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Abstract

Evidence from behavioral experiments suggests that intertemporal preferences reflect
hyperbolic rather than exponential discounting. This paper shows that consumers tend
to have a lower elasticity of intertemporal substitution under hyperbolic discount-
ing. Furthermore, in contrast to the standard case of exponential discounting with
iso-elastic utility, the elasticity of intertemporal substitution for hyperbolic consumers
depends on the duration of the change in the intertemporal relative price. In partic-
ular, lasting changes in the real interest rate are likely to generate a smaller degree
of intertemporal substitution in consumption than temporary changes. For plausible
parameter values, the extent of intertemporal substitution is about 20% smaller for a
permanent change than for a temporary change, so the effect is economically signifi-
cant.
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1 Introduction

Temptations are often irresistible. This inclination for immediate gratification reflects a
bias in intertemporal preferences towards present rewards. Behavioral evidence indicates
that intertemporal discount rates decline with the delay in rewards and are well-described
by a hyperbolic discount function. This paper builds on the seminal contributions by Laib-
son (1996, 1997) and shows that hyperbolic discounting fundamentally affects intertem-
poral substitution. In contrast to the familiar result under exponential discounting with
iso-elastic utility, the elasticity of intertemporal substitution for hyperbolic consumers de-
pends on the duration of the change in the intertemporal relative price. This holds for
both sophisticated consumers, who realize that they have dynamically inconsistent pref-
erences and rationally anticipate their future behavior, and naive consumers, who do not
foresee their future self-control problems and corresponding present bias. The result that
the elasticity of intertemporal substitution is sensitive to the duration of the intertemporal
price change is a novel theoretical finding that has important implications for the effects of
macroeconomic policy.

Intuitively, the intertemporal substitution of consumption depends on the difference be-
tween the real interest rate and the (effective) discount rate. With hyperbolic discounting
the discount rate declines as the time horizon increases and the effective discount rate is
a consumption-weighted average of the high short-run and the low long-run discount rate.
For a short change in the interest rate, future intertemporal trade-offs are not affected so the
effective discount rate remains constant. But a lasting interest rate change generally influ-
ences the effective discount rate, which alters the effect of the interest rate on intertemporal
substitution. In particular, when the income effect dominates the substitution effect of a
permanent increase in the real interest rate, the consumption rate rises, which increases the
effective discount rate towards the higher, short-run discount rate. This partially offsets the
increase in the real interest rate and diminishes the degree of intertemporal substitution.

The theoretical literature has identified several ways in which hyperbolic and expo-
nential consumers differ. Laibson (1998) provides a useful overview. One interesting
distinction is that hyperbolic discounting helps to explain the empirical anomaly that the
elasticity of intertemporal substitution is less than the inverse of the coefficient of relative
risk aversion. This was first shown by Laibson (1996) for a permanent change in the real
interest rate with sophisticated consumers in discrete time. The present paper establishes
that hyperbolic discounting has a more profound effect on intertemporal substitution. In
contrast to exponential discounting with iso-elastic utility, where the length of the change in
the real interest rate is immaterial, the elasticity of intertemporal substitution under hyper-
bolic discounting depends on the duration of the intertemporal price change. For plausible
levels of risk aversion, the elasticity of intertemporal substitution is smaller for more per-



sistent changes. This result also applies to naive consumers, to exponential utility and to
continuous time.

Another interesting new finding of this paper is the possibility of negative elasticity
values for naive hyperbolic consumers with a low degree of self control. Together with the
importance of persistence for intertemporal substitution, this provides a potential explana-
tion for the wide range of estimates of the elasticity of intertemporal substitution in the
empirical literature.

These effects of hyperbolic discounting already hold for the standard infinite-horizon
model with one liquid asset and no financial market imperfections, for which the consump-
tion behavior of hyperbolic and exponential agents is otherwise indistinguishable. The
(quasi-) hyperbolic discrete-time model with sophisticated hyperbolic consumers with iso-
elastic utility and a time-varying interest rate is presented in section 2. The main result
of the paper, namely that the elasticity of intertemporal substitution under hyperbolic dis-
counting is likely to be smaller than under exponential discounting and decreasing in the
duration of the change in the interest rate, is established in section 3. Subsequently, section
4 shows that this result is robust: It also holds for naive consumers and for exponential util-
ity. It is also relevant for more realistic ‘buffer-stock’ models and it applies to continuous
time. The empirical and policy implications are addressed in the concluding section 5.

2 Hyperbolic Discounting

Intertemporal discounting has been studied extensively in psychology. Experiments re-
garding human (and animal) behavior show that the rate of time preference depends on the
time intervalT between the moment of choice and the actual events (e.g. Ainslie 1992).
Imminent outcomes are discounted at a higher rate than payoffs in the distant future. This
can be described by the generalized hyperbolic discount funetjor) = (1 + ar) "/*
(Loewenstein and Prelec 1992). The corresponding discount fdtie+ o) decreases in
the delayr, which is consistent with behavioral data (e.g. Thaler 1981, Benzion, Rapoport
and Yagil 1989).

Hyperbolic discounting gives rise to time-variant intertemporal preferences that feature
a systematic bias towards immediate gratificatiomtertemporal choices in the distant
future are evaluated at a lower discount rate than immediate choices, which gives rise to
dynamic inconsistency. Since the currently optimal plan may no longer be optimal in the
future, it is useful to model an individual as distinct ‘temporal selves’ who are each in
control for one period. Generally, the optimal decision for the current self depends on the
anticipated behavior of future selves. A ‘sophisticated’ person has rational expectations of

1For a useful introduction to such time-variant preferences, see Rabin (1998, Section 4.D).



future behavior, whereas a ‘naive’ person wrongly believes that future selves will act in the
interest of the current self (Strotz 1956, Pollak 1968).

Laibson (1996) analyzes a standard consumption model with a ‘quasi-hyperbolic’ dis-
count function that was first used by Phelps and Pollak (1968)

to model imperfect intergenerational altruism and that mimics the hyperbolic shape
of behavioral discount functions. In particular, it is assumed that each temporal self
maximizes life-time utility

Uy =u(Cy) + 8 Z 5'u (Chy) (1)

whereu (C') is the instantaneous utility from consumptioh 3 is the degree of self-control
which reduces the ‘present bias’ in intertemporal preferenges 3 < 1);? and/ is the
intertemporal discount factof (< 6 < 1). Note that the quasi-hyperbolic specification
conveniently nests exponential discounting as the special case in which the present bias
parametep; = 1.
For analytical convenience utility is assumed to be iso-elastic with constant relative risk
aversion (CRRA): o
1
u(@)=——+ ; @)
wherep is the coefficient of relative risk aversiop ¢ 0). Each self is endowed with life-
time wealthiV; and is in control to choose the consumption leVel Each selfs is able to
invest in one (liquid) asset and faces no credit market imperfectiois<s6’; < W;. The

subsequent period, self+- 1 inherits the remaining wealth level
Ws+1 = Rs (Ws - Cs) (3)

where R, is the gross real interest rate in peried In contrast to Laibson (1996), who
considers a constant interest rafe, (= R for all s), this paper allows for a time-varying
(yet deterministic) interest rate to analyze the effect of the duration of interest rate changes
on intertemporal substitution. Finally, it is assumed that eachssislfsophisticated and
rationally anticipates the behavior of future selves. Extensions to this basic model are
discussed in section 4.

Without loss of generality, leA, denote the fraction of life-time wealti/, that is
consumed by sel, so thatC, = \,W,, where0 < A\, < 1. Then, dynamic programming
can be used to derive the intertemporal Euler equation forself

U (Cs) = Ry [As180 + (1 = Agyr) 0] ' (Copa) (4)

2The term ‘present-biased preferences’ was first coined by O’Donoghue and Rabin (1999), who analyzed

whether to do an activity now or later.
3The derivation is in appendix A.1.




This resembles the Euler equation under exponential discounting, except that the discount
factor § is replaced by the effective discount factgy = A\;1165 + (1 — A\s41) 0. The
standard exponential case is obtaineddet 1. The hyperbolic Euler equation shows that
the intertemporal substitution of consumption depends on the real intere$t eatd the
effective discount raté;. The latter is a weighted average of the short-run and long-run
discount factorg?é andd, where the weights are the next period consumption rate and
saving rate);,; and1 — \;, 1, respectively.

To find the optimal consumption rate, substitute (2),= AW, and (3) into (4), and
rearrange to get the following recursion formula fqr

A= ———7 A v (5)
(Rs™78) ""[1 = (1= 8) Aepa] " + Aot
When the horizon of the consumer is finite, the consumptionXxat@an be computed re-
cursively for any time pattern of the interest rdte using (5) and the fact that, = 1 in
the final periodl’. In the infinite-horizon model, (5) can be used to derive the effect of
temporary changes in the interest rate. In particular, suppose there is a one-period change
in v, = In R, which is the continuously compounded real interest rate. Then, the fu-
ture consumption rat&, , ; is not affected and the effect on the current consumption rate,
0Xs/0rs = R,0)s/ORs, can be found by differentiating (5), which gives after simplifying
o  p—1

or. 7)\5 (1—=2MXs) (6)

The effect of the real interest rate on the consumption rate depends on the coefficient of
relative risk aversiom. Forp > 1, an increase in the interest rate raises the consumption
rate PA;/0rs > 0) as the income effect outweighs the intertemporal substitution effect.
For p < 1, an interest rate rise reduces the consumption te/0r, < 0) as the in-
tertemporal substitution effect dominates. oe 0, both effects offset each other and
the consumption rate is independent of the interest tatg/Qr, = 0). These results hold
regardless of the degree of self-conttbl Nevertheless, there is an important difference
between exponential and hyperbolic consumers. It follows from (5) that the present-bias
under hyperbolic discountind (< # < 1) causes a higher consumption ratefor a

given level of \,,;. As a result, the quantitative effect of an interest rate change on the
consumption rate is different under hyperbolic discounting.

Before analyzing interest rate changes of various durations in the next section, it is
useful to consider the special case in which the gross real interest rate remains constant:
R, = R for all s. Then, the model reduces to the one analyzed by Laibson (1996). With
a constant interest rate, the consumer faces the same infinite-horizon problem for every
periods, so the consumption ratio satisfiss= ) for all s, where0 < \ < 1. Substituting



this into (5) and rearranging yieltls
A=1— (R [1—(1-p)A]"" (7)

This implicitly defines a unique optimal consumption ratéout typically no closed-form
solution existS. For 3 = 1, the outcome under exponential discounting emerges:

Ap =1— (R**5)"" 8)

Since hyperbolic discounters have a lower degree of self-cortral {), they consume at
a higher rate than exponential discounterss .

Equipped with the expressions for the optimal consumption rate under hyperbolic dis-
counting, the analysis now turns to intertemporal substitution.

3 Intertemporal Substitution

Intertemporal substitution by consumers depends on the intertemporal relative price of cur-
rent consumptionR. The elasticity of intertemporal substitution measures how the in-
tertemporal consumption rati@,, , /C; is affected by the gross real interest r&te

d (CtJrl/Ct) R _ dln (CtJrl/Ct)
dR Ct+1/ct dln R

g

In the case of exponential discounting € 1), it is straightforward to use (2) and (4) to
show thato = 1/p. This is the familiar result that for iso-elastic utility, the elasticity
of intertemporal substitution equals the inverse of the coefficient of relative risk aversion
p. This result holds regardless of the duration of the change in the interegt.ratader
exponential discounting, a one-period change and a permanent change in the intertemporal
price R have exactly the same proportional effect on the intertemporal consumption ratio
Ci+1/Cy. However, it turns out that this no longer holds when consumers are hyperbolic
discounters. For hyperbolic consumers, the elasticity of intertemporal substitution gener-
ally depends on the duration of the change in the real interest rate.

Consider the effect of a change in the interest fatéor = periods. LetR denote the
changing gross real interest rate in perieds {¢,t+1,...,t+7 — 1} and R the con-
stant gross real interest rate in perieds {t + 7,t + 7 + 1, ...}. This means that starting
in periodt + 7, the consumer faces an infinite-horizon problem with a constant inter-
est rateR? so that\, = ) for s € {t+7,t+7+1,..}, where\ is given by (7). For

4This expression corresponds to equation (9) in Laibson (1996).

5An exception is logarithmic utility£ = 1), in which case\ = #‘_‘Sﬁ)b



se{t,t+1,....t +1 — 1}, the optimal consumption rate, is given by the recursion for-
mula (5) withR, = R and )., = \. Using (2) and taking logs, the Euler equation (4)
becomes .

In(Ci1/Ch) = ;{lnR +Ind+1In[l — (1 —70)A\s1]} 9)

So, the elasticity of intertemporal substitution of sophisticated hyperbolic consumers in
response to a change in the gross real interestiasesqual to

_ dIn (Ciy1/C) 11 1—p Ayt

dr _P ;1_(1_5))\t+1 dr

wherer = In R denotes the continuously compounded real interest rate. In the case of
exponential discountingj(= 1), this expression reduces &g; = 1/p. However, under
hyperbolic discounting{ # 1) the elasticity of intertemporal substitutiery; depends on
d\¢y1/dr, which generally depends on the duratioof the change in the real interest rate
r. Letog, denote the elasticity of intertemporal substitution of a sophisticated hyperbolic
consumer in response to a change in the real interest cditeperiods. There is one special
case in which the elasticitys is independent of the duration Forp = 1, the consumption
rate is independent of the interest rate (see (6)), sodsthat 1/p = 1, regardless of the
duration of the interest rate change.

First, suppose the change in the interest fatiasts one period( = 1) so thatR
prevails from period+1. Then),,; = \, which is independent d&, sod)\,/dr = 0. As
a result, the elasticity of intertemporal substitution for sophisticated hyperbolic consumers
in response to a one-period changé&rims equal to

(10)

0s

1
051 = —
p

This is identical to the outcome under exponential discounting. The reason is that for a
one-period change in the interest rate, the intertemporal Euler equation (4) for hyperbolic
consumers (with effective discount factoy = A6 + (1 — X) 4) is observationally equiv-
alent to the one for exponential consumers (with discount fagtaso that it implies the
same degree of intertemporal substitution.

Now, consider a two-period change in the real interest rate £). This means thak,
and )., are given by (5), where, ., = \. S0,d)\.»/dr = 0 andd\,,,/dr is given by
(6). Subsituting this into (10) gives the elasticity of intertemporal substitution

1 p—1 1-3
052 = — —
P 2 1-(1-B) A
This shows that under hyperbolic discountifig ¢ < 1), the elasticity for a two-period

changer s, differs from the elasticity for one-period changg;, except wherp = 1. In
particular,ogs < 051 = 1/pfor p > 1, andogs > 051 = 1/p for p < 1. To understand

)\t—l—l (1 - >\t+1)

7



the intuition behind this result, consider a two-period increase in the real interegt;rate
If the income effect dominates the substitution effect( 1), the increase iR, raises
the consumption rat&, . 1, which reduces the effective discount facigras it puts greater
weight on the short run discount facted. This partially offsets the effect of the increase in
R; and thereby diminishes the degree of intertemporal substitution. But, if the substitution
effect dominatesy < 1), the consumption ratg, . ; declines, which increases the effective
discount factob ; and reinforces the effect dt; on intertemporal substitution.

Now, suppose that the change in the real interest rate lasts three peried®) ( This
means that\,, \,., and ), . are given by (5), where, ;3 = X\. Now, d\,,3/dr = 0, SO

P — Peet Dt Dz \whered),/dr is given by (6) fors € {t + 1,¢ + 2}. Substi-

iy O
tuting this into (10) yields
1 p—1 1-p OAt11
/; - P2 1—=(1=08) N Otz
This shows that the elasticity of intertemporal substitutqn is similar too g, except
for the extra term in square brackets. It can be showndhat; /0> > 0, so that this
extra term is strictly positive (also fgt = 1).° This reflects the fact that a longer change
in the interest rate has a bigger effect on the consumption rate;. Under hyperbolic
discounting, this induces a larger change in the effective discount fagtoAs a result,
053 < 0g2 < 0g1 = 1/pforp > 1, andogs > 052 > 051 = 1/pforp < 1. In
other words, the deviation of the hyperbolic elastieity, from the exponential elasticity
o = 1/pis larger for a longer duration of the real interest rate change.

This result holds more generally. In fact, it is possible to derive an analytical expression
for o5, and show that it is monotonic infor p # 1.

At (1= App1) + Avra (1= Aya)

0583 =

Proposition 1 The elasticity of intertemporal substitution of a sophisticated hyperbolic
consumer with CRRA utility (2) in response to a change in the real interest-rafer
periods is equal to

t+7—1 1—1

1 p—-1
087 = — — )\
P pProl-(1- )‘t“ iXt—;l s=t+1

O
a)\s—l—l

(11)

for 7 € {1,2,3,...}, where), is given by (5) fors € {t + 1, ...t + 7 — 1} and )\, = A,
with \ determined by (7). The elasticity , is monotonically decreasing (increasing) in
the durationr if p > 1 (p < 1). Forp =1, o5, = 1 regardless of-.

The proof of this Proposition is in Appendix A.1. Intuitively, an increase in the real in-
terest rate raises the consumption rakewhen the income effect dominates the intertem-
poral substitution effecto(> 1). A longer interest rate increase causes a larger rise in the

SDifferentiating (5) and simplifying give%—1 % by —2s) <p+ 1(1(1[3”);1“) > 0.
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consumption rate. Under hyperbolic discounting, the higher consumption iatiices
the consumer to put greater weight on the low, short-run discount faétand less weight
on the high, long-run discount factéy which reduces in the effective hyperbolic discount
factoréy. This reduction in the effective discount factor partially offsets the effect of the
interest rate increase, thereby diminishing intertemporal substitution of consumption. This
effect is stronger for a more persistent increase in the interest rate. Hence, the elasticity
of intertemporal substitutions , is decreasing in the duratienof the interest rate change
for p > 1. Similarly, when the intertemporal substitution effect dominates (1), an in-
crease in the real interest rateeduces the consumption ratewhich raises the effective
hyperbolic discount factafy and reinforces the effect of the interest rate increase on the
intertemporal substitution of consumption. Again, this effect is stronger for a more persis-
tentincrease in the interest rate, so that is increasing i for p < 1. Since the elasticity
of intertemporal substitution in response to a one-period change in the interest rage
equal to the exponential outcomg = 1/p, the monotonicy result in Proposition 1 implies
that the deviation of the hyperbolic elasticity . from the exponential elasticityy is in-
creasing in the duration of the real interest rate change’s 1 — 1/p| > |os- — 1/p|,
with strict inequality forp # 1.

It is useful to consider the limiting case as— oo, which means that the change
in the interest rate is permanent. This case corresponds to the Laibson (1996) model,
which assumes a constant interest rate. The elasticity of intertemporal substitution for a
sophisticated hyperbolic consumer in response to a permanent change in the real interest
rate equals

s L_p=1 (=P (-2 ]
poop p[l-(0=8)AN-1-5) (1=

It is possible to show thdtm,_,., o5, = 5. Under exponential discounting (= 1),
reduces tary = 1/p. But in a hyperbolic economyd(< 3 < 1), 55 < 1/pif p > 1.8
So, the qualitative effect of a permanent change is the same as for temporary changes. But
the deviation from the exponential outcomg = 1/p is larger for a permanent change.
In particular, Proposition 1 implies that fer> 1, 65 < ... < 052 < 0g1 = 1/p. This
means that the degree of intertemporal substitution becomes smaller as the persistence of
the real interest rate increases. In other words, a one-period change has the largest effect
on intertemporal substitution. Fer< 1, the results are reversed and lasting changes are
more effective.

To assess whether the difference between the ‘permanent’ elasticapnd the ‘one-

(12)

"This expression, which corresponds to equation 15 in Laibson (1996), can be derived from (10) by using
Ai+1 = AandR = R, and differentiating (7) to obtait\/dR.

8This is Proposition 5 in Laibson (1996). Or, rewrite (12) tog@egt= . L

e a-gys o fore > L

0<as<1/p.
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Figure 1: Elasticity of intertemporal substitution for sophisticated hyperbolic consumers.

period’ elasticityos; could be significant, suppose that the parameterp ate2, R =
1.028, 9 = 0.96 andg = 0.7. These values are taken from Laibson, Repetto and Tobacman
(2005), who estimatg andé with the Method of Simulated Moments, assuming a struc-
tural ‘buffer-stock’ consumption model and using US data from the Survey of Consumer
Finances (SCF) and the Panel Study of Income Dynamics (PSID). For these parameter val-
ues, a one-period change in the real interest rate givgs= 0.5, whereas a permanent
change yieldsss = 0.415. This implies that the effect on the intertemporal consump-
tion ratio is 20.5% larger for a one-period change in the interest rate than for a permanent
change. So, the difference between the effect of a temporary and a lasting change on in-
tertemporal substitution could be economically significant.

An interesting question is how long the change in the interest rate needs to last to
move away from the exponential outcormg and get close t@s. To investigate this,
the effect ofr on o, is analyzed numerically. In particulars . is computed using the
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expression in (11J. Again, the baseline parameters are= 2, R = 1.028, § = 0.96
and( = 0.7, as estimated by Laibson et al. (2005). Figure 1 shows how the elasticity
of intertemporal substutiong , for sophisticated hyperbolic consumers depends on the
durationr of the change in the real interest rate. Foe 1, the exponential outcome
or = 1/2is obtained. As the durationof the interest rate change increases, the elasticity
of intertemporal substitutions - becomes smaller and gradually convergesde= 0.415.
However, very high values af are required to get close ty. In particular, to achieve a
value ofog - that bridges half of the gap betweeg; andcs, a durationr;, of about 21
periods (years) is needed.

Using different parameter values gives qualitatively the same results, exceptfor
when the elasticity s, increases fronvy = 1/p to 65 asr rises, and fop = 1, when
os, = 1 forall 7. But the ‘speed’ of the convergence @f , to ¢ is sensitive to the
specific parameter values. In particular, higher levelg ahdd, and lower levels of
increase the duratiory, required to make up half the difference betwegn andos. For
instance, increasingfrom 0.96 to 0.99 raises;, from 21 to 38 years. Even for the lowest
plausible estimate fa¥ in the robustness check by Laibson et al. (2005, Table 5), namely
0 = 0.94, 7, is still about 17 years. This suggests that a very long duratioithe interest
rate change is needed to obtain a significant difference between the exponential elasticity
of intertemporal substitution; and the hyperbolic elasticitys .

4 Robustness

This section shows the robustness of the result that hyperbolic consumers exhibit an elas-
ticity of intertemporal substitution that depends on the persistence of the interest rate and
is smaller than for exponential consumers. Four variations on the baseline model in section
2 are considered. First, it is plausible that hyperbolic consumers may not be fully sophis-
ticated, so section 4.1 analyzes the model with naive consumers that fail to anticipate their
future self-control problems. Second, section 4.2 analyzes intertemporal substitution of so-
phisticated hyperbolic consumers with CARA utility. Third, section 4.3 discusses a richer,
buffer-stock model with stochastic income and liquidity constraints. Finally, section 4.4
considers sophisticated hyperbolic consumption in continuous time. In each of these cases,
the main results remain relevant.

%Alternatively,os . could be approximated by computing the numerical derivative (C; 1 /C;) /Ar
for small Ar using (9). ForAr = 0.0001 (i.e. one basis point), this gives virtually the same numerical
results.
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4.1 Naive Consumers

Consider the basic consumption model in section 2 with the quasi-hyperbolic discount
function, one liquid asset and no credit market imperfections, but now suppose the con-
sumer is naive and incorrectly believes that future selves will act in the interest of the
current self. More precisely, each selfnaximizes life-time utilityU; (1) and thinks that
future selves € {t + 1,¢ + 2, ...} also maximizdJ, (instead ofU;). Although the current
selft knows that it is a hyperbolic discounter with an inclination for immediate gratifica-
tion, it naively believes that future selves do not have present-biased preferences but behave
as exponential discounters & 1). The formal analysis of the model with naive hyperbolic
consumers is in Appendix A.2.

The naive selt believes that future selvese {t+ 1,¢+2,...} have the same con-
sumption rate as exponential consumers, sorttemdedfuture consumption rate equals

5\5 — )\S+1 (13)

(R§7p5)1/p + 5\s+1

Believing that future selves sat, the current naive self chooses

Mg = L (14)
(R, 780) " + A

This is theactualconsumption rate of all naive hyperbolic selves. Bet 1, (14) is equal
to the exponential outcome in (13). A lower degree of self-contret (5 < 1) increases
the naive consumption rate so thaf, > \;. This means that the naive hyperbolic con-
sumer is running down life-time wealth faster than an exponential consumer. Besides that
the naive consumption ratey ; has the familiar property that it is increasing (decreasing)
in the real interest rat&, for p > 1 (p < 1), but independent ok, for p = 1.

Suppose, as before, that the gross real interest rate dgimferiodss € {t,t+ 1,...,t + 7 — 1}
and R in periodss € {t + 7,t+ 7+ 1,...}. This means that starting in peried- 7, the
intended consumption rate equals the exponential outcome with a constant interest rate in
(8). SO\, = Agforse {t+7,t+7+1,..}. Forse {t+1,...t +7 — 1}, \, is given
by the recursion formula in (13) witk; = R. The actual naive consumption ratg ; is
given by (14) for all selves.

To analyze intertemporal substitution for naive hyperbolic consumers one can no longer
rely on the intertemporal Euler equation for consumption. The reason is that it merely de-
scribes intended rather than actual intertemporal substitution for naive consumers. Instead,
actual consumption based on (14) needs to be used. This leads to an analytical expression
for the naive hyperbolic elasticity of intertemporal substitution,, which has the same
monotonicity properties as the sophisticated hyperbolic elastigity

12



Proposition 2 The elasticity of intertemporal substitution of a naive hyperbolic consumer
with CRRA utility (2) in response to a change in the real interestraier periods is equal

to
t+7—1 7

1 —1A S\ 3
S p N+l — Al Z H (1 _ >\s) (15)
p P =M1 555 2

forT € {1,2,3,...}, where\y ., is given by (14)), is given by (13) fos € {t + 1,....t + 7 — 1},
and .., = g in (8). The elasticityr i, is monotonically decreasing (increasing) in the
durationt if p > 1 (p < 1). Forp =1, oy, = 1 regardless of-.

The proof of this Proposition appears in Appendix A.2. In the absence of a present bias
(8 = 1), the actual and intended naive consumption rates are ejuyal£ ), so (15)
reduces to the exponential outcomg = 1/p. But under hyperbolic discounting (< 1),
the naive consumption rate exceeds the exponential kate ¢ 5\5)- So,on, < 1/p
for p > 1andoy, > 1/p for p < 1, similar to the sophisticated case. In addition, the
elasticity of intertemporal substitutiony , depends on the duratianof the interest rate
change. The deviation from the exponential elastieity= 1/p is again increasing in the
duration7: |on .11 — 1/p| > |on - — 1/p|, with strict inequality forp # 1.

In the limiting case as — oo, the change in the real interest rate is permanent. For
a constant interest rate, the naive hyperbolic consumption rate follows from substituting
Mg in (8) for A1 in (14):

_ (Pl-ps\ /P
S 1— (R'*6) (16)

R

For 3 = 1 this reduces to the exponential outcome= 1 — (lepé)l/p, which is also the
intended future consumption rate of the naive hyperbolic consumer. But the self-control
problem (3 < 1) causes the naive hyperbolic discounter to consume more than intended in
every period {y > \g).X°

The elasticity of intertemporal substitution for a naive hyperbolic consumer in response
to a permanent change in the real interest rate equals

1 — 1Ay — A
oy =~ PN OF (17)
p P AE
This can be derived from (15) disn, .., on, = o2 For3 = 1, Ay = Ap so thatoy
reduces tary = 1/p. Butin a hyperbolic economy(< 3 < 1), Ay > Ag S0Gy < 1/p

0The naive consumption ratey is typically different from the sophisticated rate An exception is
logarithmic utility (» = 1), when (7) and (16) yield\ = #—_‘5@5 = Ay, SO that naive and sophisticated
behavior coincide, as was first shown by Pollak (1968).

Hyse the fact thalim, ., A\s = Ag andlim, ., Ay.s = Ay. Alternatively,C, = Ay W, and (3) imply
Cit1/Cr = R(1—Ay),S06n =1 — 1—1XN di\—;v Substitutingflj—;V = p—;l% (1 - Ay) from (16), and
rearranging gives (17).
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forp > 1landay > 1/pfor p < 1, just likeo y . for temporary interest rate changes. The
deviation from the exponential outcome = 1/p is again largest for a permanent change.
In particular, Proposition 2 implies that for> 1,6y < ... < oy2 < on1 = 1/p, while
forp<1,ony > .. >o0n2 > o0n1 = 1/p. S0, forp > 1 a one-period change has the
strongest effect on intertemporal substitution, whereag fer 1 a permanent change is
most effective.

So far, the analysis suggests that the qualitative features of the sophisticated and naive
hyperbolic elasticities s . ando y , are exactly the same. However, there is one interesting
difference. The naive elasticity of intertemporal substitution. could actually be nega-
tive for p > 1 andg sufficiently small. A lower degree of self-contrlcould increase v
so much thaty < 0 for p > 1.2 For examplep = 3, 3 = 0.2, § = 0.99 andr = 3%
imply o = —0.122. Intuitively, when the income effect dominates the substitution effect
and the degree of self-control is small enough, an increase in the interest rate could raise
current consumption so much that wealth drops and the intertemporal consumption ratio
Ci+1/Cy actually declines.

There could be a major difference between the one-period elasticity and the permanent
elasticity for naive hyperbolic consumers. In the previous example, = 0.333 versus
oy = —0.122. This illustrates that the effect on intertemporal substitution could be both
quantitatively and qualitatively different for a one-period and a permanent interest rate
change when consumers are naive hyperbolic discounters. Using the baseline parameters
p =2, R =1028 6 = 096 and = 0.7, estimated by Laibson et al. (2005), the
naive elasticities are positive and the difference is considerably smallgr= 0.5 versus
an = 0.406. Nevertheless, this implies that the effect on the intertemporal consumption
ratio for a one-period change in the interest rate is 23.2% larger than for a permanent
change. So, for plausible parameter values, temporary and lasting interest rate changes
have significantly different effects on the intertemporal substitution of naive hyperbolic
consumers.

The effect of the duratiom of the interest rate change on the naive elasticity of in-
tertemporal substitution , is very similar to the sophisticated case. For the baseline
parameterp = 2, R = 1.028, 6 = 0.96 and = 0.7, the profile ofoy - is close to the one
depicted in Figure 1. Just like in the sophisticated case, very long interest rate changes are
needed to get close to the permanent elasticity In particular, to bridge the half the gap
betweervy ; anda v again takes about 21 years for the baseline parameters.

This section has shown that the elasticities of intertemporal substitution for naive and
sophisticated hyperbolic consumers display the same qualitative features, with one excep-
tion. Naive hyperbolic consumers could actually have a negative elasticity of intertemporal

2More formally, using (16) and (17) givesms .oony = 1 — (p—1)/pAg, S0OGy < 0 for p >
1/ (1= Ag) > 1 andg close to0.
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substitution whemp > 1 andg is small. Besides that, intertemporal substitution by naive
and sophisticated hyperbolic consumers is quite similar. Compared to exponential dis-
counting, the elasticity of intertemporal substitution for hyperbolic discounting is generally
different, but there are two exceptions. First, for logarithmic utilgy< 1) the consump-

tion rate ) is independent of the real interest rdtesooy . = 05, = op = 1. Second,

for a one-period change in the real interest rate; = 051 = o = 1/p. However, for

p # 1 andr # 1, Propositions 1 and 2 imply thaty , andos . always differ from the
exponential outcomer = 1/p and that they are monotonic in the duratioof the inter-

est rate change. For the plausible case in which 1, oy, < og andog, < og, which
means that there is less intertemporal substitution with hyperbolic than with exponential
discounters.

4.2 CARA Utility

The results so far have been derived for the constant relative risk aversion utility (2) and it
is natural to wonder to what extent the results extend to the constant absolute risk aversion
(CARA) utility function

u(C) = _%6—90 (18)

whered is the coefficient of absolute risk aversighx 0). To derive optimal consumption
with CARA utility, postulate that consumption by seliequalsC, = A\,W, + k. Then it

is easy to show that the Euler equation (4) continues to hold. To derive the optiraatl
ks, substitute (18)C, = \,W, + x, and (3) into (4), and rearrange to get the following
recursion formulas:

/\s+1Rs
As = ————— 19
1+ >\s+1Rs ( )
1 In Rs + In [AS_A,_lﬁ(; + (]. - A5+1) 5]
= - 20
N T TR, T 0 (1+ \oat RRy) (20)

This shows that a lower degree of self-contfahcreases autonomous consumptQn

In the special case in which the real interest rate remains congtant, R for all s,
the consumer faces the same infinite-horizon problem for every perisd)\, = )\ and
ks = k for all s. Substituting this into (19) and (20) and rearranging yields

X:leamkz_m5+muﬁ—nﬁ+ﬂ 21)
R 0(R—1)

Thus, with CARA utility there is a closed-form solution for optimal consumption under hy-
perbolic discounting, as first shown by Maliar and Maliar (2004) for a model with stochas-
ticincome shocks. Fg¥ = 1, the outcome under exponential discounting is obtained with

kg = —%@. Since hyperbolic discounters have a lower degree of self-cortral {),
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they have higher autonomous consumptien ), while their consumption rate is not
affected { = \p).

As before, consider a change in the gross real interestratdimet for ~ periods such
thatR, = Rfors € {t,t +1,...,t +7—1}andR, = Rfors € {t +7,t +7+1,..}. To
determine the effect on intertemporal substitution of consumption, use (18) and rearrange
the Euler equation (4) to get

Con _ 1

Cy 0C,

This is very similar to (9), except that the constant coefficient of relative risk avepsion
has been replaced by the relative risk aversion meagure Although the term in curly
brackets is the same as for CRRA ultility, interest rate changes also affect relative risk aver-
siondC; under CARA utility, which could result in qualitatively different outcomes, even
with exponential discountingd(= 1). Unfortunately, the fact that relative risk aversion is
no longer constant greatly complicates the derivation of analytical results, so a numerical
analysis is performed instead.

The level of consumptiot; = \;W; + k; can be obtained using the recursion formulas
(19) and (20), with\, = X andx, = R for s € {t +7,t +7+1,..}, wherel andx are
given by (21). The intertemporal consumption rafip , /C; follows from (22) and the
elasticity of intertemporal substitutians , for a change in the real interest rate of duration
T is computed using the numerical derivatitden (Cy,, /C;) /Ar for Ar = 0.0001.13

First, consider the baseline parameté&rs= 1.028, § = 0.96 and3 = 0.7, use the
normalizationl = 100 and takef = 0.45353, which for a constant interest rate implies a
level of relative risk aversiofiC; = 2, using (21). For these baseline settings, the elasticity
of intertemporal substitutiomrs . under CARA utility looks very similar to the CRRA
outcome in Figure 1, withrg; = 0.507 but with an asymptotic minimum of 0.308.

However, the outcome for the elasticity of intertemporal substitutipn for exponen-
tial discounters@§ = 1) is quite different with CARA utility. In particulary  , is generally
no longer independent of the duratiorof the interest rate change. Intuitively, the dura-
tion 7 generally affects consumptiari,, which determines relative risk aversiée’, and
thereby the elasticity of intertemporal substitution. For the baseline settipgsis non-
monotonic withoz; = 0.591, a maximum ofrz 17 = 0.598 and an asymptotic minimum
of 5 = 0.551. Nevertheless, it is still the case that the elasticity of intertemporal substi-
tution is smaller for sophisticated hyperbolic discounters than for exponential discounters:

(MR+Ind+In[l—(1—B) Au]} +1 (22)

OFE,r > 08,1+
So, for the baseline parameterg, continues to be decreasing i with a larger
range tharv g ,, while being less thany .. To establish whether these results continue

13As pointed out in footnote 9, using the numerical derivative with = 0.0001 to computes s - gives
very accurate results for CRRA utility.
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to hold for other reasonable parameter values, a numerical analysis has been conducted
for two different parameter spaces. The ‘full’ parameter space consistscof0.5, 0.9,
d € [0.94,0.98], R € [1.004,1.052] and¢ € [0.001,1.555]. The latter amounts to a
range for relative risk aversion .77, 5] under the baseline parameters with a constant
interest rate. The range fét implies a real interest rate between 0.40% and 5.1%, and itis
based on a one standard error deviation from the baseline estimate in Laibson et al. (2005).
The ranges fog andd roughly correspond to the 95% confidence intervals based on the
standard errors estimated by Laibson et al. (2005). The ‘core’ parameter space is defined
by 5 € [0.6,0.8], § € [0.95,0.97], R € [1.014,1.040] and# € [0.0864, 1.1878]. The latter
corresponds to a range for relative risk aversiofilod]. Besides that, the core parameter
space has a lower mean-preserving spread around the baseline parametedsaiod 2
compared to the full parameter space.

For each parameter space, 100,000 uniform random draws were madeé,dt and
6.1* For each randomly drawn parameter configuration, the elasticities of intertemporal
substitutiono s, ando g, were computed numerically far € {1,2,...,500} and it was
checked whether the following three properties WSl¢h) o 5 . is monotonically decreasing
in 7; (b) o5 has a larger range overthanoy . such thatmax, o, — min, og, >
max, og, —min, og,;, and (C)og . is smaller thaw - (i.e. og . > 0g.). This gives rise
to the following findings.

Numerical Result 1With CARA utility, the elasticity of intertemporal substitution; - in
response to a change in the real interest rabé  periods for a sophisticated consumer
with hyperbolic discounting

(a) is monotonically decreasing infor 73.3% of the full parameter space and 76.5% of
the core parameter space.

(b) has a larger range overthan for a consumer with exponential discountipg= 1) for
70.4% of the full parameter space and 78.4% of the core parameter space.

(c) is smaller than for a consumer with exponential discountihg-(1) for 99.0% of the
full parameter space and 100% of the core parameter space.

This shows that the three properties frequently hold for the full parameter space and are
even more likely to be satisfied for the core parameter space.
Another interesting finding is that the elasticity of intertemporal substitution could be

14Since the results in Laibson et al. (2005) suggest a strong negative correlation between the estimates of
0 andé, the numerical analysis was also conducted for uniform random dragsipfz andé with a perfect

negative correlation betweghandd, but the findings were quite similar.
15Since CARA utility could lead to negative levels of consumption, randomly drawn parameter configura-

tions for whichC; < 0 for any s were discarded. This occurred for only 0.19% of the full and 0% of the core
parameter space.
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negative with CARA utility, for both hyperbolic and exponential consumers. In fact, for
sufficiently larger, o0s, < 0 andog, < 0 for 30.1% and 26.2% of the full parameter
space and 14.8% and 7.3% of the core parameter space, respectively. This outcome is
more common for lower values @t andf. The fact thav g . < 0 holds more frequently
thanog . < 0 is not surprising since generally; . > os, by Numerical Result 1(c).

To summarize the main findings, the elasticitity of intertemporal substitutignfor
sophisticated hyperbolic consumers with CARA utility is typically declining in the dura-
tion 7 for reasonable parameter values. Although the elastigity for consumers with
exponential discounting is no longer constant for CARA utility, the range ovemains
larger for the hyperbolic elasticitys . for a large majority of plausible parameter con-
figurations. The result that the elasticity of intertemporal substitutipnfor hyperbolic
discounters is less than for exponential discounters continues to hold for virtually all rea-
sonable parameter values with CARA utility.

4.3 Buffer Stock Model

So far, the paper has considered a deterministic model in which consumers have access to
perfect credit markets. In practice, income is stochastic and consumers face liquidity con-
straints. In particular, suppose that labor incarpes stochastic and that the consumer can-

not borrow against uncertain future income so thaK X, whereX; is cash-on-hand in
periodt, which satisfies\;, = R (X, ; — C;_1) + Y;. Harris and Laibson (2001) show that

the hyperbolic Euler relation for sophisticated consumers in such a ‘buffer-stock’ model
similar to Carroll (1997) equal¥:

u'(c(Xy) 2 B R (Xi41) B + (1 = ¢ (Xiq1) 0)] v (¢ (Xi11)) (23)

wherec (X;) is the consumption function. For periods in which the liquidity constraint
is non-binding so that (X;) < X;, (23) holds with equality. This resembles the Euler
equation ?7?), but the fraction of life-time wealth consumedis now replaced by the
marginal propensity to consume out of cash-on-hdnid,, ) because of the borrowing
constraint.

Intertemporal substitution in response to a permanent change in the real interest rate is

given by
Oln (Cpy/Cy) 1 1 (1-5) Oc (Xi41)
or o pl=(1-0)¢ (Xen) or
which is the buffer-stock equivalent of (10). Fer> 1, the income effect dominates the

substitution effect, s6¢ (X,1) /Or > 0andss < 1/p (Laibson 1998, p. 867). Following

16To be precise, this is the ‘strong’ hyperbolic Euler relation formally derived by Harris and Laibson
(2001) and it assumes that the consumption funetiohis Lipschitz continuous, which holds in a neighbor-
hood of 3 = 1.
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the same approach as in section 3, (23) can be used to find ¢hat1/p whenever the
consumer is not liquidity constrained. As a result, the conclusions of section 3 hold more
generally.

4.4 Continuous Time

As a further robustness check, consider a continuous-time version of the baseline model in
section 2. Harris and Laibson (2004) have adapted the quasi-hyperbolic discount function
to continuous timé! They assume that time can be divided into the ‘present’ and the ‘fu-
ture’, which arrives with a stochastic hazard rate. The discount function is exponential and
the additional present bias fact@rapplies to future utility flows. As the hazard rate in-
creases, the model converges to an ‘instantaneous gratification’ model in which the present
is infinitesimally short.

To complete the description of the continuous-time version of the basic model, the
change in life-time wealthl (¢) is given by

W =7rW(t) - C(t)

wherel = dWV (t) /dt. Finally, following Harris and Laibson (2004)it is assumed that
B >1-—pandy > (1 — p)r. These conditions are satisfied for plausible parameter values
for p, 3, v andr.

The elasticity of intertemporal substitution in response to an unanticipated permanent
change in the real interest ratequals®

__dcjc 1

T A T (-8B
For 5 = 1 the familiar exponential resulty = 1/p emerges. With hyperbolic discounting
(B < 1),0. < 1/pfor p > 1, just like in the discrete-time model with sophisticated
consumers. In fact, rewriting (12) gives = p+(p—1)(1i5\)(1—,8)/ﬁ’ which shows tha#. is
very similar togs. Although the deviation from the exponential outcomgeis larger in
continuous time (to be precisg,. — 1/p| > |os — 1/pl|), the quantitative difference with
the discrete-time results tends to be small. For instance; fer3, 5 = 0.6, 6 = 0.9 and
r = 4%, the discrete-time model gives; = 0.236, whereas. = 0.231 in the continuous-
time model. For logarithmic utility{ =1),6. =65 =g = 1.

The ‘instantaneous’ elasticity of intertemporal substitution in response to an unantici-

pated, infinitesimally short change in the real interest rdte from r to r, is again equal

(24)

17Barro (1999) and Luttmer and Mariotti (2003) present alternative approaches to modeling hyperbolic dis-
counting in continuous time, but the model by Harris and Laibson (2004) provides greater analytical tractabil-

ity, with closed-form solutions for iso-elastic utility.
18The results for the continuous-time model are derived in appendix A.3.
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to the exponential elasticity: _
5= 3/C_1 (25)
drs p
As a result, in the continuous-time hyperbolic model the elasticity of intertemporal substi-
tution also generally depends on the duration of the intertemporal price change. In particu-
lar, for the empirically likely case in which > 1, the degree of intertemporal substitution

is smaller for more persistent changes.

5 Conclusion

Intertemporal substitution plays a key role in macroeconomics. For instance, it affects
the propagation mechanism in micro-founded business cycle models and it determines the
effectiveness of tax policies. This paper establishes that the elasticity of intertemporal
substitution exhibits novel features when consumers have a hyperbolic instead of an expo-
nential discount function. It is well-known that under exponential discounting the elasticity
of intertemporal substitution equals the inverse of the coefficient of relative risk aversion
for iso-elastic utility. This holds regardless of the length of the change in the intertemporal
price ratio. However, under hyperbolic discounting the intertemporal substitution elasticity
typically depends on the duration of the intertemporal price change.

For a one-period change in the real interest rate, the elasticity of intertemporal substitu-
tion with iso-elastic utility equals the inverse of the coefficient of relative risk aversion for
both exponential and hyperbolic discounters. Essentially, this is the structural preference
parameter that measures the curvature of the intertemporal indifference curves. However,
for a persistent change in the interest rate, the degree of intertemporal substitution is gener-
ally different for hyperbolic consumers because the effective discount rate is affected. The
reason is that a persistent interest rate change typically influences the future consumption
rate, which shifts the weight between the high short-run and the low long-run hyperbolic
discount rate. This adjustment in the effective discount rate alters the effect of a lasting
interest rate change on intertemporal substitution. For plausible values of risk aversion, the
elasticity of intertemporal substitution for hyperbolic consumers is monotonically decreas-
ing in the duration of the change in the real interest rate.

These results hold both for sophisticated hyperbolic discounters, who rationally antic-
ipate the dynamic inconsistency of their preferences, and for naive consumers, who do
not realize that the ‘present bias’ in their intertemporal preferences continues to exert it-
self in the future. In addition, the finding that the elasticity of intertemporal substitution
depends on the persistence of the interest rate change applies not only to the standard quasi-
hyperbolic discrete-time model but also to the continuous-time ‘instantaneous gratification’
model. It appears to be a fundamental property of hyperbolic discounting that already holds
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for a basic model with a single liquid asset and perfect credit markets. So, it does not rely
on the presence of (partial) commitment devices, such as illiquid assets, that is usually
required to distinguish (sophisticated) hyperbolic from exponential consumers. The result
is also relevant in more realistic ‘buffer-stock’ models that feature stochastic income and
liquidity constraints. Although the focus of the paper is on the intertemporal consump-

tion decision, a similar argument applies to the intertemporal substitution of leisure. It

appears to be a robust feature of hyperbolic discounting that the elasticity of intertemporal
substitution depends on the duration of the intertemporal price change appears.

There is a large empirical literature on intertemporal substitution, including Mankiw,
Rotemberg and Summers (1985), Hall (1988), Attanasio and Weber (1995) and Mulligan
(2002). Such empirical studies have obtained a remarkably wide range of estimates for
the elasticity of intertemporal substitution, with a typical parameter value of about 0.3.
Although a large variety of parameter estimates is difficult to reconcile with exponential
discounting, it is natural to get different estimates under hyperbolic discounting, depending
on the persistence of the interest rate in the sample.

In addition, it is not unusual to find empirical elasticity estimates that are negative. This
appears at odds with the standard model of exponential discounting. However, a negative
elasticity of intertemporal substitution is consistent with the behavior of naive hyperbolic
consumers with iso-elastic utility with plausible risk aversion, a sufficiently low degree
of self control and a persistent interest rate change. For exponential utility, a negative
elasticity of intertemporal substitution is more likely to occur with hyperbolic discounting
than exponential discounting.

Thus, this paper shows that hyperbolic discounting could explain empirical findings on
intertemporal substitution that are puzzling under exponential discounting. In addition, the
result that the hyperbolic elasticity of intertemporal substitution depends on the persistence
of the intertemporal price provides a new testable implication of hyperbolic discounting
for iso-elastic utility. Although it appears interesting to pursue this further, calibrations
indicate that a very long duration of the intertemporal price change is required to obtain
a difference with the exponential elasticity of only 0.02, which is much smaller than the
standard errors of typical empirical elasticity estimates. So, an empirical test that exploits
the duration-dependence of the hyperbolic elasticity is probably not practicable.

However, this does not mean that the differences in intertemporal substitution between
exponential and hyperbolic discounting are immaterial. Quite to the contrary. For plausible
parameter values, the effect of a permanent price change on intertemporal consumption
is about 20% larger for exponential discounters than for hyperbolic discounters. This is
also the difference between the effect of a one-period and a permanent price change under
hyperbolic discounting. Clearly, such a magnitude is economically significant.

This has important implications. First, models that assume exponential discounting
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overstate the relevance of intertemporal substitution effects when agents are in fact hyper-
bolic. For instance, predictions of the benefits of policy measures such as tax cuts are likely
to be much rosier when they are based on policy models with exponential instead of hyper-
bolic discounting. Second, hyperbolic intertemporal substitution effects are significantly
stronger for temporary policy measures than for permanent ones. This means that empir-
ical estimates based on a temporary (or experimental) policy could seriously overstate the
effectiveness of permanent implementation of the policy.

All in all, this paper finds interesting new results on intertemporal substitution under
hyperbolic discounting.
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A Appendix

This appendix contains the derivation of the basic hyperbolic model with sophisticated
consumers presented in section 2. In addition, it derives the results for naive hyperbolic
consumers, presented in section 4.1, and the continuous-time version of the model, dis-
cussed in sectiofl?.

A.1 Sophisticated Consumers

This section provides a derivation of the quasi-hyperbolic intertemporal Euler equation (4)
for sophisticated consumers, and the proof of Proposition 1.

Derivation of (4):
Each selfs faces a similar infinite-horizon optimization problem. Using (1), the optimal
life-time utility of self s can be written as

Us =u(Cy) + SOV Weig;s+ 1) (26)

where o
V(Waris+1) = Y 6 Hu )

i=s5+1
Using (3), the continuation-value function for selves {¢,t + 1, ...} satisfies

VIWeriss +1) = u (A Wirn) + 0V (Ror (1 = M) Wigrs s +2) (27)
Maximizing (26) with respect td’; subject to (3) yields the first order condition
U (Cy) = RSV (Wesrys +1) (28)
Differentiate (27) and substitute fof' (1W,,; s + 2) using (28) to get

U (Cs) = RyB6[Asatt (Copr) + Ropr (L= A1) OV (Wipa; 5 + 2)]
- Rs [>\$+155 + (1 - >‘$+1) 5] u’ (Cs—|—1)

This is the quasi-hyperbolic intertemporal Euler equation (4) for sophisticated consumers.
[

Proof of Proposition 1:

. : H dls _ OAs s dXs
First, for a change im of durationr, s = 5= + g = for s € {t,...t+71—1},

whereg—ij is given by (6) and”;% = 0. So, by recursive substitution one can write

dh\p1 OAga +3>\t+1 OAiy2 +3>\t+1 O ONiis N Oy ONiyr—2\ ONipr1
dr 8r 8)\t+2 87’ 8)\t+2 8)\t+3 87’

B a)\t+2 i a)\t+7—1 or
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01
A 1—A
Do + Ags ( t+3)

Oyt . O yr—2 ) }

ONi1 ONigo
OMiy2 ONys

-1
= pT [)\t—i-l (1= Xg1) + Ao (1 — Aiyo)

*

o+ /\t+7'—1 (]- - /\t+T—1) (a)\t+2 8/\t+ -1

tr—1 i—1
_p=1 1y OAs
e [Zw M( %1)]

i=t+1 s=t+1

Substituting this into (10) yields (11).
To prove monotonicity, use (11) to write

p—l 1—ﬁ t+7—1 a/\s

0Sr41 — 087 = — At (T — Agr

s=t+1

Note that) < )\;,, < 1, and differentiate (5) and simplify to get

O\ 1A (1= (1= 8) Ass }>O
YT D W LA T ) W

So, under hyperbolic discounting € 5 < 1), 05,41 < og,if p > 1, andog 41 > o5,
if p <1, for any durationr € {1,2,...}. Forp=1,05,.1 =0g, =1forall 7. B

A.2 Naive Consumers

This section derives the results for naive consumers, which are discussed in section 4.1. In
particular, it provides a derivation of (13) and (14), and the proof of Proposition 2.

Derivation of (13) and (14):

The naive hyperbolic consumer maximizes (1) believing that future selves are exponential
discounters without present-biased preferences. So, the naivensakimizesU; in (26),
whereV (W,1,) is now the anticipated continuation-value function for the future seif

t + 1. All future selvess € {t+1,t+2,...} are believed to maximizé&/, with 5 =

1. Substituting3 = 1 into (5) gives the intended consumption ratein (13) for future
selves, which corresponds to the exponential outcome. So, the anticipated continuation-
value function satisfies

VW) =u (5\s+1Ws+1> + 0V (Rs+1 (1 - )\s+l) Wei1;s+ 2) (29)

fors e {t,t + 1,t + 2,...}. The first order condition for the current self= ¢ is still given
by (28). However, for future selvese {t + 1,¢ + 2, ...}, which are believed to set = 1,
the anticipated first order condition is

u (Cs) = ROV (Wi, s+ 1) (30)
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Differentiating (29) and substituting far’ (WW,.2; s + 2) using (30), (28) yields

W (Cy) = Rif6 | Mepatt (Copr) + Res (1 - 5\t+1> V' (Wipost + 2)]
= Rtﬁéu' (Ct+1> (31)

To find the naive consumption rate, substitute (2),; = A1 W1 and (3) into (31), and
rearrange to get the recursion formula (18).

Proof of Proposition 2:
To compute the intertemporal consumption ratla ; /C; it is no longer possible to rely
on the Euler equation (31), because it only describes intended consumption. To obtain
the actual intertemporal consumption ratio, Use = A\ ;W and (3) to getCy,,/C; =
M1 R (1 — X)) /A Using (14) to getl — \) /A = (Rl‘f’ﬁd)l/” /A\i41, and taking logs
yields:
I (Chy1/Ch) = In Nyy — In Ny + % (InR+1Ing+1nd) (32)

Differentiating with respect te = In R gives the elasticity of intertemporal substitution
for naive hyperbolic discounters:
_ dln (C’H_l/ct) - 1 i 1 dAt+1 1 d;\t—l—l

- — = 33
dr p o Ay dr Aeyr  dr (33)

ON =
For a change in the real interest ratef durationr, A, = g, A, is given by (13) fors €
{t+1,..,t+7—1}, and )., is given by (14). To derivery ., expressions are needed
for O\y.s/dr, ONg/dr, N 141/ONso @NAON, /Oy fOr s € {t +1,...,t + 7 — 1}. Using
(14) and (13) OAy../dr = S1Ay, (1—Ay,) anddA,/dr = 15, (1 - )\> similar
to the sophisticated case in (6). Differentiating (14) and (13) with respekf toand
simplifying gives

% = (1= Ayss1) /\5““
OAiy2 Avy2
A <\ A
N _ (1 —>\5> ha
8)\5+1 )\erl
Substituting these results and simplifying yields:
1 d\ya 1 i1 +85\t+1 o +85\t+1 iy Oeis .
5\t+1 dr 5\t+1 or 85\t+2 or 85\1t+2 8:\t+3 or

. (ag\ﬂrl . s 8%\#72) 35\t+r1]
OAiy2 OAtir1 or
= % [(1 — :\t+1> + <1 - :\t—l—l) (1 — 5\t+2> + (1 — 5\t+1> <1 — :\t+2> (1 — 5\t+3> + ...
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ot (t1+7—_1xt+12 ok (1 _ th_l)}
LSS [H (1—&)]

P i=t+1 Ls=t+1
Similarly,
I dAnin _ 1 OAN, 11 +a>\N,t+1 o +a>\N,t+1 2 Oiis .
>\N,t+1 dr )\N,t+1 or 85\t+2 or 85\t+2 axt+3 or
OMNa1 Ohvr  Ohrz Odvir
ONir2 OAiys ONpry OF

= % [(1 —Anit1) + (1= Anes1) <1 - 5‘t+2> + .

o (1= Anga) * (1 - :\t+2> * Lk (1 - 5\t+7_1)]

p—ll—)\7 t+7—1 i ~
- g e

P i=t+1 Ls=t+1

Substituting this into (33) and rearranging:

1 1 11—\ t+7—1 7 ~
oy, =t 21 {1_¢} > I (-4
P P L= 1500 Sin
Simplifying gives the naive elasticity of intertemporal substitution for an interest rate
change ofr periods in (15).
To prove monotonicity, use (15) to write

2 LAN 1 — 5\t+1 axd N
0S7+1 — 081+ = — N 1— )\s
P 1 — A

s=t+1

Note that) < A\, < 1for s € {t+1,...,t+ 7}, and use (14) and (13) to see that;,, >
A1 under hyperbolic discounting (< 3 < 1). S0,05+41 < 0g,if p>1,andog 1 >
os.if p <1, forany durationr € {1,2,...}. Forp =1,05,41 =o0s, = 1forall. &

A.3 Continuous Time

This section derives the results for the continuous-time version of the basic hyperbolic
model. First, there is a heuristic derivation of the optimality condition. For a rigorous
derivation, see Harris and Laibson (2004) who consider a more general model with labor
income, liquidity constraints and stochastic asset returns. Subsequently, the elasticities of
intertemporal substitutio,. ando . are derived.
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Derivation of optimality condition:
Suppose first that each period lagts The continuous time model is the limiting case
ds — 0. The change in life-time wealth’ (s) for self s is given by (cf (3) where? = e")

AW = (r(s) W (s) = C(s))ds (34)

The optimal life-time utility can be written as the sum of the present utility flow and the
value of future utility flows discounted by the long run discount ratend the present-
biased discount factag? (cf (26) whered = e¢=7):

U(s) =u(C(s))ds+ Be 1™V (W (s) + dW) (35)
where the continuation-value function equals
Vv ) = [T et (e m) (36)
Maximizing (35) with respect t@’ (s) subject to (34) yields the first order condition
u' (C)ds = Be "V (W 4 dW) dt

Simplifying and taking the limitis — 0 yields the optimality condition for the instanta-
neous gratification model:
u' (C) = gV (W) (37)

This corresponds to equation (15) in Harris and Laibson (2004) for the case in which con-
sumers are not liquidity constrained.

Derivation of (24):
Each selfs faces the same infinite-horizon optimization problem without credit market
imperfections. Let\ denote the fraction of life-time wealth’ (s) that is consumed by
self s. It is shown below that\ is constant for iso-elastic utility (2). Using (34) and
C (t) = AW (t), life-time wealth is described by

W (t) = W (s) e"P=9)

Substituting into (36) and differentiating with respecito(s) gives

V(W (s) = A / ey (C () dt

s

So, the optimality condition (37) becomes

u' (C(s)) = BA / " e trnt=s),y (C(t))dt

s
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Differentiating with respect te yields

u’ (C (s)) % = —BX\(C(s)+ (v+A—71)B) / A8y (C () dt

= —[BA=(v+X=7)]u (C(s))

Rearrange, assuming iso-elastic utility (2) with coefficient of relative risk aver; C))C =
p, to get .
C 1
—=—-r—v—(1-0)A 38
G === (=8 (38)

whereC' = dC (s) /ds. UsingC = AW andW = (r — \) W givesC/C = r — \.
Substituting into (38) and solving for yields'®

—1
p—(1-75)

The consumption rate is increasing in the long run discountyated decreasing in the
degree of self contrgb. Note that3 = 1 gives the exponential result= (1 — % r+ })7.
For log utility (» = 1), A\ = v/ and the consumption rate is independent of the interest
rate because of the offsetting income and substitution effécBibstitute (39) into (38)
and simplify to get the growth rate of consumption:

¢ Br—n

c p—(1-p)
Note thats = 1 yields the exponential outcomg, = % (r — ). Differentiating (40) with
respect to- and further rearranging produces (24):

g (40)

&_dc'/c_ 3 B 1
Codr o p=(1-0) p+(p-1)1-5)/8

Alternatively, the intertemporal budget constrairi (s) = [FeT¢OC () dt =

[T e rm9t=C (s)dt = L-C(s) with g = C/C could be used to gek = r — g, which also
yields (39). Note that the condition for life-time weallif (s) to be bounded is > g, or equivalently
A= VBj((l;”;)" > 0, which holds because of the assumptions that (1 — p) r andj > 1 — p.

20This is consistent with Barro (1999) who finds thate /3 for log utility using a different solution

approach relying on several approximations.
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