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Abstract We consider a system with Poisson arrivals and i.i.d. service times. The
requests are served according to the state-dependent processor-sharing discipline,
where each request receives a service capacity which depends on the actual num-
ber of requests in the system. The linear systems of PDEs describing the residual and
attained sojourn times coincide for this system, which provides time reversibility in-
cluding sojourn times for this system, and their minimal non-negative solution gives
the LST of the sojourn time V (τ) of a request with required service time τ . For the
case that the service time distribution is exponential in a neighborhood of zero, we
derive a linear system of ODEs, whose minimal non-negative solution gives the LST
of V (τ), and which yields linear systems of ODEs for the moments of V (τ) in the
considered neighborhood of zero. Numerical results are presented for the variance of
V (τ). In the case of an M/GI/2-PS system, the LST of V (τ) is given in terms of
the solution of a convolution equation in the considered neighborhood of zero. For
service times bounded from below, surprisingly simple expressions for the LST and
variance of V (τ) in this neighborhood of zero are derived, which yield in particular
the LST and variance of V (τ) in M/D/2-PS.
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1 Introduction

Processor Sharing (PS) systems have been widely used in the last decades for mod-
eling and analyzing computer and communication systems, cf. for example [2, 4, 5,
7, 9, 11, 12, 17, 18], and the references therein. In this paper we deal with sojourn
times of requests in a node, where the requests are served according to the following
generalized processor-sharing discipline, which we call State-Dependent Processor
Sharing (SDPS) discipline, cf. [8, 9]. If there are n ∈ N := {1,2, . . . } requests in the
node then each of them receives a positive service capacity ϕ(n), i.e., each of the n

requests receives during an interval of length �τ the amount ϕ(n)�τ of service. In
the case of ϕ1(n) = 1/n, n ∈ N, we obtain the well known single-server PS system,
cf. for example [7, 18], in the case of ϕ1,k(n) = 1/(n + k), n ∈ N, we have a single-
server PS system with k ∈ N permanent requests in the system, cf. [15, 19], in the case
of ϕr(n) = min(r/n,1), n ∈ N, an r-server PS system, where all requests are served
in a PS mode, but each request receives at most the capacity of one processor, cf. [8,
p. 283], [3, 4, 9], in case of ϕr,k(n) = min(r/(n+k),1), n ∈ N, an r-server PS system
with k ∈ N permanent requests, in the case of ϕ∞(n) = 1, n ∈ N, an infinite-server
system.

A system working under the SDPS discipline and where the requests arrive ac-
cording to a Poisson process of intensity λ, the required service times are i.i.d. with
df. B(x) := P(S ≤ x), where S denotes a generic service time, and finite mean
mS := ES and independent of the arrival process is denoted by M/GI/SDPS, the
corresponding r-server PS system is denoted by M/GI/r-PS.

Networks with nodes working under the SDPS discipline are investigated in
[1, 4–6, 8, 10, 20]. In particular, for the M/GI/SDPS system some basic results are
known, cf. [8], which we will use and therefore shortly review in the following. Let
N(t) be the number of requests in the system at time t , Y ∗(t) := (Y ∗

1 (t), . . . , Y ∗
N(t)(t))

the vector of the residual service times of the N(t) requests in the system at time t ,
ordered randomly, and Ỹ ∗(t) := (Ỹ ∗

1 (t), . . . , Ỹ ∗
N(t)(t)) the vector of the attained ser-

vice times of the N(t) requests in the system at time t , ordered randomly. The vec-
tor processes (N(t);Y ∗(t)), t ∈ R, and (N(t); Ỹ ∗(t)), t ∈ R, are Markov processes.
The M/GI/SDPS system is stable, i.e., there exist unique stationary processes
(N(t);Y ∗(t)), t ∈ R, and (N(t); Ỹ ∗(t)), t ∈ R, if and only if

∞∑

n=0

n∏

�=1

�

�ϕ(�)
< ∞, (1.1)

where � := λmS denotes the offered load, cf. [8] (7.18). We assume in the follow-
ing that the system is stable and in steady state, i.e. that (1.1) is satisfied and that
(N(t);Y ∗(t)), t ∈ R, and (N(t); Ỹ ∗(t)), t ∈ R, are stationary Markov processes.
Then the stationary occupancy distribution p(n) := P(N(t) = n), n ∈ Z+, as well
as the stationary distributions of (N(t);Y ∗(t)) and (N(t); Ỹ ∗(t)) on {N(t) = n} are
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given by

p(n) =
( ∞∑

m=0

m∏

�=1

�

�ϕ(�)

)−1 n∏

�=1

�

�ϕ(�)
, (1.2)

P
(
N(t) = n;Y ∗

1 (t) ≤ y1, . . . , Y
∗
n (t) ≤ yn

)

= p(n)

n∏

�=1

BR(y�) = P
(
N(t) = n; Ỹ ∗

1 (t) ≤ y1, . . . , Ỹ
∗
n (t) ≤ yn

)
, (1.3)

where

BR(x) := 1

mS

∫ x

0

(
1 − B(ξ)

)
dξ, x ∈ R+, (1.4)

denotes the stationary residual service time distribution having the density bR(x) =
(1 − B(x))/mS , x ∈ R+, cf. [8] (7.19) for the case of phase-type distributed service
times, [20] for the general case. For the sojourn time V of an arbitrary arriving request
with required service time S, from Little’s law and (1.2) we find

EV = 1

λ

∞∑

n=0

np(n) = mS

∞∑

n=0

1

ϕ(n + 1)
p(n). (1.5)

For the conditional sojourn time V (τ) of a request with required service time τ ∈ R+

EV (τ) = τ

mS

EV, (1.6)

cf. [8] (7.27). More generally, for τ ∈ R+, k ∈ N we have the estimate

τ k

( ∞∑

n=0

1

ϕ(n + 1)
p(n)

)k

≤ E
[
V k(τ)

] ≤ τ k
∞∑

n=0

(
1

ϕ(n + 1)

)k

p(n), (1.7)

cf. [5] Theorem 1.1. It seems that in the case of the general M/GI/SDPS system for
V (τ) and V besides (1.5)–(1.7) there are known only asymptotic results for heavy
tailed service times, cf. [9]. However, for special cases several results and numerical
algorithms are well known. We mention only a few references. For the M/GI/1-PS
system and special cases, cf. for example [7, 11, 13, 16–18, 21]. The variance of
V (τ) in the M/M/2-PS system is given in [14]. The Laplace–Stieltjes transform
(LST) and moments of V (τ) in the general M/M/r-PS system are treated in [3] and
in the M/M/SDPS system in [4].

The aim of this paper is to derive analytical results and representations for sojourn
times in the M/GI/SDPS system. The paper is organized as follows. In Sect. 2 we
analyze a linear system of partial differential equations (PDEs), which has two dif-
ferent stochastic interpretations, implying time reversibility including sojourn times
of the M/GI/SDPS system. Moreover, its minimal non-negative solution gives the
LST of V (τ), which implies that V (τ) depends on B(x) for x > τ only via mS in
distribution. In Sect. 3 we assume that the service time distribution coincides with
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an exponential distribution in some interval [0, d). We derive a linear system of or-
dinary differential equations (ODEs) with constant coefficients, whose minimal non-
negative solution gives the LST of V (τ), τ ∈ [0, d), and which provides correspond-
ing linear systems of ODEs for the moments of V (τ), τ ∈ [0, d). For the case that
the service time is the minimum of an exponential and deterministic time we give
the LST and the moments of V in terms of minimal non-negative solutions of linear
systems of ODEs. Numerical results are presented for the variance of V in M/D/r-
PS. In Sect. 4 we assume again that the service time distribution coincides with an
exponential distribution in some interval [0, d), but we consider the special case of
an M/GI/r-PS system. For the M/GI/2-PS system a representation for the LST of
V (τ), τ ∈ [0, d], in terms of the solution of a convolution equation is given. For the
limiting case of service times bounded from below, surprisingly simple expressions
for the LST and variance of V (τ), τ ∈ [0, d], are derived, which yield in particular
the LST and variance of V (τ) and V in M/D/2-PS.

2 Sojourn times in M/GI/SDPS

We assume in the following that the system is stable, i.e., that (1.1) is satisfied, and in
steady state. In particular mS is finite. Moreover, for technical reasons—if not stated
otherwise—we make in the following the assumption:

(A1) B(x) has a continuous density b(x) and B(x) < 1 for x ∈ R+.

For notational convenience let B̄(x) := 1 − B(x), B̄R(x) := 1 − BR(x), cf. (1.4),
and β(x) := b(x)/B̄(x), βR(x) := bR(x)/B̄R(x) be the complementary distributions
and hazard rates of the service time df. and the stationary residual service time df.,
respectively. Further we will use several vector notations in this section. If not stated
otherwise, let y := (y1, . . . , y�) ∈ R

�+ where � = m or � = n, respectively, and

Ω� := {
y ∈ R

�+ : 0 < y1 < · · · < y�

}
.

For y, ỹ ∈ R
� let y ≤ ỹ if and only if yi ≤ ỹi for i = 1, . . . , �.

Besides the randomly ordered residual service times Y ∗
1 (t), . . . , Y ∗

N(t)(t) and at-

tained service times Ỹ ∗
1 (t), . . . , Ỹ ∗

N(t)(t) we need them ordered increasingly. Let

0 ≤ Y1(t) ≤ · · · ≤ YN(t)(t) be the residual service times of the N(t) requests at time t ,
ordered increasingly, and let Y(t) := (Y1(t), . . . , YN(t)(t)) be the corresponding vec-
tor. In view of the SDPS discipline, this implies that the requests are ordered ac-
cording to their departure instants in this case. Let 0 ≤ Ỹ1(t) ≤ · · · ≤ ỸN(t)(t) be the
attained service times of the N(t) requests at time t , ordered increasingly, and let
Ỹ (t) := (Ỹ1(t), . . . , ỸN(t)(t)) be the corresponding vector. In view of the SDPS dis-
cipline, this implies that the requests are ordered reversely to their arrival instants in
this case. For n ∈ N, y ∈ Ωn let

p(n;y) := ∂n

∂y1 . . . ∂yn

P
(
N(t) = n;Y(t) ≤ y

)



Queueing Syst (2010) 64: 167–201 171

be the density of Y(t) on {N(t) = n} and

p̃(n;y) := ∂n

∂y1 . . . ∂yn

P
(
N(t) = n; Ỹ (t) ≤ y

)

be the density of Ỹ (t) on {N(t) = n}. On the boundary of Ωn let p(n;y) and p̃(n;y)

be defined by continuous continuation. The support of p(n;y) and p̃(n;y) is the
closure Ω̄n of Ωn.

Denoting by Sn the set of all permutations of the set {1, . . . , n}, from (1.3), (1.4)
for n ∈ N, y ∈ Ωn we obtain

p(n;y) =
∑

π∈Sn

∂n

∂y1 . . . ∂yn

P
(
N(t) = n;Y ∗

1 (t) ≤ yπ(1), . . . , Y
∗
n (t) ≤ yπ(n)

)

= n!p(n)

n∏

�=1

bR(y�), (2.1)

and analogously it follows that

p̃(n;y) = n!p(n)

n∏

�=1

bR(y�). (2.2)

By continuous continuation, (2.1) and (2.2) hold for n ∈ N, y ∈ Ω̄n, too.

2.1 PDEs for sojourn times

For the M/GI/SDPS system let the stability condition (1.1) and (A1) be satis-
fied. Let V�(t), � = 1, . . . ,N(t), be the sojourn time of the request with resid-
ual service time Y�(t) from time t on until its departure from the system, i.e.,
its prospective sojourn time from time t on. Since the Y�(t) are ordered increas-
ingly, the SDPS discipline implies that the V�(t) are ordered increasingly, too, i.e.,
0 ≤ V1(t) ≤ · · · ≤ VN(t)(t). Further, V1(t) = 0 if and only if Y1(t) = 0. In view of
(A1) and the distributional and independence assumptions, for 0 < m ≤ n, y ∈ Ωn,
the LSTs

vn,m(s;y) := ∂n

∂y1 . . . ∂yn

E
[
e−sVm(t)

I
{
N(t) = n,Y (t) ≤ y

}]
(2.3)

of Vm(t) on {N(t) = n,Y1(t) ∈ dy1, . . . , Yn(t) ∈ dyn} are well defined for s ∈ R+.
For fixed s and 0 < m ≤ n, let vn,m(s;y) be defined on the boundary of Ωn by contin-
uous continuation. Taking into account that in [5] the residual service times Y�(t) are
denoted by R�(t), from [5] (2.2)–(2.6), (1.2), and (1.4) it follows that the vn,m(s;y)

satisfy the following linear system of PDEs:

ϕ(n)
∂

∂ξ
vn,m(s;y1 + ξ, . . . , yn + ξ)

∣∣∣∣
ξ=0
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= −
(

λ + s + ϕ(n)

n∑

�=1

β(y�)

)
vn,m(s;y1, . . . , yn)

+ ϕ(n + 1)

n+1∑

�=1

∫ y�

y�−1

vn+1,m+I{�≤m}(s;y1, . . . , y�−1, τ, y�, . . . , yn)β(τ)dτ

(2.4)

for 0 < m ≤ n, y ∈ Ωn, where y0 := 0 and yn+1 := ∞, with initial condition

vn,1(s;0, y2, . . . , yn) = n!p(n)m−1
S

n∏

�=2

bR(y�), (2.5)

vn,m(s;0, y2, . . . , yn) = λ

ϕ(n)
vn−1,m−1(s;y2, . . . , yn), 1 < m ≤ n, (2.6)

for 0 ≤ y2 ≤ · · · ≤ yn, and that

vn,m(0;y) = n!p(n)

n∏

�=1

bR(y�), 0 < m ≤ n,y ∈ Ω̄n. (2.7)

Note that these equations are consequences of the Kolmogorov forward equations
(Fokker–Planck equations) and of (2.1).

Let Ṽ�(t), � = 1, . . . ,N(t), be the sojourn time of the request with attained service
time Ỹ�(t) from its arrival at the system until time t . Since the Ỹ�(t) are ordered
increasingly, the SDPS discipline implies that the Ṽ�(t) are ordered increasingly, too,
i.e. 0 ≤ Ṽ1(t) ≤ · · · ≤ ṼN(t)(t). Further, Ṽ1(t) = 0 if and only if Ỹ1(t) = 0. In view of
(A1) and the distributional and independence assumptions, for 0 < m ≤ n, y ∈ Ωn,
the LSTs

ṽn,m(s;y) := ∂n

∂y1 . . . ∂yn

E
[
e−sṼm(t)

I
{
N(t) = n, Ỹ (t) ≤ y

}]
(2.8)

of Ṽm(t) on {N(t) = n, Ỹ1(t) ∈ dy1, . . . , Ỹn(t) ∈ dyn} are well defined for s ∈ R+.
For fixed s and 0 < m ≤ n, let ṽn,m(s;y) be defined on the boundary of Ωn by con-
tinuous continuation. As ṽn,m(0;y) corresponds to the density of Ỹ (t) on {N(t) = n},
from (2.2) we find that

ṽn,m(0;y) = p̃(n;y) = n!p(n)

n∏

�=1

bR(y�), 0 < m ≤ n,y ∈ Ω̄n. (2.9)

In the following let s ∈ R+ be fixed. The dynamics of the M/GI/SDPS system
during an interval [t − h, t] of length h provide for 0 < m ≤ n, y ∈ Ωn the balance
condition
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ṽn,m(s;y1, . . . , yn)

=
(

1 − λh − ϕ(n)h

n∑

�=1

β(y�)

)
e−shṽn,m(s;y1 − ϕ(n)h, . . . , yn − ϕ(n)h)

+ ϕ(n + 1)h

n+1∑

�=1

∫ y�

y�−1

ṽn+1,m+I{�≤m}(s;y1, . . . , y�−1, τ, y�, . . . , yn)β(τ)dτ

+ o(h).

The first summand on the r.h.s. corresponds to the situation that during [t −h, t] there
is no arrival and no departure; the sojourn time increases by h. The second summand
corresponds to departures from the system. Subtracting on both sides ṽn,m(s;y1 −
ϕ(n)h, . . . , yn −ϕ(n)h), dividing by h and taking h ↓ 0 provides the following linear
system of PDEs:

ϕ(n)
∂

∂ξ
ṽn,m(s;y1 + ξ, . . . , yn + ξ)

∣∣∣∣
ξ=0

= −
(

λ + s + ϕ(n)

n∑

�=1

β(y�)

)
ṽn,m(s;y1, . . . , yn)

+ ϕ(n + 1)

n+1∑

�=1

∫ y�

y�−1

ṽn+1,m+I{�≤m}(s;y1, . . . , y�−1, τ, y�, . . . , yn)β(τ)dτ

(2.10)

for 0 < m ≤ n, y ∈ Ωn, which correspond to the Kolmogorov forward equations.
Taking into consideration arrivals, we find the initial conditions for 0 ≤ y2 ≤ · · · ≤ yn.
As Ỹ1(t) = 0 implies Ṽ1(t) = 0, from (2.9) and (1.4) we obtain

ṽn,1(s;0, y2, . . . , yn) = ṽn,1(0;0, y2, . . . , yn) = n!p(n)m−1
S

n∏

�=2

bR(y�). (2.11)

In the case of 1 < m ≤ n the dynamics provide

ṽn,m(s;0, y2, . . . , yn) = λ

ϕ(n)
ṽn−1,m−1(s;y2, . . . , yn), 1 < m ≤ n, (2.12)

as the arrival probability for an interval of length h/ϕ(n) is 1 − e−hλ/ϕ(n).
Note that the vn,m(s;y) and the ṽn,m(s;y) satisfy the same system of PDEs

(2.4)–(2.7).

Lemma 2.1 For any fixed s ∈ (0,∞), the linear system of PDEs (2.4) with the initial
conditions (2.5), (2.6) and growth condition

0 ≤ vn,m(s;y) ≤ vn,m(0;y), 0 < m ≤ n,y ∈ Ω̄n, (2.13)

where vn,m(0;y) is given by (2.7), has at most one solution.
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Proof Let s ∈ (0,∞) be fixed. Replacing in (2.4) yi by yi + η, i = 1, . . . , n, integrat-
ing with the weight exp((λ + s)η/ϕ(n))

∏n
�=1 B̄(y�)/B̄(y� + η) over [−y1,0] with

respect to η and applying (2.5), (2.6) demonstrates that the system of PDEs (2.4)
with the initial conditions (2.5), (2.6) is equivalent to the following linear system of
integral equations for 0 < m ≤ n, y ∈ Ω̄n:

vn,m(s;y1, . . . , yn)

= I{m = 1}n!p(n)m−n
S e

− λ+s
ϕ(n)

y1

(
n∏

�=1

B̄(y�)

)

+ I{m > 1} λ

ϕ(n)
e
− λ+s

ϕ(n)
y1

(
n∏

�=1

B̄(y�)

B̄(y� − y1)

)
vn−1,m−1(s;y2 − y1, . . . , yn − y1)

+ ϕ(n + 1)

ϕ(n)

∫ 0

−y1

e
λ+s
ϕ(n)

ξ

(
n∏

�=1

B̄(y�)

B̄(y� + ξ)

)

×
n+1∑

�=1

∫ y�

y�−1−I{�=1}ξ
vn+1,m+I{�≤m}(s;y1 + ξ, . . . , y�−1 + ξ, τ + ξ, y� + ξ,

. . . , yn + ξ)β(τ + ξ)dτ dξ. (2.14)

Assume that the system of integral equations (2.14) has two different solutions, where
both solutions fulfill the growth condition (2.13). Then the difference v̄n,m(s;y)

of these solutions satisfies the homogenized version of (2.14). For 0 < m ≤ n

let κn,m ∈ R+ denote the smallest number such that |v̄n,m(s;y)| ≤ κn,mvn,m(0;y),
y ∈ Ω̄n. Note that κn,m ∈ (0,1] due to the growth condition. Let κn−1,0 := 0 for no-
tational convenience and let κ0 := sup0<m≤n κn,m. The triangle inequality applied to
the homogenized version of (2.14), the definitions of κn,m and κ0, and (2.7), (1.4),
(1.2) provide after some algebra for 0 < m ≤ n, y ∈ Ω̄n that

∣∣v̄n,m(s;y1, . . . , yn)
∣∣

≤ κn−1,m−1
λ

ϕ(n)
e
− λ+s

ϕ(n)
y1

(
n∏

�=1

B̄(y�)

B̄(y� − y1)

)
vn−1,m−1(0;y2 − y1, . . . , yn − y1)

+ κ0
ϕ(n + 1)

ϕ(n)

∫ 0

−y1

e
λ+s
ϕ(n)

ξ

(
n∏

�=1

B̄(y�)

B̄(y� + ξ)

)

×
n+1∑

�=1

∫ y�

y�−1−I{�=1}ξ
vn+1,m+I{�≤m}(0;y1 + ξ, . . . , y�−1 + ξ, τ + ξ, y� + ξ,

. . . , yn + ξ)β(τ + ξ)dτ dξ

=
(

κn−1,m−1e
− λ+s

ϕ(n)
y1 + λ

λ + s
κ0

(
1 − e

− λ+s
ϕ(n)

y1
))

vn,m(0;y1, . . . , yn)
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≤ max

(
κn−1,m−1,

λ

λ + s
κ0

)
vn,m(0;y1, . . . , yn).

Therefore, by definition of κn,m it follows that

κn,m ≤ max

(
κn−1,m−1,

λ

λ + s
κ0

)
, 0 < m ≤ n. (2.15)

Let j ∈ Z+ be arbitrarily fixed. In view of κj,0 = 0, from (2.15) we find κj+1,1 ≤
λ

λ+s
κ0. Now induction on m ∈ N yields κj+m,m ≤ λ

λ+s
κ0 in view of (2.15). Thus we

obtain κ0 ≤ λ
λ+s

κ0, which implies the contradiction κ0 ≤ 0. �

From Lemma 2.1 we conclude that the Kolmogorov forward equations (2.4)–
(2.7) and (2.9)–(2.12) provide a complete description of the LSTs vn,m(s;y) and
ṽn,m(s;y), respectively. Moreover, since the vn,m(s;y) and the ṽn,m(s;y) satisfy
the same system of PDEs (2.4)–(2.7), and taking into account (2.1), (2.2), from
Lemma 2.1 we obtain the following time reversibility result for M/GI/SDPS sys-
tems, cf. [10] for the relationship between reversed processes, supplemented by spent
and residual lifetimes, and insensitivity in the case of finite state spaces:

Theorem 2.1 Let the stability condition (1.1) for the M/GI/SDPS system with (A1)
be satisfied. Then

ṽn,m(s;y) = vn,m(s;y), 0 < m ≤ n,y ∈ Ω̄n, s ∈ R+, (2.16)

P
(
Ṽm(t) ≤ x|N(t) = n, Ỹ (t) = y

) = P
(
Vm(t) ≤ x|N(t) = n,Y (t) = y

)
,

0 < m ≤ n,y ∈ Ω̄n, x ∈ R+. (2.17)

Because of the SDPS discipline, from a probabilistic point of view, for 0 < m ≤ n,
y ∈ Ω̄n the sojourn time Vm(t) conditioned on N(t) = n, Y(t) = y depends only on
y1, . . . , ym and the total number n of requests in the system since the requests with
residual service times ym+1, . . . , yn have residual service times of an amount greater
or equal to ym and are thus in the system at least as long as the request with service
time ym. However, in the following a rigorous proof will be given. In view of (2.16)
and (2.7), (2.9), we try the substitution

ṽn,m(s;y1, . . . , yn) = vn,m(s;y1, . . . , yn)

= un,m(s;y1, . . . , ym)

n∏

�=m+1

bR(y�), (2.18)

where the un,m(s;y), 0 < m ≤ n, y ∈ Ω̄m, are continuous functions. The system of
PDEs (2.4) is satisfied if the un,m(s;y) satisfy the following system of PDEs for
0 < m ≤ n, y ∈ Ωm:

ϕ(n)
∂

∂ξ
un,m(s;y1 + ξ, . . . , ym + ξ)

∣∣∣∣
ξ=0
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= −
(

λ + s + ϕ(n)

m∑

�=1

β(y�)

)
un,m(s;y1, . . . , ym)

+ ϕ(n + 1)

m∑

�=1

∫ y�

y�−1

un+1,m+1(s;y1, . . . , y�−1, τ, y�, . . . , ym)β(τ)dτ

+ ϕ(n + 1)bR(ym)un+1,m(s;y1, . . . , ym). (2.19)

The initial condition (2.5) is satisfied if for 1 = m ≤ n

un,1(s;0) = n!p(n)m−1
S , (2.20)

and the initial condition (2.6) is satisfied if for 1 < m ≤ n, 0 ≤ y2 ≤ · · · ≤ ym

un,m(s;0, y2, . . . , ym) = λ

ϕ(n)
un−1,m−1(s;y2, . . . , ym). (2.21)

Note that (2.7) is satisfied if for 0 < m ≤ n, y ∈ Ω̄m

un,m(0;y1, . . . , ym) = n!p(n)

m∏

�=1

bR(y�). (2.22)

Lemma 2.2 For any s ∈ R+, the linear system of PDEs (2.19) with the initial con-
ditions (2.20), (2.21) has a minimal non-negative solution, and the minimal non-
negative solution is bounded by un,m(0;y), i.e. by the r.h.s. of (2.22).

Proof Analogously to the derivation of (2.14) we find that the system of PDEs (2.19)
with initial conditions (2.20), (2.21) is equivalent to the following system of integral
equations for 0 < m ≤ n, y ∈ Ω̄m:

un,m(s;y1, . . . , ym)

= e
− λ+s

ϕ(n)
y1

(
m∏

�=1

B̄(y�)

B̄(y� − y1)

)

×
(

I{m = 1}n!p(n)m−1
S + I{m > 1} λ

ϕ(n)
un−1,m−1(s;y2 − y1, . . . , ym − y1)

)

+ ϕ(n + 1)

ϕ(n)

∫ 0

−y1

e
λ+s
ϕ(n)

ξ

(
m∏

�=1

B̄(y�)

B̄(y� + ξ)

)

×
(

m∑

�=1

∫ y�

y�−1−I{�=1}ξ
un+1,m+1(s;y1 + ξ, . . . , y�−1 + ξ, τ + ξ, y� + ξ,

. . . , ym + ξ)β(τ + ξ)dτ

+ bR(ym + ξ)un+1,m(s;y1 + ξ, . . . , ym + ξ)

)
dξ. (2.23)
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This system of integral equations can be solved by the method of successive approx-
imation starting from un,m;0(s;y1, . . . , ym) ≡ 0 and defining un,m;i+1(s;y1, . . . , ym)

recursively with respect to i by the r.h.s. of (2.23), where the un′,m′(s; ỹ1, . . . , ỹm′) are
replaced by un′,m′;i (s; ỹ1, . . . , ỹm′). For this recursion by induction on i it follows that
for fixed 0 < m ≤ n, 0 ≤ y1 ≤ · · · ≤ ym the un,m;i (s;y1, . . . , ym) are monotonically
increasing with respect to i and that

un,m;i (s;y1, . . . , ym) ≤ un,m;i (0;y1, . . . , ym). (2.24)

Moreover, if un,m(s;y1, . . . , ym) is any non-negative solution of the system of PDEs
(2.19) with initial conditions (2.20), (2.21) for fixed s ∈ R+, then un,m(s;y1, . . . , ym)

is a non-negative solution of (2.23), and thus it follows that un,m;i (s;y1, . . . , ym) −
un,m(s;y1, . . . , ym) satisfies the corresponding homogeneous recursion with respect
to i. Therefore induction on i yields

un,m;i (s;y1, . . . , ym) ≤ un,m(s;y1, . . . , ym). (2.25)

Because of (1.2) and (1.4), the r.h.s. of (2.22) is a solution of (2.19) and (2.20), (2.21)
for s = 0, thus un,m;i (0;y1, . . . , ym) is bounded by the r.h.s. of (2.22), and in view
of (2.24), un,m;i (s;y1, . . . , ym) is bounded by the r.h.s. of (2.22) for any s ∈ R+. Thus
for any s ∈ R+, the limit limi→∞ un,m;i (s;y1, . . . , ym) exists pointwise and is, due to
Lebesgue’s theorem, a non-negative solution of (2.23). This solution is the minimal
non-negative solution of (2.23) because of (2.25). Moreover, in view of (2.24), it is
bounded by the minimal non-negative solution of (2.23) for s = 0, and thus by the
r.h.s. of (2.22) as the r.h.s. of (2.22) is a non-negative solution of (2.19) and (2.20),
(2.21) for s = 0, i.e. of (2.23) for s = 0. �

Summarizing Lemma 2.1 and Lemma 2.2 we have proved the following.

Theorem 2.2 Let the stability condition (1.1) for the M/GI/SDPS system with (A1)
be satisfied.

Then for s ∈ (0,∞), the LSTs vn,m(s;y) and ṽn,m(s;y) are given by (2.18) for
0 < m ≤ n, y ∈ Ω̄n, where un,m(s;y), y ∈ Ω̄m, is the minimal non-negative solution
of the linear system of PDEs (2.19) with the initial conditions (2.20), (2.21), i.e. the
non-negative solution of (2.19)–(2.21) which is bounded by the r.h.s. of (2.22).

It seems that for general ϕ(n), n ∈ N, there is no explicit solution of (2.19)–(2.21).
However, for ϕ1,k(n) = 1/(n + k), n ∈ N, k ∈ (−1,∞), the minimal non-negative
solution can be given by adopting results of [11, 17], leading to the well known
results for M/GI/1-PS systems, cf. Example 2.1 in [5].

Example 2.1 Let ϕ1,k(n) = 1/(n + k), n ∈ N, k ∈ (−1,∞), and s ∈ R+. We try, cf.
[11, 16], the substitution

un,m(s;y1, . . . , ym)

un,m(0;y1, . . . , ym)
= δ(s, ym)n+k

m−1∏

�=1

1

δ(s, ym − y�)
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for 0 < m ≤ n, 0 ≤ y1 ≤ · · · ≤ ym, where un,m(0;y1, . . . , ym) is given by (2.22)
and δ(s, τ ) is a continuously differentiable function in τ ∈ R+ with initial condi-
tion δ(s,0) = 1. The substitution satisfies (2.20) and (2.21). Inserting the substitution
into (2.19) and using that ϕ1,k(n) = 1/(n+ k), n ∈ N, one finds that the linear system
of PDEs (2.19) is satisfied if 1/δ(s, τ ) satisfies the integro-differential equation

∂

∂τ

1

δ(s, τ )
= (s + λ)

1

δ(s, τ )
− λ

∫ τ

0

dB(ξ)

δ(s, τ − ξ)
− λB̄(τ )

with initial condition 1/δ(s,0) = 1, which has a uniquely determined solution,
cf. [16]. Note that 1/δ(s, τ ) is non-decreasing with respect to τ , which implies that
un,m(s;y1, . . . , ym) is bounded by un,m(0;y1, . . . , ym). The product form solution for
un,m(s;y1, . . . , ym)/un,m(0;y1, . . . , ym), given above, has been proved for k = 0, i.e.
for M/GI/1-PS systems, for the first time by a decomposition of the sojourn time in
[11, 16] and for k ∈ N, i.e. for the single-server PS model with k permanent requests,
in [19].

2.2 LST and moments of V (τ)

For the M/GI/SDPS system let the stability condition (1.1) and (A1) be satisfied.
For s ∈ R+, 0 < m ≤ n, x ∈ R+ let

gn,m(s, x) := ∂

∂x
E

[
e−sVm(t)

I
{
N(t) = n,Ym(t) ≤ x

}]
. (2.26)

Note that in view of Theorem 2.1, also

gn,m(s, x) = ∂

∂x
E

[
e−sṼm(t)

I
{
N(t) = n, Ỹm(t) ≤ x

}]
.

From Theorem 2.2 by integrating vn,m(s;y) over

0 ≤ y1 ≤ · · · ≤ ym−1 ≤ x ≤ ym+1 ≤ · · · ≤ yn

with respect to dy1 . . .dym−1 dym+1 . . .dyn we obtain

gn,m(s, x) = en−m(x)fn,m(s, x), (2.27)

where

e�(x) := B̄R(x)�

�! , (2.28)

fn,m(s, x) :=
∫

0≤y1≤···≤ym−1≤x

un,m(s;y1, . . . , ym−1, x)dy1 . . .dym−1. (2.29)

For s ∈ (0,∞), 0 < m ≤ n, x ∈ R+, � ∈ Z+ let

g(�)
n,m(s, x) := (−1)�

∂�

∂s�
gn,m(s, x). (2.30)
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From (2.26) it follows that

g(�)
n,m(s, x) = ∂

∂x
E

[
V �

m(t)e−sVm(t)
I
{
N(t) = n,Ym(t) ≤ x

}]
, (2.31)

which implies

0 ≤ g(�)
n,m(s, x) ≤ �!s−�gn,m(0, x) (2.32)

in view of v�e−sv ≤ �!s−�. Moreover, from (2.31) it follows that g
(�)
n,m(s, x) is

monotonically decreasing with respect to s ∈ (0,∞). Thus the limit

g(�)
n,m(x) := lim

s↓0
g(�)

n,m(s, x), 0 < m ≤ n,x ∈ R+, � ∈ Z+, (2.33)

exists, but it may be infinite for some � ∈ N.
Let V (n, τ), n ∈ Z+, τ ∈ R+, be the sojourn time of a tagged arriving request

with required service time τ (τ -request) finding n requests at its arrival in the system,
and let V (τ), τ ∈ R+, be the sojourn time of a tagged arriving τ -request. For the
M/GI/SDPS system the following representations for the LSTs and moments of
V (n, τ) and V (τ) are known, cf. [5] Theorem 1.1, Theorem 2.1, and Theorem 3.1:

Theorem 2.3 For the M/GI/SDPS system let the stability condition (1.1) and (A1)
be satisfied. Then for s ∈ R+ and τ ∈ R+ the LSTs of V (n, τ), n ∈ Z+, and V (τ) are
given by

E
[
e−sV (n,τ)

] = ϕ(n + 1)

λ(τ )p(n)

n+1∑

m=1

gn+1,m(s, τ ), (2.34)

E
[
e−sV (τ)

] = 1

λ(τ)

∞∑

n=1

ϕ(n)

n∑

m=1

gn,m(s, τ ), (2.35)

respectively, where

λ(x) := λB̄(x), x ∈ R+. (2.36)

If additionally
∞∑

n=0

(
1

ϕ(n + 1)

)k

p(n) < ∞ (2.37)

for some k ∈ N, then the kth moments of V (n, τ), n ∈ Z+, and V (τ) are finite for
τ ∈ R+, and

E
[
V k(n, τ )

] = ϕ(n + 1)

λ(τ )p(n)

n+1∑

m=1

g
(k)
n+1,m(τ ), (2.38)

E
[
V k(τ)

] = 1

λ(τ)

∞∑

n=1

ϕ(n)

n∑

m=1

g(k)
n,m(τ ) = k

∫ τ

0

∞∑

n=1

n∑

m=1

g
(k−1)
n,m (x)

λ(x)
dx. (2.39)
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Theorem 2.3 yields the following insensitivity property of V (τ) in
M/GI/SDPS.

Theorem 2.4 Let the stability condition (1.1) for the M/GI/SDPS be satisfied. Then
the conditional sojourn times V (n, τ), n ∈ Z+, and V (τ) depend on the service time
distribution B(x) for x > τ only via the mean service time mS in distribution.

Proof Suppose first that (A1) is satisfied. Then un,m(s;y1, . . . , ym) is the mini-
mal non-negative solution of the linear system of PDEs (2.19) with initial con-
ditions (2.20), (2.21). Therefore un,m(s;y1, . . . , ym) depends on B(x) for x > ym

only via mS , and hence fn,m(s, τ ) depends on B(x) for x > τ only via mS because
of (2.29). In view of (2.28), (1.4), (2.27), and (2.36), thus the assertion follows from
(2.34) and (2.35). The case of a general distribution B(x) of the service time with
finite mean mS is obtained by taking the limit in distribution of a sequence of service
time distributions Bν(x), ν = 1,2, . . . , where the service times have the given mean
mS and the Bν(x) satisfy (A1) and converge weakly to B(x). �

Example 2.1 (cont.) In the case of ϕ1,k(n) = 1/(n+ k), n ∈ N, k ∈ (−1,∞), from the
product form solution for un,m(s;y1, . . . , ym)/un,m(0;y1, . . . , ym) and Theorem 2.3
for s ∈ R+, τ ∈ R+ it follows that

E
[
e−sV (τ)

] =
(

(1 − �)δ(s, τ )

1 − �δ(s, τ )(
∫ τ

0
dBR(ξ)

δ(s,τ−ξ)
+ B̄R(τ ))

)k+1

,

cf. [11, 16] for k = 0 and [19] for k ∈ N. As δ(s, τ ) does not depend on B(x) for
x > τ , thus V (τ) depends on B(x) for x > τ in this case obviously only via the mean
service time mS in distribution.

Note that the outlined approach to the LST of V (τ) for the M/GI/1-PS system
is similar to the approach of [13].

3 Locally exponential service times

We assume now that the service time S has finite mean mS and that its distribution
B(x) coincides with an exponential distribution in a neighborhood of zero, i.e.

B(x) = 1 − e−μx, x ∈ [0, d), (3.1)

where μ ∈ R+, for some d ∈ (0,∞). Moreover, for technical reasons we assume (A1)
again, i.e., we assume that B(x) has a continuous density b(x) and that B(x) < 1 for
x ∈ R+.

Again we assume in the following that the system is stable, i.e. that (1.1) is satisfied
and in steady state. In view of (3.1), for 0 < m ≤ n, 0 < y1 < · · · < ym < d the system
of PDEs (2.19) simplifies to

ϕ(n)
∂

∂ξ
un,m(s;y1 + ξ, . . . , ym + ξ)

∣∣∣∣
ξ=0
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= −(λ + s + ϕ(n)mμ)un,m(s;y1, . . . , ym)

+ ϕ(n + 1)μ

m∑

�=1

∫ y�

y�−1

un+1,m+1(s;y1, . . . , y�−1, τ, y�, . . . , ym)dτ

+ ϕ(n + 1)m−1
S e−μymun+1,m(s;y1, . . . , ym).

Replacing yi by yi + η, i = 1, . . . ,m, and integrating over [−y1,0] with respect to η

yields the system of integral equations

un,m(s;y1, . . . , ym) − un,m(s;0, y2 − y1, . . . , ym − y1)

= 1

ϕ(n)

∫ 0

−y1

(
−(λ + s + ϕ(n)mμ)un,m(s;y1 + ξ, . . . , ym + ξ)

+ ϕ(n + 1)μ

m∑

�=1

∫ y�

y�−1−I{�=1}ξ
un+1,m+1(s;y1 + ξ, . . . , y�−1 + ξ, τ + ξ,

y� + ξ, . . . , ym + ξ)dτ

+ ϕ(n + 1)m−1
S e−μ(ym+ξ)un+1,m(s;y1 + ξ, . . . , ym + ξ)

)
dξ.

In view of (2.29), integrating over 0 ≤ y1 ≤ · · · ≤ ym = x < d with respect to
dy1 . . .dym−1 and applying Fubini’s theorem yields after some algebra

fn,m(s, x) −
∫

0≤ξ2≤···≤ξm≤x

un,m(s;0, ξ2, . . . , ξm)dξ2 . . .dξm

= 1

ϕ(n)

∫ x

0

(−(λ + s + ϕ(n)mμ)fn,m(s, ξm) + ϕ(n + 1)mμfn+1,m+1(s, ξm)

+ ϕ(n + 1)m−1
S e−μξmfn+1,m(s, ξm)

)
dξm. (3.2)

Because of (2.20), (2.21) and (2.29), from (3.2) we obtain the linear system of ODEs

ϕ(n)
∂

∂x
fn,m(s, x)

= −(λ + s + ϕ(n)mμ)fn,m(s, x)

+ I{m > 1}λfn−1,m−1(s, x) + ϕ(n + 1)mμfn+1,m+1(s, x)

+ ϕ(n + 1)m−1
S e−μxfn+1,m(s, x), 0 < m ≤ n,0 < x < d, (3.3)

with the initial condition

fn,m(s,0) = I{m = 1}n!p(n)m−1
S , 0 < m ≤ n. (3.4)

Note that from (2.29), (2.22), (1.4), and (3.1) it follows that

fn,m(0, x) = n!p(n)
(
mSeμx

)−m Fm−1(x)

(m − 1)! , 0 < m ≤ n,0 ≤ x < d, (3.5)
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where

F(x) :=
{
(eμx − 1)/μ, μ 
= 0,

x, μ = 0,
x ∈ R+. (3.6)

Let

hn,m(s, x) := 1

p(0)

(
mSeμx

)m−n
fn,m(s, x), 0 < m ≤ n,0 ≤ x < d. (3.7)

In view of (2.27), (2.28), (1.4), (3.1), (3.6), and (3.7), we obtain

gn,m(s, x) = dn−m(x)hn,m(s, x), 0 < m ≤ n,0 ≤ x < d, (3.8)

where

d�(x) := p(0)

�!
(
mSeμx − F(x)

)�
, � ∈ Z+, x ∈ R+. (3.9)

Note that d�(x) > 0 for 0 ≤ x < d as

mS =
∫ ∞

0
B̄(x)dx ≥

∫ d

0
B̄(x)dx = e−μdF (d).

Because of (3.7), (3.3), (3.4), and (1.2), the hn,m satisfy the linear system of ODEs
with constant coefficients

ϕ(n)
∂

∂x
hn,m(s, x)

= −(λ + s + ϕ(n)nμ)hn,m(s, x)

+ I{m > 1}λhn−1,m−1(s, x) + ϕ(n + 1)mμhn+1,m+1(s, x)

+ ϕ(n + 1)hn+1,m(s, x), 0 < m ≤ n,0 < x < d, (3.10)

with initial condition

hn,m(s,0) = I{m = 1}
n∏

j=1

λ

ϕ(j)
, 0 < m ≤ n. (3.11)

From (3.7), (3.5), and (1.2) it follows that

hn,m(0, x) =
(

n∏

j=1

λ

ϕ(j)

)
e−nμx Fm−1(x)

(m − 1)! , 0 < m ≤ n,0 ≤ x < d. (3.12)

Replacing in (3.10) x by ξ , integrating appropriately weighted over [0, x] with re-
spect to ξ and applying (3.11) demonstrates that the system of ODEs (3.10) with
initial condition (3.11) is equivalent to the following system of integral equations:

hn,m(s, x) = h∗
n,m(s, x) + 1

ϕ(n)

∫ x

0

(
I{m > 1}λhn−1,m−1(s, ξ)
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+ ϕ(n + 1)mμhn+1,m+1(s, ξ) + ϕ(n + 1)hn+1,m(s, ξ)
)

× e
−( λ+s

ϕ(n)
+nμ)(x−ξ) dξ, 0 < m ≤ n,0 ≤ x < d, (3.13)

where

h∗
n,m(s, x) = I{m = 1}

(
n∏

j=1

λ

ϕ(j)

)
e
−( λ+s

ϕ(n)
+nμ)x

, 0 < m ≤ n,0 ≤ x < d. (3.14)

Lemma 3.1 Let h∗
n,m(s, x) be arbitrary continuous functions.

Then for any fixed s ∈ (0,∞), the linear system of integral equations (3.13) with
growth condition

∣∣hn,m(s, x)
∣∣ ≤ chn,m(0, x), 0 < m ≤ n,0 ≤ x < d, (3.15)

for some c > 0, where hn,m(0, x) is given by (3.12), has at most one solution.

Proof The proof runs analogously to the proof of Lemma 2.1. Assume that the
system of integral equations (3.13) has two different solutions, where both solu-
tions satisfy the growth condition (3.15). Then the difference h̄n,m(s, x) of these
solutions satisfies the homogenized version of (3.13), i.e. (3.13) in the case of
h∗

n,m(s, x) = 0. For 0 < m ≤ n let κn,m ∈ R+ denote the smallest number such that
|h̄n,m(s, x)| ≤ κn,mhn,m(0, x), 0 ≤ x < d . Note that κn,m ∈ (0,2c] due to the growth
condition. Let κn−1,0 := 0 for notational convenience and let κ0 := sup0<m≤n κn,m.
The triangle inequality applied to (3.13), the definitions of κn,m and κ0, and (3.12),
(3.6) provide after some algebra for 0 < m ≤ n, 0 ≤ x < d that
∣∣h̄n,m(s, x)

∣∣

≤ 1

ϕ(n)

∫ x

0

(
κn−1,m−1λhn−1,m−1(0, ξ)

+ κ0ϕ(n + 1)mμhn+1,m+1(0, ξ) + κ0ϕ(n + 1)hn+1,m(0, ξ)
)
e
−( λ+s

ϕ(n)
+nμ)(x−ξ) dξ

=
(

n∏

j=1

λ

ϕ(j)

)
e
−( λ+s

ϕ(n)
+nμ)x

(m − 1)!

×
∫ x

0

(
κn−1,m−1(m − 1)Fm−2(ξ)eμξ + κ0

λ

ϕ(n)
Fm−1(ξ)

)
e

λ+s
ϕ(n)

ξ dξ

≤ max

(
κn−1,m−1,

λ

λ + s
κ0

)(
n∏

j=1

λ

ϕ(j)

)
e
−( λ+s

ϕ(n)
+nμ)x

(m − 1)!
(
Fm−1(ξ)e

λ+s
ϕ(n)

ξ
∣∣x
ξ=0

)

≤ max

(
κn−1,m−1,

λ

λ + s
κ0

)
hn,m(0, x).

Therefore, by definition of κn,m it follows that κn,m ≤ max(κn−1,m−1,
λ

λ+s
κ0), 0 <

m ≤ n, which provides a contradiction as at the end of the proof of Lemma 2.1. �
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Lemma 3.2 Let h∗
n,m(s, x) be arbitrary continuous functions such that

0 ≤ h∗
n,m(s, x) ≤ h∗

n,m(0, x), 0 < m ≤ n,0 ≤ x < d, s ∈ R+. (3.16)

Assume that there exists a non-negative solution of the system of integral equations
(3.13) for s = 0.

Then the system of integral equations (3.13) has a minimal non-negative solution
h̃n,m(s, x) for any s ∈ R+, and

h̃n,m(s, x) ≤ h̃n,m(0, x), 0 < m ≤ n,0 ≤ x < d, s ∈ R+. (3.17)

Proof For fixed s ∈ R+ let hn,m;0(s, x) := 0, 0 < m ≤ n, 0 ≤ x < d , and recursively
for i = 0,1, . . . let

hn,m;i+1(s, x) := h∗
n,m(s, x) + 1

ϕ(n)

∫ x

0

(
I{m > 1}λhn−1,m−1;i (s, ξ)

+ ϕ(n + 1)mμhn+1,m+1;i (s, ξ) + ϕ(n + 1)hn+1,m;i (s, ξ)
)

× e
−( λ+s

ϕ(n)
+nμ)(x−ξ) dξ, 0 < m ≤ n,0 ≤ x < d. (3.18)

By induction on i ∈ Z+ after some algebra it follows that hn,m;i (s, x) is monotoni-
cally increasing with respect to i, that

hn,m;i (s, x) ≤ hn,m(s, x), 0 < m ≤ n,0 ≤ x < d, (3.19)

for any non-negative solution hn,m(s, x) of (3.13), and that

hn,m;i (s, x) ≤ hn,m(0, x), 0 < m ≤ n,0 ≤ x < d, (3.20)

for any non-negative solution hn,m(0, x) of (3.13) for s = 0. Thus the limit

h̃n,m(s, x) := lim
i→∞hn,m;i (s;x), 0 < m ≤ n,0 ≤ x < d,

exists pointwise and represents, due to (3.18) and Lebesgue’s theorem, a non-negative
solution of (3.13). From (3.19) it follows that h̃n,m(s, x) is the minimal non-negative
solution of (3.13), and (3.20) implies (3.17). �

Now, from Theorem 2.3, and Lemma 3.1, Lemma 3.2 we obtain the following.

Theorem 3.1 Let the stability condition (1.1) for the M/GI/SDPS system, where
the service time distribution fulfills (3.1), be satisfied. Then for s ∈ R+ and τ ∈ [0, d)

the LSTs of V (n, τ), n ∈ Z+, and V (τ) are given by

E
[
e−sV (n,τ)

] = ϕ(n + 1)

λ(τ )p(n)

n+1∑

m=1

gn+1,m(s, τ ), τ ∈ [0, d), (3.21)

E
[
e−sV (τ)

] = 1

λ(τ)

∞∑

n=1

ϕ(n)

n∑

m=1

gn,m(s, τ ), τ ∈ [0, d), (3.22)
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respectively, where

λ(x) = λe−μx, x ∈ [0, d), (3.23)

gn,m(s, x) is given by (3.8), (3.9), and hn,m(s, x) is the minimal non-negative solution
of the linear system of ODEs (3.10) with initial condition (3.11).

Proof Suppose that (3.1) and (A1) are satisfied. Then Theorem 2.3 yields (3.21),
(3.22), (3.23), where gn,m(s, x) is given by (3.8), (3.9), and hn,m(s, x) is a solution
of the linear system of ODEs (3.10) with initial condition (3.11). Further, taking into
account (3.8), we find that hn,m(s, x) is non-negative and monotonically decreasing
with respect to s ∈ R+ since gn,m(s, x) is non-negative and monotonically decreasing
with respect to s ∈ R+ in view of (2.26). The case of a general distribution B(x)

of the service time with finite mean mS and (3.1) is obtained by taking for fixed
τ ∈ [0, d) the limit in distribution of a sequence of service time distributions Bν(x),
ν = 1,2, . . . , where the service times have the given mean mS , Bν(x) is given by
(3.1) for x ∈ [0, d ′) for some d ′ ∈ (τ, d), the Bν(x) satisfy (A1) and converge weakly
to B(x).

As hn,m(0, x) given by (3.12) is a non-negative solution of (3.10), (3.11) for
s = 0, in view of (3.14) from Lemma 3.2 it follows that there exists a minimal non-

negative solution h̃n,m(s, x) of (3.10), (3.11), and that 0 ≤ h̃n,m(s, x) ≤ h̃n,m(0, x) ≤
hn,m(0, x). Since hn,m(s, x) is non-negative and monotonically decreasing with re-
spect to s ∈ R+, moreover 0 ≤ hn,m(s, x) ≤ hn,m(0, x). In view of Lemma 3.1 for
c = 1, thus we have hn,m(s, x) = h̃n,m(s, x) for s ∈ (0,∞).

As hn,m(s, x) is monotonically decreasing with respect to s ∈ R+, the limit

hn,m(x) := lim
s↓0

hn,m(s, x) = lim
s↓0

h̃n,m(s, x), 0 < m ≤ n,0 ≤ x < d,

exists pointwise and represents, due to Lebesgue’s theorem, a non-negative so-
lution of (3.13) for s = 0, and h̃n,m(0, x) ≤ hn,m(x) as h̃n,m(0, x) is the mini-
mal non-negative solution of (3.13) for s = 0. Further, Lemma 3.2 demonstrates
that h̃n,m(s, x) ≤ h̃n,m(0, x) for s ∈ (0,∞), and by taking the limit s ↓ 0 we find
hn,m(x) ≤ h̃n,m(0, x). Hence we have hn,m(x) = h̃n,m(0, x).

Note that lims↓0 E[e−sV (n,τ)] = 1 since the distribution of V (n, τ) is non-
defective because of the stability of the system. Taking the limit s ↓ 0 in (3.21) there-
fore yields

n∑

m=1

dn−m(x)hn,m(x) = λ(x)p(n − 1)

ϕ(n)
, 0 < n,0 ≤ x < d,

cf. (3.8). On the other hand, from (3.9), (3.12), (3.23), (1.2) we find

n∑

m=1

dn−m(x)hn,m(0, x) = λ(x)p(n − 1)

ϕ(n)
, 0 < n,0 ≤ x < d.
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In view of hn,m(x) = h̃n,m(0, x) ≤ hn,m(0, x) and dn−m(x) > 0, therefore we con-
clude that

lim
s↓0

hn,m(s, x) = h̃n,m(0, x) = hn,m(0, x). (3.24)

Thus hn,m(0, x) given by (3.12) is the minimal non-negative solution of (3.10), (3.11)
for s = 0. �

Remark 3.1 Note that the data in (3.10)–(3.12) are independent of mS and thus of
B(ξ) for ξ ≥ d , and therefore hn,m(s, x) as the minimal non-negative solution of
(3.10), (3.11) is independent of B(ξ) for ξ ≥ d , too. Moreover, hn,m(s, x) can be
continued for fixed s ∈ R+ to the minimal non-negative solution of (3.10), (3.11) for
x ∈ R+ since the proof of Lemma 3.2 remains valid for any positive d .

For s ∈ (0,∞), � ∈ Z+ let

h(�)
n,m(s, x) := (−1)�

∂�

∂s�
hn,m(s, x), 0 < m ≤ n,0 ≤ x < d. (3.25)

Note that from (2.30), (3.8) it follows that

g(�)
n,m(s, x) = dn−m(x)h(�)

n,m(s, x), 0 < m ≤ n,0 ≤ x < d. (3.26)

Thus h
(�)
n,m(s, x) is monotonically decreasing with respect to s ∈ (0,∞) in view of

(2.31), and (2.32) implies

0 ≤ h(�)
n,m(s, x) ≤ �!s−�hn,m(0, x), 0 < m ≤ n,0 ≤ x < d. (3.27)

Taking the �th derivative with respect to s ∈ (0,∞) at both sides of (3.10) yields the
linear system of ODEs

ϕ(n)
∂

∂x
h(�)

n,m(s, x)

= −(λ + s + ϕ(n)nμ)h(�)
n,m(s, x)

+ I{m > 1}λh
(�)
n−1,m−1(s, x) + ϕ(n + 1)mμh

(�)
n+1,m+1(s, x)

+ ϕ(n + 1)h
(�)
n+1,m(s, x) + �h(�−1)

n,m (s, x), 0 < m ≤ n, 0 < x < d, (3.28)

where h
(−1)
n,m (s, x) := 0, and from (3.11) we obtain the initial condition

h(�)
n,m(s,0) = I{� = 0,m = 1}

n∏

j=1

λ

ϕ(j)
, 0 < m ≤ n. (3.29)

Note that the system of ODEs (3.28) with initial condition (3.29) is equivalent to the
following system of integral equations:

h(�)
n,m(s, x) = h∗

n,m(s, x) + 1

ϕ(n)

∫ x

0

(
I{m > 1}λh

(�)
n−1,m−1(s, ξ)
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+ ϕ(n + 1)mμh
(�)
n+1,m+1(s, ξ) + ϕ(n + 1)h

(�)
n+1,m(s, ξ)

)

× e
−( λ+s

ϕ(n)
+nμ)(x−ξ) dξ, 0 < m ≤ n,0 ≤ x < d, (3.30)

where

h∗
n,m(s, x) = I{� = 0,m = 1}

(
n∏

j=1

λ

ϕ(j)

)
e
−( λ+s

ϕ(n)
+nμ)x

+ �

ϕ(n)

∫ x

0
h(�−1)

n,m (s, ξ)e
−( λ+s

ϕ(n)
+nμ)(x−ξ) dξ, 0 < m ≤ n,0 ≤ x < d.

(3.31)

Assume now that (2.37) is satisfied for some fixed k ∈ N. Due to Hölder’s inequal-
ity and Theorem 2.3, the limits

g(�)
n,m(x) = lim

s↓0
g(�)

n,m(s, x), 0 < m ≤ n,0 ≤ x < d,

cf. (2.33), exist for � = 0,1, . . . , k. In view of (3.26), thus also the limits

h(�)
n,m(x) := lim

s↓0
h(�)

n,m(s, x), 0 < m ≤ n,0 ≤ x < d, (3.32)

exist for � = 0,1, . . . , k, and

g(�)
n,m(x) = dn−m(x)h(�)

n,m(x), 0 < m ≤ n,0 ≤ x < d, (3.33)

for � = 0,1, . . . , k. Taking the limit s ↓ 0 in (3.28) and (3.29) yields the linear systems
of ODEs

ϕ(n)
d

dx
h(�)

n,m(x)

= −(λ + ϕ(n)nμ)h(�)
n,m(x) + I{m > 1}λh

(�)
n−1,m−1(x)

+ ϕ(n + 1)mμh
(�)
n+1,m+1(x) + ϕ(n + 1)h

(�)
n+1,m(x) + �h(�−1)

n,m (x),

0 < m ≤ n,0 < x < d,� ∈ {1, . . . , k}, (3.34)

with the initial conditions

h(�)
n,m(0) = 0, 0 < m ≤ n, � ∈ {1, . . . , k}. (3.35)

In view of (3.32), (3.25), from (3.24) and (3.12) we find

h(0)
n,m(x) =

(
n∏

j=1

λ

ϕ(j)

)
e−nμx Fm−1(x)

(m − 1)! , 0 < m ≤ n,0 ≤ x < d. (3.36)

Now, from Theorem 2.3, and Lemma 3.1, Lemma 3.2 we obtain the following.
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Theorem 3.2 Let the stability condition (1.1) for the M/GI/SDPS system, where
the service time distribution fulfills (3.1), be satisfied. Further, let (2.37) be satisfied
for some k ∈ N. Then the kth moments of V (n, τ), n ∈ Z+, and V (τ) are finite for
τ ∈ R+, and for τ ∈ [0, d)

E
[
V k(n, τ )

] = ϕ(n + 1)

λ(τ )p(n)

n+1∑

m=1

g
(k)
n+1,m(τ ), τ ∈ [0, d), (3.37)

E
[
V k(τ)

] = k

∫ τ

0

∞∑

n=1

n∑

m=1

g
(k−1)
n,m (x)

λ(x)
dx, τ ∈ [0, d), (3.38)

where λ(x) is given by (3.23) and g
(�)
n,m(x) by (3.33), (3.9) for � = 0,1, . . . , k, where

h
(0)
n,m(x) is given by (3.36) and h

(�)
n,m(x) is the minimal non-negative solution of the

linear system of ODEs (3.34), (3.35) for � = 1, . . . , k.

Proof Suppose that (3.1) and (A1) are satisfied. Then Theorem 2.3 yields (3.37),
(3.38), where λ(x) is given by (3.23), g

(�)
n,m(x) is given by (3.33), (3.9) for � =

0,1, . . . , k, where h
(0)
n,m(x) is given by (3.36) and h

(�)
n,m(x) is defined by (3.32) for

� = 1, . . . , k. The case of a general distribution B(x) of the service time with finite
mean mS and (3.1) is obtained by taking for fixed τ ∈ [0, d) the limit in distribution of
a sequence of service time distributions Bν(x), ν = 1,2, . . . , where the service times
have the given mean mS , Bν(x) is given by (3.1) for x ∈ [0, d ′) for some d ′ ∈ (τ, d),
the Bν(x) satisfy (A1) and converge weakly to B(x).

Let � ∈ {1, . . . , k} be fixed. As h
(�)
n,m(x) is a non-negative solution of (3.28), (3.29)

for s = 0, in view of (3.30), (3.31) from Lemma 3.2 it follows that there exists a
minimal non-negative solution h̃

(�)
n,m(s, x) of (3.28), (3.29) for any s ∈ R+, and that

0 ≤ h̃
(�)
n,m(s, x) ≤ h̃

(�)
n,m(0, x). From (3.27) we obtain 0 ≤ h̃

(�)
n,m(s, x) ≤ h

(�)
n,m(s, x) ≤

�!s−�hn,m(0, x) for s ∈ (0,∞), which implies h
(�)
n,m(s, x) = h̃

(�)
n,m(s, x) for s ∈ (0,∞)

by applying Lemma 3.1 for c = �!s−�. Since the limit

h(�)
n,m(x) = lim

s↓0
h(�)

n,m(s, x) = lim
s↓0

h̃(�)
n,m(s, x), 0 < m ≤ n,0 ≤ x < d,

represents, due to Lebesgue’s theorem, a non-negative solution of (3.30) for s = 0,
we obtain h̃

(�)
n,m(0, x) ≤ h

(�)
n,m(x) as h̃

(�)
n,m(0, x) is the minimal non-negative solution of

(3.30) for s = 0. Further, as h̃
(�)
n,m(s, x) ≤ h̃

(�)
n,m(0, x) for s ∈ (0,∞), by taking the limit

s ↓ 0 we find h
(�)
n,m(x) ≤ h̃

(�)
n,m(0, x). Hence h

(�)
n,m(x) = h̃

(�)
n,m(0, x). Thus h

(�)
n,m(x) is the

minimal non-negative solution of (3.28), (3.29) for s = 0, i.e. of (3.34), (3.35). �

Note that the LSTs and the moments of V (n, τ), n ∈ Z+, and V (τ) at τ = d are
given by continuous continuation from 0 ≤ τ < d .
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3.1 Cut exponential service times

Let the service times be distributed according to the minimum of an exponential time
with parameter μ ∈ R+ and a deterministic time d ∈ (0,∞), i.e.

B(x) = 1 − I{0 ≤ x < d}e−μx, x ∈ R+. (3.39)

For the mean mS we find

mS = e−μdF (d), (3.40)

where F(d) is given by (3.6). Note that the model corresponds to an M/D/SDPS
system for μ = 0.

Let the stability condition (1.1) for the M/GI/SDPS system with service time
distribution (3.39) be satisfied. Then the LSTs of V (n, τ), n ∈ Z+, and V (τ), τ ∈
[0, d), are given by Theorem 3.1, and the moments of V (n, τ), n ∈ Z+, and V (τ),
τ ∈ [0, d), are given by Theorem 3.2.

In view of

E
[
e−sV

] =
∫

R+
E

[
e−sV (τ)

]
dB(τ), E

[
V k

] =
∫

R+
E

[
V k(τ)

]
dB(τ),

and (3.23), (3.39), (3.40), from Theorem 3.1 and Theorem 3.2 we obtain the following
representations for the LST and the moments of the unconditional sojourn time V ,
respectively, where (1.7) and Fubini’s theorem are used for the moments of V .

Theorem 3.3 Let the stability condition (1.1) for the M/GI/SDPS system with ser-
vice time distribution (3.39) be satisfied. Then for s ∈ (0,∞), the LST of V is given
by

E
[
e−sV

] = 1

λ

∞∑

n=1

ϕ(n)

n∑

m=1

(
μ

∫ d

0
gn,m(s, x)dx + gn,m(s, d−)

)
, (3.41)

where gn,m(s, x) is given by (3.8), (3.9), and hn,m(s, x) is the minimal non-negative
solution of the linear system of ODEs (3.10) with initial condition (3.11). If addition-
ally (2.37) is satisfied for some k ∈ N, then the kth moment of V is finite, and

E
[
V k

] = k

λ

∫ d

0

∞∑

n=1

n∑

m=1

g(k−1)
n,m (x)dx, (3.42)

where g
(k−1)
n,m (x) is given by (3.33), (3.9), where h

(0)
n,m(x) is given by (3.36) and

h
(�)
n,m(x) is the minimal non-negative solution of the linear system of ODEs (3.34),

(3.35) for � = 1, . . . , k − 1.

3.2 Numerical results

We apply the results of this section to the variance of the sojourn time V in M/D/r-
PS, which means μ = 0 in (3.39) and ϕ(n) = min(r/n,1), n ∈ N. Let the stability
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condition (1.1) for the M/D/r-PS system be satisfied, i.e., let � = λd < r . Then
(2.37) is satisfied for all k ∈ N. Thus from Theorem 3.3 it follows that E[V 2] in
M/D/r-PS is given by (3.42) for k = 2, where g

(1)
n,m(x) is given by (3.33), (3.9)

for � = 1, where h
(1)
n,m(x) is the minimal non-negative solution of the linear system

of ODEs (3.34) with the initial condition (3.35) for � = 1, and h
(0)
n,m(x) is given by

(3.36). In view of μ = 0, from (3.33), (3.9), (3.40), (3.6), (3.34), (3.36), and (3.35)
we obtain

g(1)
n,m(x) = p(0)

(d − x)n−m

(n − m)! h(1)
n,m(x), 0 < m ≤ n,0 ≤ x < d, (3.43)

where h
(1)
n,m(x) is the minimal non-negative solution of the linear system of ODEs

ϕ(n)
d

dx
h(1)

n,m(x) = −λh(1)
n,m(x) + I{m > 1}λh

(1)
n−1,m−1(x) + ϕ(n + 1)h

(1)
n+1,m(x)

+
(

n∏

j=1

λ

ϕ(j)

)
xm−1

(m − 1)! , 0 < m ≤ n,0 < x < d, (3.44)

with the initial condition

h(1)
n,m(0) = 0, 0 < m ≤ n. (3.45)

The minimal non-negative solution h
(1)
n,m(x), 0 < m ≤ n, of (3.44), (3.45) can be ap-

proximated by solving a suitable finite version n ≤ n′ of the linear system of ODEs
(3.44), (3.45), where h

(1)
n,m(x) is replaced by 0 on the r.h.s. of (3.44) if n > n′. The

second moment E[V 2] can be computed subsequently via (3.42), (3.43) by numerical
integration. The first moment E[V ] can be computed via Little’s law (1.5).

Note that the sequence of the solutions of the finite versions of (3.44), (3.45) in-
dexed by n′ converges pointwise monotonically increasing to h

(1)
n,m(x) for n′ → ∞:

Applying the construction of the minimal non-negative solution given in the proof of
Lemma 3.2 to the corresponding finite versions of (3.30), (3.31) for s = 0 and � = 1,
by induction on i ∈ Z+ and taking then the limit i → ∞ we obtain the monotonic-
ity of the solutions of the finite versions of (3.30), (3.31) with respect to n′ and that
they are bounded by h

(1)
n,m(x). Thus the sequence of these solutions converges point-

wise monotonically increasing to a non-negative solution of (3.30), (3.31), which is
bounded by h

(1)
n,m(x). Since h

(1)
n,m(x) is the minimal non-negative solution of (3.30),

(3.31), the assertion is proved. Therefore, due to Lebesgue’s theorem, E[V 2] can be
computed with arbitrary accuracy by choosing n′ sufficiently large.

In Table 1 there are given EV and var(V ) for r = 2,4,8,16. Note that in the case
of r = 2 the simple expression (4.54) for var(V ) = var(V (d)) has been used. Without
loss of generality we have chosen d := 1 (unit of time).
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Table 1 The mean and variance of the sojourn time V in M/D/r-PS for r = 2,4,8,16 in case of d = 1

�/r r = 2 r = 4 r = 8 r = 16

EV var(V ) EV var(V ) EV var(V ) EV var(V )

0.30 1.0989 0.0559 1.0132 0.0034 1.0006 0.0001 1.0000 0.0000

0.35 1.1396 0.0885 1.0232 0.0070 1.0017 0.0002 1.0000 0.0000

0.40 1.1905 0.1354 1.0378 0.0133 1.0039 0.0006 1.0001 0.0000

0.45 1.2539 0.2031 1.0584 0.0239 1.0079 0.0014 1.0004 0.0000

0.50 1.3333 0.3011 1.0870 0.0411 1.0148 0.0033 1.0011 0.0001

0.55 1.4337 0.4454 1.1260 0.0689 1.0260 0.0069 1.0029 0.0003

0.60 1.5625 0.6628 1.1794 0.1142 1.0436 0.0140 1.0065 0.0009

0.65 1.7316 1.0018 1.2532 0.1889 1.0708 0.0274 1.0137 0.0025

0.70 1.9608 1.5563 1.3572 0.3166 1.1128 0.0529 1.0270 0.0063

0.75 2.2857 2.5273 1.5094 0.5476 1.1785 0.1030 1.0511 0.0151

0.80 2.7778 4.4060 1.7455 1.0045 1.2860 0.2083 1.0953 0.0366

0.85 3.6036 8.6560 2.1489 2.0534 1.4771 0.4604 1.1805 0.0933

0.90 5.2632 21.3348 2.9694 5.2085 1.8769 1.2376 1.3696 0.2797

0.95 10.2564 92.7299 5.4571 23.0418 3.1104 5.6830 1.9752 1.3814

4 M/GI/r-PS with locally exponential service times

We consider now an M/GI/r-PS system, i.e.

ϕ(n) = min(r/n,1), n ∈ N, (4.1)

where the service time S has finite mean mS and its distribution B(x) coincides with
an exponential distribution in a neighborhood of zero, i.e.

B(x) = 1 − e−μx, x ∈ [0, d), (4.2)

where μ ∈ (0,∞), for some d ∈ (0,∞). Moreover, we assume that the stability con-
dition (1.1) is satisfied, i.e. that � < r , and that the system is in steady state. From
Theorem 3.1 it follows that the LST of V (τ) for s ∈ (0,∞) is given by

E
[
e−sV (τ)

] = eμτ

λ

∞∑

n=1

ϕ(n)

n∑

m=1

p(0)

(n − m)!
(
mSeμτ − F(τ)

)n−m
hn,m(s, τ ),

τ ∈ [0, d), (4.3)

where hn,m(s, x) is the minimal non-negative solution of the linear system of ODEs
(3.10) with initial condition (3.11). Applying the substitution

hn,m(s, x) = λn+1−m

(
n∏

j=1

1

ϕ(j)

)
e−μxϑn,m(s/λ,λx),

0 < m ≤ n,0 ≤ x < d, (4.4)
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and the notation κ := μ/λ, it follows that ϑn,m(σ, ξ) is the minimal non-negative
solution of

∂

∂ξ
ϑn,m(σ, ξ) = −

(
1 + σ

ϕ(n)
+ (n − 1)κ

)
ϑn,m(σ, ξ)

+ I{m > 1}ϑn−1,m−1(σ, ξ) + mκ

ϕ(n)
ϑn+1,m+1(σ, ξ)

+ 1

ϕ(n)
ϑn+1,m(σ, ξ), 0 < m ≤ n, ξ ∈ (0,∞), (4.5)

with initial condition

ϑn,m(σ,0) = I{m = 1}, 0 < m ≤ n, (4.6)

restricted to ξ ∈ [0, λd), cf. Remark 3.1. The linear system of ODEs (4.5), (4.6) is
equivalent to the system of integral equations

ϑn,m(σ, ξ) = I{m = 1}e−( 1+σ
ϕ(n)

+(n−1)κ)ξ

+
∫ ξ

0

(
I{m > 1}ϑn−1,m−1(σ, η) + mκ

ϕ(n)
ϑn+1,m+1(σ, η)

+ 1

ϕ(n)
ϑn+1,m(σ, η)

)
e
−( 1+σ

ϕ(n)
+(n−1)κ)(ξ−η) dη, 0 < m ≤ n, ξ ∈ R+.

(4.7)

As (e−(n−1)κξ /(m − 1)!)((eκξ − 1)/κ)m−1, 0 < m ≤ n, ξ ∈ R+, is a non-negative
solution of (4.5), (4.6) for σ = 0, the minimal non-negative solution ϑn,m(σ, ξ),
0 < m ≤ n, ξ ∈ R+, of (4.7) for σ > 0 can be constructed by the method of suc-
cessive approximation starting from ϑn,m;0(σ, ξ) ≡ 0, defining ϑn,m;i+1(σ, ξ) recur-
sively with respect to i by the r.h.s. of (4.7), where the ϑn′,m′(σ, η) are replaced by
ϑn′,m′;i (σ, η), and taking the limit i → ∞. This construction provides the estimate

0 ≤ ϑn,m(σ, ξ) ≤ e−(n−1)κξ

(m − 1)!
(

eκξ − 1

κ

)m−1

, 0 < m ≤ n, ξ ∈ R+, (4.8)

and it follows that ϑn,m(σ, ξ) for 0 < m ≤ n − (r − 1) does not depend on ϕ(�) for
� < r . By continuous continuation from (2.34), (2.36), (4.2), (2.27), (2.28), (3.7), and
(4.4) we find that

E
[
e−λσV (0,ξ/λ)

] = ϑ1,1(σ, ξ), ξ ∈ [0, λd], (4.9)

where V (0, τ ) denotes the sojourn time of a τ -request finding at its arrival the
M/GI/r-PS system empty. Further, by continuous continuation from (4.3), (4.4),
and (3.6) we find that

E
[
e−λσV (ξ/λ)

] = p(0)

∞∑

m=1

∞∑

n=m

(
n−1∏

j=1

1

ϕ(j)

)(
(κ� − 1)eκξ + 1

κ

)n−m
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× ϑn,m(σ, ξ)

(n − m)! , ξ ∈ [0, λd]. (4.10)

Note that � = 1/κ for the M/M/r-PS system.
As ϑn,m(σ, ξ) for 0 < m ≤ n−(r−1) does not depend on ϕ(�) for � < r , as well as

the M/GI/r-PS system we consider the corresponding M/GI/SDPS system where
the service capacity ϕ(n) = min(r/n,1), n ∈ N, is replaced by

ϕ̃(n) = r/n, n ∈ N. (4.11)

Note that this M/GI/SDPS system is equivalent to an M/GI/1-PS system by re-
placing the service time S by S/r . We denote by p̃(n) the stationary occupancy distri-
bution of the M/GI/SDPS system with service capacity (4.11), by Ṽ (τ ) the sojourn
time of a τ -request in this system and by ϑ̃n,m(σ, ξ) the minimal non-negative solu-
tion of the corresponding system of ODEs

∂

∂ξ
ϑ̃n,m(σ, ξ) = −

(
1 + σ

ϕ̃(n)
+ (n − 1)κ

)
ϑ̃n,m(σ, ξ)

+ I{m > 1}ϑ̃n−1,m−1(σ, ξ) + mκ

ϕ̃(n)
ϑ̃n+1,m+1(σ, ξ)

+ 1

ϕ̃(n)
ϑ̃n+1,m(σ, ξ), 0 < m ≤ n, ξ ∈ (0,∞), (4.12)

with initial condition

ϑ̃n,m(σ,0) = I{m = 1}, 0 < m ≤ n, (4.13)

which is equivalent to the system of integral equations

ϑ̃n,m(σ, ξ) = I{m = 1}e−( 1+σ
ϕ̃(n)

+(n−1)κ)ξ

+
∫ ξ

0

(
I{m > 1}ϑ̃n−1,m−1(σ, η) + mκ

ϕ̃(n)
ϑ̃n+1,m+1(σ, η)

+ 1

ϕ̃(n)
ϑ̃n+1,m(σ, η)

)
e
−( 1+σ

ϕ̃(n)
+(n−1)κ)(ξ−η) dη, 0 < m ≤ n, ξ ∈ R+,

(4.14)

cf. (4.5)–(4.7). Analogously to (4.8) we obtain the estimate

0 ≤ ϑ̃n,m(σ, ξ) ≤ e−(n−1)κξ

(m − 1)!
(

eκξ − 1

κ

)m−1

, 0 < m ≤ n, ξ ∈ R+. (4.15)

Further, analogously to (4.9) it follows that

E
[
e−λσ Ṽ (0,ξ/λ)

] = ϑ̃1,1(σ, ξ), ξ ∈ [0, λd], (4.16)
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where Ṽ (0, τ ) denotes the sojourn time of a τ -request finding at its arrival the
M/GI/SDPS system with service capacity (4.11) empty. Using the well known ex-
pression for the LST of the sojourn time of a τ -request finding at its arrival the cor-
responding M/GI/1-PS system with scaled service time empty, cf. [18] (2.24) and
(2.26), where, because of (4.2), ψ(s,u) for u ∈ [0, d) can be determined directly from
[18] (2.22) and the initial condition ψ(s,0) = 1, in view of (4.16), after some algebra
we find that

ϑ̃1,1(σ, ξ) = E
[
e−λσ Ṽ (0,ξ/λ)

]

= r2 − r1

(r2 − 1)e(r2−rκ)ξ/r + (1 − r1)e(r1−rκ)ξ/r
, ξ ∈ [0, λd], (4.17)

where

r1,2 := (
1 + σ + rκ ∓

√
(1 + σ + rκ)2 − 4rκ

)
/2 (4.18)

are the zeroes of z2 − (1 + σ + rκ)z + rκ . Note that (4.18) implies

0 < r1 < min(rκ,1), r2 > max(rκ,1) (4.19)

for σ > 0. Moreover, analogously to (4.10) we find that

E
[
e−λσ Ṽ (ξ/λ)

] = p̃(0)

∞∑

m=1

∞∑

n=m

(
n−1∏

j=1

1

ϕ̃(j)

)(
(κ� − 1)eκξ + 1

κ

)n−m

× ϑ̃n,m(σ, ξ)

(n − m)! , ξ ∈ [0, λd]. (4.20)

On the other hand, by using the well known expression for the LST of the sojourn
time of a τ -request in the corresponding M/GI/1-PS system with scaled service
time, cf. [18] (2.29), in view of (4.2), after some algebra we obtain

E
[
e−λσ Ṽ (ξ/λ)

] = 1 − �
r

(1−r2)
2

r2(r2−r1)
e(r2−rκ)ξ/r − (1−r1)

2

r1(r2−r1)
e(r1−rκ)ξ/r + 1−κ�

rκ

,

ξ ∈ [0, λd]. (4.21)

Note that (4.21) for � = 1/κ also follows from the expression for the LST of the
sojourn time of a τ -request in the M/M/1-PS system, cf. [18] (2.43).

As ϑn,m(σ, ξ) for 0 < m ≤ n − (r − 1) does not depend on ϕ(�) for � < r and
since ϕ(�) = ϕ̃(�) for � ≥ r , we find that

ϑn,m(σ, ξ) = ϑ̃n,m(σ, ξ), 0 < m ≤ n − (r − 1), ξ ∈ R+. (4.22)

Because of (4.22), (4.1), and (4.11), from (4.10) and (4.20) we obtain
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E
[
e−λσV (ξ/λ)

]

= p(0)

∞∑

m=1

m+r−2∑

n=m

(
n−1∏

j=1

1

ϕ(j)

)(
(κ� − 1)eκξ + 1

κ

)n−m
ϑ̄n,m(σ, ξ)

(n − m)!

− p(0)

r−1∑

m=1

r−1∑

n=m

((
r−1∏

j=n

r

j

)
− 1

)(
(κ� − 1)eκξ + 1

κ

)n−m
ϑ̃n,m(σ, ξ)

(n − m)!

+ rrp(0)

r!p̃(0)
E

[
e−λσ Ṽ (ξ/λ)

]
, ξ ∈ [0, λd], (4.23)

where

ϑ̄n,m(σ, ξ) := ϑn,m(σ, ξ) − ϑ̃n,m(σ, ξ), 0 < m ≤ n, ξ ∈ R+. (4.24)

From (4.6) and (4.13) it follows that

ϑ̄n,m(σ,0) = 0, 0 < m ≤ n, (4.25)

and (4.22) yields

ϑ̄n,m(σ, ξ) = 0, 0 < m ≤ n − (r − 1), ξ ∈ R+. (4.26)

Moreover, from (4.8) and (4.15) we find the estimate

∣∣ϑ̄n,m(σ, ξ)
∣∣ ≤ e−(n−1)κξ

(m − 1)!
(

eκξ − 1

κ

)m−1

, 0 < m ≤ n, ξ ∈ R+. (4.27)

4.1 M/GI/2-PS with locally exponential service times

Let us consider the M/GI/2-PS system, i.e. the case of r = 2, in more detail. We
assume that the stability condition (1.1) for the M/GI/2-PS system is satisfied, i.e.
that � < 2, and that the system is in steady state. In view of (1.2), (4.1), (4.11), in the
case of r = 2 the representation (4.23) for the LST of the sojourn time of a τ -request
simplifies to

E
[
e−λσV (ξ/λ)

] = 1 − �/2

1 + �/2

(
2G(ξ,1) − G(ξ,0) − ϑ̃1,1(σ, ξ)

)

+ 2

1 + �/2
E

[
e−λσ Ṽ (ξ/λ)

]
, ξ ∈ [0, λd], (4.28)

where ϑ̃1,1(σ, ξ) and E[e−λσ Ṽ (ξ/λ)] are given by (4.17) and (4.21) for r = 2, respec-
tively, and where for fixed positive σ

G(ξ, z) :=
∞∑

m=1

(m − 1)!
2m−1

ϑ̄m,m(σ, ξ)zm−1. (4.29)
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The series on the r.h.s. of (4.29) converges for ξ ∈ [0, λd], |z| < 2/� as well as for
ξ ∈ R+, |z| < 2κ due to (4.27), (4.2), and it follows that

∣∣G(ξ, z)
∣∣ <

2κ

2κ − |z| , ξ ∈ R+, |z| < 2κ. (4.30)

Further, (4.25) yields that

G(0, z) = 0. (4.31)

Because of (4.30), the Laplace transform

G∗(w, z) :=
∫

R+
e−wξG(ξ, z)dξ (4.32)

of G(ξ, z) with respect to ξ exists for 
w > 0, |z| < 2κ . From (4.1), (4.5), (4.11),
(4.12), (4.24), and (4.26) we find for ξ ∈ (0,∞) that

∂

∂ξ
ϑ̄1,1(σ, ξ) = −(1 + σ)ϑ̄1,1(σ, ξ) + κϑ̄2,2(σ, ξ) + ∂

∂ξ
ϑ̃1,1(σ, ξ), (4.33)

∂

∂ξ
ϑ̄m,m(σ, ξ) = −

(
m(1 + σ)

2
+ (m − 1)κ

)
ϑ̄m,m(σ, ξ) + ϑ̄m−1,m−1(σ, ξ)

+ m2κ

2
ϑ̄m+1,m+1(σ, ξ), m ≥ 2. (4.34)

In view of (4.15) and (4.27), the Laplace transform ϑ̃∗
1,1(σ,w) of ϑ̃1,1(σ, ξ) and the

Laplace transforms ϑ̄∗
m,m(σ,w) of ϑ̄m,m(σ, ξ), m ≥ 1, exist for 
w > 0. Because of

(4.13) and (4.25), from (4.33) and (4.34) it follows for 
w > 0 that

(1 + σ + w)ϑ̄∗
1,1(σ,w) = κϑ̄∗

2,2(σ,w) + wϑ̃∗
1,1(σ,w) − 1, (4.35)

(
m(1 + σ)

2
+ (m − 1)κ + w

)
ϑ̄∗

m,m(σ,w)

= ϑ̄∗
m−1,m−1(σ,w) + m2κ

2
ϑ̄∗

m+1,m+1(σ,w), m ≥ 2, (4.36)

respectively. In view of (4.29), (4.32), and (4.35), multiplying both sides of (4.36) by
(m − 1)!(z/2)m−1 and summing up for m ≥ 2 yields after some algebra that

(
z2 − (1 + σ + 2κ)z + 2κ

) ∂

∂z
G∗(w, z) + (

z − (1 + σ + 2w)
)
G∗(w, z)

= 1 − wG∗(w,0) − wϑ̃∗
1,1(σ,w), 
w > 0, |z| < 2κ. (4.37)

As the zeroes r1,2 of z2 − (1 +σ + 2κ)z+ 2κ satisfy (4.19), G∗(w, z) is a solution of
the ODE (4.37) for fixed w which is continuous at z = r1. For real z ∈ (r1,2κ) thus
from (4.37) it follows that

G∗(w, z) = (
wG∗(w,0) + wϑ̃∗

1,1(σ,w) − 1
)
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×
∫ z

r1

(
(x − r1)(r2 − z)

(z − r1)(r2 − x)

) r2−2κ+2w

r2−r1 dx

(x − r1)(r2 − z)
,


w > 0, z ∈ (r1,2κ). (4.38)

The substitution ((x − r1)(r2 − z))/((z − r1)(r2 − x)) = e− r2−r1
2 ξ yields

G∗(w, z) = r2 − r1

2

(
wG∗(w,0) + wϑ̃∗

1,1(σ,w) − 1
)

×
∫ ∞

0

e−wξ dξ

(r2 − z)e(r2−2κ)ξ/2 + (z − r1)e(r1−2κ)ξ/2
,


w > 0, z ∈ (r1,2κ). (4.39)

By means of analytic continuation to z = 0 and applying the geometric series with
common ratio (r1/r2)e

(r1−r2)ξ/2 to the integrand, for 
w > 0 from (4.39) we obtain
the representation

G∗(w,0) =
∑∞

k=0
(r1/r2)

k

(r2−2κ+2w)/(r2−r1)+k

r2 − w
∑∞

k=0
(r1/r2)

k

(r2−2κ+2w)/(r2−r1)+k

(
wϑ̃∗

1,1(σ,w) − 1
)

(4.40)

of the Laplace transform of G(ξ,0) by a hypergeometric function. On the other hand,
in view of (4.13), (4.31), and of the properties of the Laplace transform, from (4.39)
we find that

G(ξ, z) = r2 − r1

2

∫ ξ

0

(
∂

∂η

(
G(η,0) + ϑ̃1,1(σ, η)

))

× dη

(r2 − z)e(r2−2κ)(ξ−η)/2 + (z − r1)e(r1−2κ)(ξ−η)/2
,

ξ ∈ R+, z ∈ (r1,2κ), (4.41)

where (4.41) even holds for ξ ∈ R+, |z| < r2 due to the uniqueness theorem for ana-
lytic functions and Taylor’s theorem, and where r2 > 1 because of (4.19). In view of
(4.13) and (4.31), integration by parts provides us with

G(ξ, z) = 1

2

(
G(ξ,0) + ϑ̃1,1(σ, ξ)

)

− 1

2

r2 − r1

(r2 − z)e(r2−2κ)ξ/2 + (z − r1)e(r1−2κ)ξ/2

− r2 − r1

4

∫ ξ

0

(
G(η,0) + ϑ̃1,1(σ, η)

)

× (r2 − z)(r2 − 2κ)e(r2−2κ)(ξ−η)/2+ (z − r1)(r1 − 2κ)e(r1−2κ)(ξ−η)/2

((r2 − z)e(r2−2κ)(ξ−η)/2 + (z − r1)e(r1−2κ)(ξ−η)/2)2
dη,

ξ ∈ R+, |z| < r2. (4.42)
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In particular, choosing z = 0 in (4.42) yields

G(ξ,0) = ϑ̃1,1(σ, ξ) − r2 − r1

r2e(r2−2κ)ξ/2 − r1e(r1−2κ)ξ/2

− r2 − r1

2

∫ ξ

0

(
G(η,0) + ϑ̃1,1(σ, η)

)

× r2(r2 − 2κ)e(r2−2κ)(ξ−η)/2 − r1(r1 − 2κ)e(r1−2κ)(ξ−η)/2

(r2e(r2−2κ)(ξ−η)/2 − r1e(r1−2κ)(ξ−η)/2)2
dη, ξ ∈ R+.

(4.43)

Due to (4.43), (4.29), (4.24), (4.9), and (4.17), moreover, we obtain

E
[
e−λσV (0,ξ/λ)

] = 2(r2 − r1)

(r2 − 1)e(r2−2κ)ξ/2 + (1 − r1)e(r1−2κ)ξ/2

− r2 − r1

r2e(r2−2κ)ξ/2 − r1e(r1−2κ)ξ/2
− r2 − r1

2

∫ ξ

0
E

[
e−λσV (0,η/λ)

]

× r2(r2 − 2κ)e(r2−2κ)(ξ−η)/2 − r1(r1 − 2κ)e(r1−2κ)(ξ−η)/2

(r2e(r2−2κ)(ξ−η)/2 − r1e(r1−2κ)(ξ−η)/2)2
dη,

ξ ∈ [0, λd], (4.44)

cf. [3] Theorem 4 for the case of an M/M/2-PS system.
The Volterra integral equation (convolution equation) (4.43) can be used for com-

puting G(ξ,0), ξ ∈ [0, λd], for example by means of the Neumann series. Alter-
natively, (4.40) can be used for computing G(ξ,0), ξ ∈ [0, λd], by inverting both
factors on the r.h.s. and applying the convolution formula. Subsequently, G(ξ,1),
ξ ∈ [0, λd], can be computed via (4.41) or (4.42) for z = 1.

4.2 M/GI/2-PS with bounded from below service times

In this section we consider the M/GI/2-PS system with bounded from below service
times, i.e., we consider the case of r = 2 where

B(x) = 0, x ∈ [0, d), (4.45)

for some d ∈ (0,∞). Moreover, we assume that the stability condition (1.1) for the
M/GI/2-PS system is satisfied, i.e. that � < 2, and that the system is in steady state.
The LST of V (τ) is given by the limit μ ↓ 0 of the LST of V (τ) in the corresponding
system with locally exponential service times, cf. Sect. 4.1. Thus from (4.28) we
obtain

E
[
e−λσV (ξ/λ)

] = lim
κ↓0

(
1 − �/2

1 + �/2

(
2G(ξ,1) − G(ξ,0) − ϑ̃1,1(σ, ξ)

)

+ 2

1 + �/2
E

[
e−λσ Ṽ (ξ/λ)

])
, ξ ∈ [0, λd]. (4.46)
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In view of

lim
κ↓0

r1 = 0, lim
κ↓0

r2 = 1 + σ, (4.47)

cf. (4.18), from (4.17) we find that

lim
κ↓0

ϑ̃1,1(σ, ξ) = 1 + σ

1 + σe(1+σ)ξ/2
, ξ ∈ [0, λd]. (4.48)

Moreover, after tedious algebra from (4.21) and (4.18) it follows that

lim
κ↓0

E
[
e−λσ Ṽ (ξ/λ)

] = 1 − �/2

(1 − �/2) + σ
1+σ

ξ/2 + ( σ
1+σ

)2(e(1+σ)ξ/2 − 1)
,

ξ ∈ [0, λd]. (4.49)

In the limiting case of κ ↓ 0, in view of (4.47) and (4.48), the Volterra integral equa-
tion (4.43) for G(ξ,0) simplifies to

G(ξ,0) = 1 + σ

1 + σe(1+σ)ξ/2
− e−(1+σ)ξ/2

− 1 + σ

2

∫ ξ

0

(
G(η,0) + 1 + σ

1 + σe(1+σ)η/2

)
e−(1+σ)(ξ−η)/2 dη,

ξ ∈ [0, λd]. (4.50)

Multiplying by e(1+σ)ξ/2, differentiating with respect to ξ , and multiplying again by
e(1+σ)ξ/2 demonstrates that

∂

∂ξ

(
e(1+σ)ξG(ξ,0)

) = −σ(1 + σ)2

2

e(1+σ)3ξ/2

(1 + σe(1+σ)ξ/2)2
, ξ ∈ (0, λd).

In view of G(0,0) = 0, cf. (4.50), thus we find that

G(ξ,0) = −σ(1 + σ)

ζ 2

∫ ζ

1

(
η

1 + ση

)2

dη

∣∣∣∣
ζ=e(1+σ)ξ/2

, ξ ∈ [0, λd], (4.51)

where

∫ ζ

1

(
η

1 + ση

)2

dη = 1

σ 3

(
σ(ζ − 1) − 2 log

(
1 + σζ

1 + σ

)
+ σ(ζ − 1)

(1 + σ)(1 + σζ )

)

for σ > 0. Further, in the limiting case of κ ↓ 0, taking into account (4.47), (4.48),
(4.51), and using integration by parts, from (4.41) for z = 1 after some algebra we
obtain

G(ξ,1) = σ(1 + σ)2

2

∫ ζ

1

σζ

(ω + σζ )2ω2

∫ ω

1

(
η

1 + ση

)2

dη dω
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− σ(1 + σ)2

2

∫ ζ

1

ζ

(1 + σω)(ω + σζ )2
dω

− σ(1 + σ)

2ζ 2

∫ ζ

1

(
η

1 + ση

)2

dη

∣∣∣∣
ζ=e(1+σ)ξ/2

= −σ(1 + σ)2
∫ ζ

1

1

(ω + σζ )2ω

∫ ω

1

(
η

1 + ση

)2

dη dω

− σ(1 + σ)

ζ 2

∫ ζ

1

(
η

1 + ση

)2

dη

∣∣∣∣
ζ=e(1+σ)ξ/2

, ξ ∈ [0, λd], (4.52)

where for the last equation again integration by parts has been used. Note that the
r.h.s. of (4.52) can be evaluated by using the dilogarithm function

Li2(z) := −
∫ z

0

log(1 − ω)

ω
dω.

Summarizing, from (4.46), (4.52), (4.51), (4.48), and (4.49) we find the following
representation for the LST of V (τ).

Theorem 4.1 Let the stability condition � < 2 for the M/GI/2-PS system, where
the service time fulfills (4.45), be satisfied. Then for s ∈ R+ and τ ∈ [0, d] the LST of
V (τ) is given by

E
[
e−sV (τ)

] = 1 − �/2

1 + �/2

(
−2σ(1 + σ)2

∫ ζ

1

1

(ω + σζ )2ω

∫ ω

1

(
η

1 + ση

)2

dη dω

− σ(1 + σ)

ζ 2

∫ ζ

1

(
η

1 + ση

)2

dη − 1 + σ

1 + σζ

+ 2(1 + σ)2

(1 − �/2)(1 + σ)2 + σ log(ζ ) + σ 2(ζ − 1)

)∣∣∣∣
σ=s/λ,ζ=e(λ+s)τ/2

,

τ ∈ [0, d]. (4.53)

Note that Theorem 4.1 also provides the LST of V (τ), τ ∈ [0,mS], and in partic-
ular the LST of V = V (mS) in M/D/2-PS for d = mS .

Taking the kth derivative with respect to s at s = 0 on both sides of (4.53) yields
the kth moment of V (τ) for τ ∈ [0, d]. In particular, we find the following simple
expression for the variance of V (τ) after tedious algebra.

Corollary 4.1 Let the stability condition � < 2 for the M/GI/2-PS system, where
the service time fulfills (4.45), be satisfied. Then for τ ∈ [0, d] the variance of V (τ)

is given by

var
(
V (τ)

) = 1

λ2

(
2�ξ2

(1 + �/2)2(1 − �/2)2
− 4(eξ − 1 − ξ)

(1 + �/2)(1 − �/2)



Queueing Syst (2010) 64: 167–201 201

+ 2

9

1 − �/2

1 + �/2

(
(12ξ − 10)eξ + 9 + e−2ξ

))∣∣∣∣
ξ=λτ/2

, τ ∈ [0, d].

(4.54)

Note that Corollary 4.1 also provides the variances of V (τ), τ ∈ [0,mS], and of
V = V (mS) in M/D/2-PS for d = mS , cf. Table 1 for r = 2.
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