elasticity of intertemporal

substitution depends on the duration of the intertemporal price change appears.

There is a large empirical literature on intertemporal substitution, including Mankiw,

Rotemberg and Summers (1985), Hall (1988), Attanasio and Weber (1995) and Mulligan

(2002). Such empirical studies have obtained a remarkably wide range of estimates for

the elasticity of intertemporal substitution, with a typical parameter value of about 0.3.

Although a large variety of parameter estimates is difficult to reconcile with exponential

discounting, it is natural to get different estimates under hyperbolic discounting, depending

on the persistence of the interest rate in the sample.

In addition, it is not unusual to find empirical elasticity estimates that are negative. This

appears at odds with the standard model of exponential discounting. However, a negative

elasticity of intertemporal substitution is consistent with the behavior of naive hyperbolic

consumers with iso-elastic utility with plausible risk aversion, a sufficiently low degree

of self control and a persistent interest rate change. For exponential utility, a negative

elasticity of intertemporal substitution is more likely to occur with hyperbolic discounting

than exponential discounting.

Thus, this paper shows that hyperbolic discounting could explain empirical findings on

intertemporal substitution that are puzzling under exponential discounting. In addition, the

result that the hyperbolic elasticity of intertemporal substitution depends on the persistence

of the intertemporal price provides a new testable implication of hyperbolic discounting

for iso-elastic utility. Although it appears interesting to pursue this further, calibrations

indicate that a very long duration of the intertemporal price change is required to obtain

a difference with the exponential elasticity of only 0.02, which is much smaller than the

standard errors of typical empirical elasticity estimates. So, an empirical test that exploits

the duration-dependence of the hyperbolic elasticity is probably not practicable.

However, this does not mean that the differences in intertemporal substitution between

exponential and hyperbolic discounting are immaterial. Quite to the contrary. For plausible

parameter values, the effect of a permanent price change on intertemporal consumption

is about 20% larger for exponential discounters than for hyperbolic discounters. This is

also the difference between the effect of a one-period and a permanent price change under

hyperbolic discounting. Clearly, such a magnitude is economically significant.

This has important implications. First, models that assume exponential discounting
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overstate the relevance of intertemporal substitution effects when agents are in fact hyper-

bolic. For instance, predictions of the benefits of policy measures such as tax cuts are likely

to be much rosier when they are based on policy models with exponential instead of hyper-

bolic discounting. Second, hyperbolic intertemporal substitution effects are significantly

stronger for temporary policy measures than for permanent ones. This means that empir-

ical estimates based on a temporary (or experimental) policy could seriously overstate the

effectiveness of permanent implementation of the policy.

All in all, this paper finds interesting new results on intertemporal substitution under

hyperbolic discounting.
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A Appendix

This appendix contains the derivation of the basic hyperbolic model with sophisticated

consumers presented in section 2. In addition, it derives the results for naive hyperbolic

consumers, presented in section 4.1, and the continuous-time version of the model, dis-

cussed in section??.

A.1 Sophisticated Consumers

This section provides a derivation of the quasi-hyperbolic intertemporal Euler equation (4)

for sophisticated consumers, and the proof of Proposition 1.

Derivation of (4):

Each selfs faces a similar infinite-horizon optimization problem. Using (1), the optimal

life-time utility of self s can be written as

Us = u (Cs) + βδV (Ws+1; s + 1) (26)

where

V (Ws+1; s + 1) =
∞∑

i=s+1

δi−(s+1)u (λiWi)

Using (3), the continuation-value function for selvess = {t, t + 1, ...} satisfies

V (Ws+1; s + 1) = u (λs+1Ws+1) + δV (Rs+1 (1− λs+1) Ws+1; s + 2) (27)

Maximizing (26) with respect toCs subject to (3) yields the first order condition

u′ (Cs) = RsβδV ′ (Ws+1; s + 1) (28)

Differentiate (27) and substitute forV ′ (Ws+2; s + 2) using (28) to get

u′ (Cs) = Rsβδ [λs+1u
′ (Cs+1) + Rs+1 (1− λs+1) δV ′ (Ws+2; s + 2)]

= Rs [λs+1βδ + (1− λs+1) δ] u′ (Cs+1)

This is the quasi-hyperbolic intertemporal Euler equation (4) for sophisticated consumers.

¥

Proof of Proposition 1:

First, for a change inr of durationτ , dλs

dr
= ∂λs

∂r
+ ∂λs

∂λs+1

dλs+1

dr
for s ∈ {t, ..., t + τ − 1},

where∂λs

∂rs
is given by (6) anddλt+τ

dr
= 0. So, by recursive substitution one can write

dλt+1

dr
=

∂λt+1

∂r
+

∂λt+1

∂λt+2

∂λt+2

∂r
+

∂λt+1

∂λt+2

∂λt+2

∂λt+3

∂λt+3

∂r
+ ... +

(
∂λt+1

∂λt+2

∗ ... ∗ ∂λt+τ−2

∂λt+τ−1

)
∂λt+τ−1

∂r
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=
ρ− 1

ρ

[
λt+1 (1− λt+1) + λt+2 (1− λt+2)

∂λt+1

∂λt+2

+ λt+3 (1− λt+3)
∂λt+1

∂λt+2

∂λt+2

∂λt+3

+ ...

... + λt+τ−1 (1− λt+τ−1)

(
∂λt+1

∂λt+2

∗ ... ∗ ∂λt+τ−2

∂λt+τ−1

)]

=
ρ− 1

ρ

[
t+τ−1∑
i=t+1

λi (1− λi)

(
i−1∏

s=t+1

∂λs

∂λs+1

)]

Substituting this into (10) yields (11).

To prove monotonicity, use (11) to write

σS,τ+1 − σS,τ = −ρ− 1

ρ2

1− β

1− (1− β) λt+1

λt+τ (1− λt+τ )
t+τ−1∏
s=t+1

∂λs

∂λs+1

Note that0 < λt+τ < 1, and differentiate (5) and simplify to get

∂λs

∂λs+1

=
1

ρ

λs (1− λs)

λs+1

[
ρ +

(1− β) λs+1

1− (1− β) λs+1

]
> 0

So, under hyperbolic discounting (0 < β < 1), σS,τ+1 < σS,τ if ρ > 1, andσS,τ+1 > σS,τ

if ρ < 1, for any durationτ ∈ {1, 2, ...}. Forρ = 1, σS,τ+1 = σS,τ = 1 for all τ . ¥

A.2 Naive Consumers

This section derives the results for naive consumers, which are discussed in section 4.1. In

particular, it provides a derivation of (13) and (14), and the proof of Proposition 2.

Derivation of (13) and (14):

The naive hyperbolic consumer maximizes (1) believing that future selves are exponential

discounters without present-biased preferences. So, the naive selft maximizesUt in (26),

whereV (Wt+1) is now the anticipated continuation-value function for the future selfs =

t + 1. All future selvess ∈ {t + 1, t + 2, ...} are believed to maximizeUs with β =

1. Substitutingβ = 1 into (5) gives the intended consumption rateλ̃s in (13) for future

selves, which corresponds to the exponential outcome. So, the anticipated continuation-

value function satisfies

V (Ws+1) = u
(
λ̃s+1Ws+1

)
+ δV

(
Rs+1

(
1− λ̃s+1

)
Ws+1; s + 2

)
(29)

for s ∈ {t, t + 1, t + 2, ...}. The first order condition for the current selfs = t is still given

by (28). However, for future selvess ∈ {t + 1, t + 2, ...}, which are believed to setβ = 1,

the anticipated first order condition is

u′ (Cs) = RsδV
′ (Ws+1; s + 1) (30)
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Differentiating (29) and substituting forV ′ (Wt+2; s + 2) using (30), (28) yields

u′ (Ct) = Rtβδ
[
λ̃t+1u

′ (Ct+1) + Rt+1

(
1− λ̃t+1

)
δV ′ (Wt+2; t + 2)

]

= Rtβδu′ (Ct+1) (31)

To find the naive consumption rate, substitute (2),Ct+1 = λ̃t+1Wt+1 and (3) into (31), and

rearrange to get the recursion formula (14).¥

Proof of Proposition 2:

To compute the intertemporal consumption ratioCt+1/Ct it is no longer possible to rely

on the Euler equation (31), because it only describes intended consumption. To obtain

the actual intertemporal consumption ratio, useCs = λsWs and (3) to getCt+1/Ct =

λt+1R (1− λt) /λt. Using (14) to get(1− λt) /λt = (R1−ρβδ)
1/ρ

/λ̃t+1, and taking logs

yields:

ln (Ct+1/Ct) = ln λt+1 − ln λ̃t+1 +
1

ρ
(ln R + ln β + ln δ) (32)

Differentiating with respect tor ≡ ln R gives the elasticity of intertemporal substitution

for naive hyperbolic discounters:

σN =
d ln (Ct+1/Ct)

dr
=

1

ρ
+

1

λt+1

dλt+1

dr
− 1

λ̃t+1

dλ̃t+1

dr
(33)

For a change in the real interest rater of durationτ , λ̃t+τ = λ̄E, λ̃s is given by (13) fors ∈
{t + 1, ..., t + τ − 1}, andλt+1 is given by (14). To deriveσN,τ , expressions are needed

for ∂λN,s/dr, ∂λ̃s/dr, ∂λN,t+1/∂λ̃t+2 and∂λ̃s/∂λ̃s+1 for s ∈ {t + 1, ..., t + τ − 1}. Using

(14) and (13),∂λN,s/dr = ρ−1
ρ

λN,s (1− λN,s) and∂λ̃s/dr = ρ−1
ρ

λ̃s

(
1− λ̃s

)
, similar

to the sophisticated case in (6). Differentiating (14) and (13) with respect toλ̃s+1 and

simplifying gives

∂λN,t+1

∂λ̃t+2

= (1− λN,t+1)
λN,t+1

λ̃t+2

∂λ̃s

∂λ̃s+1

=
(
1− λ̃s

) λ̃s

λ̃s+1

Substituting these results and simplifying yields:

1

λ̃t+1

dλ̃t+1

dr
=

1

λ̃t+1

[
∂λ̃t+1

∂r
+

∂λ̃t+1

∂λ̃t+2

∂λ̃t+2

∂r
+

∂λ̃t+1

∂λ̃t+2

∂λ̃t+2

∂λ̃t+3

∂λ̃t+3

∂r
+ ...

... +

(
∂λ̃t+1

∂λ̃t+2

∗ ... ∗ ∂λ̃t+τ−2

∂λ̃t+τ−1

)
∂λ̃t+τ−1

∂r

]

=
ρ− 1

ρ

[(
1− λ̃t+1

)
+

(
1− λ̃t+1

)(
1− λ̃t+2

)
+

(
1− λ̃t+1

)(
1− λ̃t+2

)(
1− λ̃t+3

)
+ ...
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... +
(
1− λ̃t+1

)
∗ ... ∗

(
1− λ̃t+τ−1

)]

=
ρ− 1

ρ

t+τ−1∑
i=t+1

[
i∏

s=t+1

(
1− λ̃s

)]

Similarly,

1

λN,t+1

dλN,t+1

dr
=

1

λN,t+1

[
∂λN,t+1

∂r
+

∂λN,t+1

∂λ̃t+2

∂λ̃t+2

∂r
+

∂λN,t+1

∂λ̃t+2

∂λ̃t+2

∂λ̃t+3

∂λ̃t+3

∂r
+ ...

... +
∂λN,t+1

∂λ̃t+2

∂λ̃t+2

∂λ̃t+3

∗ ... ∗ ∂λ̃t+τ−2

∂λ̃t+τ−1

∂λ̃t+τ−1

∂r

]

=
ρ− 1

ρ

[
(1− λN,t+1) + (1− λN,t+1)

(
1− λ̃t+2

)
+ ...

... + (1− λN,t+1) ∗
(
1− λ̃t+2

)
∗ ... ∗

(
1− λ̃t+τ−1

)]

=
ρ− 1

ρ

1− λN,t+1

1− λ̃t+1

t+τ−1∑
i=t+1

[
i∏

s=t+1

(
1− λ̃s

)]

Substituting this into (33) and rearranging:

σN,τ =
1

ρ
− ρ− 1

ρ

[
1− 1− λN,t+1

1− λ̃t+1

] t+τ−1∑
i=t+1

i∏
s=t+1

(
1− λ̃s

)

Simplifying gives the naive elasticity of intertemporal substitution for an interest rate

change ofτ periods in (15).

To prove monotonicity, use (15) to write

σS,τ+1 − σS,τ = −ρ− 1

ρ

λN,t+1 − λ̃t+1

1− λ̃t+1

t+τ∏
s=t+1

(
1− λ̃s

)

Note that0 < λ̃s < 1 for s ∈ {t + 1, ..., t + τ}, and use (14) and (13) to see thatλN,t+1 >

λ̃t+1 under hyperbolic discounting (0 < β < 1). So,σS,τ+1 < σS,τ if ρ > 1, andσS,τ+1 >

σS,τ if ρ < 1, for any durationτ ∈ {1, 2, ...}. Forρ = 1, σS,τ+1 = σS,τ = 1 for all τ . ¥

A.3 Continuous Time

This section derives the results for the continuous-time version of the basic hyperbolic

model. First, there is a heuristic derivation of the optimality condition. For a rigorous

derivation, see Harris and Laibson (2004) who consider a more general model with labor

income, liquidity constraints and stochastic asset returns. Subsequently, the elasticities of

intertemporal substitution̄σc andσc are derived.
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Derivation of optimality condition:

Suppose first that each period lastsds. The continuous time model is the limiting case

ds → 0. The change in life-time wealthW (s) for selfs is given by (cf (3) whereR = er)

dW = (r (s) W (s)− C (s)) ds (34)

The optimal life-time utility can be written as the sum of the present utility flow and the

value of future utility flows discounted by the long run discount rateγ and the present-

biased discount factorβ (cf (26) whereδ = e−γ):

U (s) = u (C (s)) ds + βe−γdsV (W (s) + dW ) (35)

where the continuation-value function equals

V (W (s)) =

∫ ∞

s

e−γ(t−s)u (C (t)) dt (36)

Maximizing (35) with respect toC (s) subject to (34) yields the first order condition

u′ (C) ds = βe−γdsV ′ (W + dW ) dt

Simplifying and taking the limitds → 0 yields the optimality condition for the instanta-

neous gratification model:

u′ (C) = βV ′ (W ) (37)

This corresponds to equation (15) in Harris and Laibson (2004) for the case in which con-

sumers are not liquidity constrained.

Derivation of (24):

Each selfs faces the same infinite-horizon optimization problem without credit market

imperfections. Letλ denote the fraction of life-time wealthW (s) that is consumed by

self s. It is shown below thatλ is constant for iso-elastic utility (2). Using (34) and

C (t) = λW (t), life-time wealth is described by

W (t) = W (s) e−(λ−r)(t−s)

Substituting into (36) and differentiating with respect toW (s) gives

V ′ (W (s)) = λ

∫ ∞

s

e−(γ+λ−r)(t−s)u′ (C (t)) dt

So, the optimality condition (37) becomes

u′ (C (s)) = βλ

∫ ∞

s

e−(γ+λ−r)(t−s)u′ (C (t)) dt
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Differentiating with respect tos yields

u′′ (C (s))
dC

ds
= −βλu′ (C (s)) + (γ + λ− r) βλ

∫ ∞

s

e−(γ+λ−r)(t−s)u′ (C (t)) dt

= − [βλ− (γ + λ− r)] u′ (C (s))

Rearrange, assuming iso-elastic utility (2) with coefficient of relative risk aversion−u′′(C)C
u′(C)

=

ρ, to get
Ċ

C
=

1

ρ
[r − γ − (1− β) λ] (38)

whereĊ ≡ dC (s) /ds. Using C = λW and Ẇ = (r − λ) W gives Ċ/C = r − λ.

Substituting into (38) and solving forλ yields19

λ =
(ρ− 1) r + γ

ρ− (1− β)
(39)

The consumption rate is increasing in the long run discount rateγ and decreasing in the

degree of self controlβ. Note thatβ = 1 gives the exponential resultλ =
(
1− 1

ρ

)
r + 1

ρ
γ.

For log utility (ρ = 1), λ = γ/β and the consumption rate is independent of the interest

rate because of the offsetting income and substitution effects.20 Substitute (39) into (38)

and simplify to get the growth rate of consumption:

Ċ

C
=

βr − γ

ρ− (1− β)
≡ g (40)

Note thatβ = 1 yields the exponential outcomegE = 1
ρ
(r − γ). Differentiating (40) with

respect tor and further rearranging produces (24):

σ̄c =
dĊ/C

dr
=

β

ρ− (1− β)
=

1

ρ + (ρ− 1) (1− β) /β

19Alternatively, the intertemporal budget constraintW (s) =
∫∞

s
e−r(t−s)C (t) dt =∫∞

s
e−(r−g)(t−s)C (s) dt = 1

r−g C (s) with g ≡ Ċ/C could be used to getλ = r − g, which also

yields (39). Note that the condition for life-time wealthW (s) to be bounded isr > g, or equivalently

λ = γ−(1−ρ)r
β−(1−ρ) > 0, which holds because of the assumptions thatγ > (1− ρ) r andβ > 1− ρ.

20This is consistent with Barro (1999) who finds thatλ ≈ γ/β for log utility using a different solution

approach relying on several approximations.
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