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Abstract

This paper demonstrates that tractability gained from the Calvo pricing assumption is
costly in terms of aggregate dynamics. I derive a generalized New Keynesian Phillips curve
featuring a generalized hazard function and real rigidity. Analytically, I �nd that important
dynamics in the NKPC are canceled out due to the restrictive Calvo assumption. The richer
dynamic structure resulted from the non-constant hazards is quantitatively important for
in�ation dynamics and monetary policy. With plausible parameter values, the increasing
hazard model generates hump-shaped impulse responses of in�ation to the monetary shock,
and the real e¤ects of monetary shocks are 2-3 times higher than those in the Calvo model.
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1 Introduction

The Calvo pricing assumption (Calvo, 1983) has become predominant in the world of applied
monetary analysis under nominal rigidity. The main argument for using this approach, however,
is solely based on its tractability. In recent years, detailed micro-level data sets have become
available for researchers. Empirical work using these data sets1 generally reach the consensus
that, instead of having economy-wide uniform price stickiness, the frequency of price adjust-
ments di¤ers substantially within the economy. In addition, the Calvo assumption also implies
a constant hazard function of price setting, meaning that the probability of adjusting prices is
independent of the length of the time since last adjustment. Unfortunately, constant hazard
functions are also largely rejected by empirical evidence from the micro level data. Cecchetti
(1986) used newsstand prices of magazines in the U.S. and Goette et al. (2005) apply Swiss
restaurant prices. Both studies �nd strong support for increasing hazard functions. By con-
trast, recent studies using more comprehensive micro data �nd that hazard functions are �rst
downward sloping and then mostly �at, interrupted periodically by spikes (See, e.g.: Campbell
and Eden, 2005, Alvarez, 2007 and Nakamura and Steinsson, 2008).

Given this con�ict between theory and empirical evidence, it is important to understand the
consequences of a non-constant price reset hazard function for in�ation dynamics and implica-
tions of monetary policy.

To tackle these questions, I construct a generalized time-dependent pricing model and derive
the New Keynesian Phillips curve (NKPC) featuring a general hazard function and real rigidity.
The resulting NKPC incorporates components, such as lagged in�ation, future and lagged ex-
pectations of in�ation and real marginal costs. This version of the Phillips curve nests the Calvo
case in the sense that, under a constant hazard function, e¤ects of lagged in�ation exactly cancel
those of lagged expectations, so that, as in the Calvo NKPC, only current real marginal cost and
expected future in�ation remain in the expression. In the general case, however, expectations of
future variables, lagged expectations and lagged in�ation all should be presented in the dynamic
structure of the Phillips curve.

The economic reason why those lagged dynamic components should appear in the GNKPC
but miss in the Calvo model is because: �rst, due to nominal rigidity, some fraction of past reset
prices continue to a¤ect the current aggregate price p̂t. Lagged expectational terms re�ect in�u-
ences of past optimal prices on the current aggregate price and hence on current in�ation. The
higher past optimal price is, the higher the current aggregate price and hence current in�ation.
Second, the inclusion of past in�ations re�ects the in�uence of past reset prices on the lagged
aggregate price p̂t�1. The higher the past in�ations prevail, higher the lagged aggregate price
would be, and thereby it deters current in�ation to be high. Putting them together, these two
opposing e¤ects change current in�ation through p̂t and p̂t�1 respectively, and the magnitudes
of those two e¤ects depend on the shape of the price reset hazard function. In the general case,
the extent of past optimal prices a¤ecting current aggregate price p̂t should be di¤erent to those
a¤ecting lagged aggregate price p̂t�1. As a result, lagged expectations and lagged in�ations
should appear in the generalized NKPC. Conversely, in the Calvo case, the constant hazard
function leads old reset prices to exert the exactly same amount of impact on both current

1See: e.g. Bils and Klenow (2004), Alvarez et al. (2006), Midrigan (2007), Nakamura and Steinsson (2008)
among others.
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aggregate price and lagged aggregate price, and thereby it causes them to be cancelled out.
Results presented above have important implications for monetary policy. It reveals that the
dependence of in�ation on its own lags should be in�uenced by the monetary policy through
expectations, and therefore models2 that treat this dependence as a �xed primitive coe¢ cient
should be subject to the Lucas critique, and thereby can not be used in the monetary policy
analysis.

In the numerical experiments, I simulate the general equilibrium model, combining the gen-
eralized NKPC with a standard IS curve and the nominal money growth rule. The simulation
results show that, even without real rigidity, the increasing hazard function helps to increase
both persistence of in�ation and output gap. When introducing some degree of real rigidity, the
generalized NKPC gives rise to substantially di¤erent in�ation dynamics, namely, the impulse
response of in�ation to a nominal money growth shock becomes hump-shaped. The economic
intuition behind these results is that, on the one hand, increasing hazard function postpones
the timing of the price adjustment. On the other hand, strategic complementary makes earlier
adjusting �rms choose a small size for the adjustment, while the later adjusting �rms make a
larger price adjustment. In another words, the increasing-hazard pricing together with some
degree of real rigidity not only a¤ect the timing of the price adjustment, but also the average
magnitude of �rms�adjustments, leading to a hump-shaped response. Last but not least, when
the real e¤ects of monetary policy shocks are measured by the accumulative impulse responses of
the real output gap, models with an increasing hazard function generate real e¤ects of monetary
policy which are 2-3 times larger than those in the corresponding Calvo model.

In the literature, the general-hazard-pricing model has been studied in di¤erent contexts.
Wolman (1999) raised the issue that in�ation dynamics should be sensitive to the hazard function
underlying di¤erent pricing rules and thereby implications of the constant-hazard Calvo model
is not robust to the shape of the hazard function. He showed this result in a partial equilibrium
analysis. Kiley (2002) compared the Calvo and Taylor staggered-pricing models and showed
the dynamics of output following monetary shocks are both quantitatively and qualitatively
quite di¤erent across the two pricing speci�cations unless one assumes a substantial level of
real rigidity in the economy. Mash (2003) constructed a general pricing model that nests both
the Calvo and Taylor cases. He found that implications for optimal monetary policy based
on those limiting cases are not robust to the change in the hazard function. Sheedy (2007)
focused on the relationship between the shape of hazard functions and in�ation persistence.
He parameterized the hazard function in such a way that the resulting NKPC has a positive
coe¢ cient on lagged in�ation given that the hazard function is upward sloping. This result,
however, is only valid under his hazard function speci�cation. The most closely related work
is Whelan (2007), who derived the generalized NKPC under a general hazard function, but
rejected this model based on the observation from the reduced-form Phillips curve regression
that in�ation is positively dependent on its lags. However, this argument is vulnerable in light of
the evidence presented by Dotsey (2002), who shows that the positive reduced-form coe¢ cients
themselves could be spurious due to omitted variables in a misspeci�ed regression model. This
argument is supported by Cogley and Sbordone (2006), who �nd that when correctly accounting
for the time-varing trend of in�ation, the purely forward-looking model explains the persistence

2See: e.g. Gali and Gertler (1999) and Christiano et al. (2005).
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of the in�ation deviation from its trend quite well.
The remainder of the paper is organized as follows: in section 2, I present the model with

the generalized time-dependent pricing and derive the New Keynesian Phillips curve; section
3 shows analytical results regarding new insights gained from relaxing the constant hazard
function underlying the Calvo assumption; in section 4, I simulate the complete DSGE model
with some commonly used parameter values in the literature and then present the simulation
results; section 5 contains some concluding remarks.

2 The Model

In this section, I present a DSGE model of sticky prices based on both nominal and real rigidities.
The scheme of nominal rigidity in the model allows for a general shape of the hazard function.
A hazard function of price setting is de�ned as the probabilities of price adjustment conditional
on the spell of the time elapsed since the price was last set. Real rigidity is introduced similarly
as in Sbordone (2002), who incorporates upward-sloping marginal cost as a source of strategic
complementarity.

2.1 Representative Household

A representative, in�nitely-lived household derives utility from the composite consumption good
Ct, its labor supply and the real money holding Md

t =Pt, and it maximizes a discounted sum of
utilities of the form:

max
fCt;Md

t ;Lt;Bt+1g
E0

" 1X
t=0

�t

 
C1��t

1� � � �H
L1+�t

1 + �
+ �

M
log

�
Md
t

Pt

�!#

Here Ct denotes an index of the household�s consumption of each of the individual goods Ct(i)
following a constant-elastisity-of-substitution aggregator (Dixit and Stiglitz, 1977).

Ct �
�Z 1

0
Ct(i)

��1
� di

� �
��1

; (1)

where � > 1, and it follows that the corresponding cost-minimizing demand for Ct(i) and the
welfare based price index Pt are given by

Ct(i) =

�
Pt(i)

Pt

���
Ct (2)

Pt =

�Z 1

0
Pt(i)

1��di

� 1
1��

(3)

For simplicity, I assume that household supplies homogeneous labor units (Lt) in an enocomy-
wide competitive labor market.

The �ow budget constraint of the household at the beginning of period t is

PtCt +M
d
t +

Bt
Rt
�Md

t�1 +WtLt +Bt�1 +

Z 1

0
�t(i)di: (4)
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Where Bt is a one-period nominal bond and Rt denotes the gross nominal return on the bond.
�t(i) represents the nominal pro�ts of a �rm that sells good i. I assume that each household owns
an equal share of all �rms. Finally this sequence of period budget constraints is supplemented
with a transversality condition of the form lim

T!1
Et

h
BT

�Ts=1Rs

i
> 0.

The solution to the household�s optimization problem can be expressed in three �rst order
necessary conditions. First, optimal labor supply is related to the real wage:

�
H
L�t C

�
t =

Wt

Pt
; (5)

Second, the Euler equation gives the relationship between the optimal consumption path and
asset prices:

1 = �Et

"�
Ct
Ct+1

��

RtPt
Pt+1

#
; (6)

Finally, the demand of real money balance is determined by weighting between the bene�ts and
costs of holding money.

�
M

Mt

Pt
=

C�t
1�R�1t

; (7)

2.2 Firms in the Economy

In the economy, there is a continuum of monopolistic competitive �rms, who use labor as the
single input to produce good i.

Yt(i) = ZtLt(i)
1�a (8)

where Zt denotes an aggregate productivity shock. Log deviations of the shock ẑt follow an
exogenous AR(1) process ẑt = �z ẑt�1 + "z;t, where "z;t is white noises and �z 2 [0; 1). Lt(i) is
the demand of labor by �rm i. Following equation (2), demand for intermediate goods is given
by:

Yt(i) =

�
Pt(i)

Pt

���
Yt (9)

2.2.1 Pricing Decisions under Real Rigidity

In Appendix (A), I derive the economy-wide optimal relative price, which is the ratio between
the average optimal price chosen by the adjusting �rms and aggregate price index. Note that
even through the individual optimal prices are not the same due to the fact that marginal costs
generally depend on the amount produced, we can still derive the aggregate optimal relative-price
ratio at period t from the average marginal cost in the economy.

P �t
Pt
=

�
�

� � 1
1

1� a

� 1�a
1�a+�a

Y
�+�(1�a)+a
1�a+�a

t Z
� 1+�
1�a+�a

t (10)

To show how real rigidity a¤ects price setting in this model, I log-linearize the relative price
equation (10). De�ne x̂t = logXt � log �X as the log deviation from the steady state, up to a log

5



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

gamma
k1
Real Rigidity

Strategic Neutrality

Figure 1: Real Rigidity, when � = 1; � = 0:5 and � = 10

linearization approximation, one can show that the log deviation of the relative price is equal
to the log deviation of the economy-wide marginal cost, which in turn is a linear function of log
deviations of output gap and the technology shock.

brpt = cmct = 
 (�1ŷt � �2ẑt)
where :


 =
1

1� a+ a�
�1 = a+ �+ �(1� a)
�2 = 1 + �

Parameters 
 and �1 have the economic interpretation as the measure of real rigidity. 
 is the
elasticity of relative prices to the change in real marginal cost, while �1 measures the sensitivity
of real marginal cost to the change in the output gap. Following Woodford (2003), price-setting
decisions are called strategic complementarity when 
�1 < 1. When we assume that the monetary
authority controls the growth rate of the nominal aggregate demand d̂t, then at equilibrium we
have ŷt = d̂t� p̂t. In this case, price adjustments are �sticky�even under a �exible price setting,
because relative price reacts less than one-to-one to a monetary shock. On the other hand, price
setting decisions can be dubbed strategic substitutes when 
�1 > 1, so that relative price reacts
strongly to monetary policy shocks.

Now we can discuss how changes in the labor share a a¤ect the magnitude of real rigidity of
price setting in the model. When setting a equal to zero, creating a linear production technology,
then 
 = 1 and �1 = �+�. Under the standard calibration values in the RBC literature ( � = 1
and � = 0:5 ), the real rigidity parameter 
�1 is equal to 1:5 and price decisions are strategic
substitutes. When the value of a rises, the real rigidity parameter becomes smaller, and price
decisions turn into strategic complementarity.

6



In Figure (1), I plot values of 
 and �1 against values of a, while setting � = 1; � = 0:5 and
� = 10. In this special case, the sensitivity of real marginal cost to the change in the output
gap �1 is not a¤ected by the labor share, while 
 decreases fairly quickly as a becomes larger.
This means that, given the parameter values, real rigidity is mainly driven by the sensitivity of
the relative price to changes in real marginal cost, and the degree of real rigidity is decreasing
in a. Only with a modest value of the labor share (around 0:1), real rigidity drops below the
strategic neutrality threshold.

2.2.2 Pricing Decisions under Nominal Rigidity

In this section, I introduce a general form of nominal rigidity, which is characterized by an
arbitrary hazard function. Many well known price setting models in the literature can be shown
to have the incorporation of a hazard function of one form or another. The hazard function in
this price setting is de�ned as the probability of price adjustment conditional on the spell of
time elapsed since the price was last set. I assume that monopolistic competitive �rms cannot
adjust their price whenever they want. Instead, opportunities for re-optimizing prices depend
on the hazard function hj , where j denotes the time-since-last-adjustment and j 2 f0; Jg. J
is the maximum number of periods in which a �rm�s price can be �xed. To keep the model
general, I do not parameterize the hazard function, so that the relative magnitudes of hazard
rates are totally free. As a result, this model is able to nest a wide range of staggered pricing
New Keynesian models.

Dynamics of the vintage distribution In the economy, �rms�prices are heterogeneous with
respect to the time since their last price adjustment. I call them price vintages, while the vintage
label j indicates the age of each price group. Table (1) summarizes key notations concerning
the dynamics of vintages.

Vintage Hazard Rate Non-adj. Rate Survival Rate Distribution
j hj �j Sj �(j)

0 0 1 1 �(0)

1 h1 �1 = 1� h1 S1 = �1 �(1)
...

...
...

...
...

j hj �j = 1� hj Sj =
j

�
i=0
�i �(j)

...
...

...
...

...
J hJ = 1 �J = 0 SJ = 0 �(J)

Table 1: Notations of the dynamics of price-vintage-distribution.

Using the notation de�ned in Table (1), and also denoting the distribution of price durations
at the beginning of each period by �t = f�t(0); �t(1) � � � �t(J)g, we can derive the ex post
distribution of �rms after price adjustments (~�t)
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~�t(j) =

8<:
JP
i=1
hj�t(i) , when j = 0

�j�t(j) , when j = 1 � � �J
(11)

Intuitively, those �rms that reoptimize their prices in period t are labeled as �vintage 0�, and
the proportion of those �rms is given by hazard rates from all vintages multiplied by their
corresponding densities. The �rm left in each vintage are the �rms that do not adjust their
prices. When period t is over, this ex post distribution ~�t becomes the ex ante distribution for
the new period �t+1: All price vintages move to the next one, because all prices age by one
period.

As long as the hazard rates lie between zero and one, dynamics of the price-duration distri-
bution can be viewed as a Markov process with an invariant distribution, �, and is obtained by
solving �t(j) = �t+1(j): It yields the stationary price-duration distribution �(j) as follows:

�(j) =
Sj

J�1
�
j=0
Sj

, for j = 0; 1 � � �J � 1: (12)

Here, I give a simple example. When J = 3, then the transition matrix of the price-duration-
group Markov chain is illustrated as follows:

j 0 1 2 3

0 0 1 0 0

1 h1 0 �1 0

2 h2 0 0 �2
3 1 0 0 0

According to equation (12), this Markov chain eventually converges to the stationary price-

duration distribution � =
n

1
1+�1+�1�2

; �1
1+�1+�1�2

; �1�2
1+�1+�1�2

o
:

Let�s assume the economy converges to this invariant distribution quickly, so that regard-
less of the initial price-duration distribution, I only consider the economy with the invariant
distribution of price durations.

The Optimal Pricing under Nominal Rigidity In a given period when a �rm is allowed
to reoptimize its price, the optimal price chosen should re�ect the possibility that it will not
be re-adjusted in the near future. Consequently, adjusting �rms choose optimal prices that
maximize the discounted sum of real pro�ts over the time horizon during which the new price
is expected to be �xed. The probability that the new price is �xed is given by the survival
function, Sj , de�ned in Table (1).

Here I setup the maximization problem of an average adjustor as follows:

max
P (i)�t

Et
J�1P
j=0

SjQt;t+j

�
Y dt+jjt

P (i)�t
Pt+j

� TC(i)t+j
Pt+j

�
Where Et denotes the conditional expectation based on the information set in period t, and
Qt;t+j is the stochastic discount factor appropriate for discounting real pro�ts from t to t + j.
Note that here P (i)�t is de�ned as the average optimal price chosen by the average adjusting �rm.
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Therefore TC(i)t denotes the average total costs of producing output Y (i)dt . The representative
adjusting Firm maximizes pro�ts subject to demand for intermediate goods in period t+j given
that the �rm resets the price in period t, (Y (i)dt+jjt).

Y (i)dt+jjt =

�
P (i)�t
Pt+j

���
Yt+j ;

It yields the following �rst order necessary condition for the optimal price:

P (i)�t =
�

� � 1

J�1P
j=0

SjEt[Qt;t+jYt+jP
��1
t+j MC(i)t+j ]

J�1P
j=0

SjEt[Qt;t+jYt+jP
��1
t+j ]

(13)

MCt denotes the average nominal marginal costs of adjusting �rms. The optimal price is equal
to the markup multiplied by a weighted sum of future marginal costs, where weights depend on
the survival rates. In the Calvo case, where Sj = �j , this equation reduces to the Calvo optimal
pricing condition.

Finally, given the stationary distribution �(j), aggregate price can be written as a distributed
sum of all vintage prices. I de�ne the aggregate optimal price which was set j periods ago as
P �t�j . Following the aggregate price index equation (3), the aggregate price is then obtained by:

Pt =

 
J�1P
j=0

�(j)P �1��t�j

! 1
1��

(14)

2.3 New Keynesian Phillips Curve

In this section, I derive the New Keynesian Phillips curve for this generalized model. To do
that, I �rst log-linearize equation (13) around the constant price steady state. The log-linearized
optimal price equations are obtained by

p̂�t = Et

"
J�1P
j=0

�jS(j)



(cmct+j + p̂t+j)# ; (15)

where :


 =

J�1X
j=0

�jS(j) and cmct = a+ �+ �(1� a)
1� a+ a� ŷt �

1 + �

1� a+ a� ẑt:

In a similar fashion, I derive the log deviation of the aggregate price by log linearizing equation
(14).

p̂t =
J�1P
k=0

�(k) p̂�t�k: (16)

After some algebraic manipulations on equations (15) and (??), I obtain the New Keynesian
Phillips curve as follows3

3The detailed derivation of the NKPC can be found in the technical Appendix (B).
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�̂t =
J�1P
k=0

�(k)

1� �(0)Et�k

 
J�1P
j=0

�jS(j)

	
cmct+j�k + J�1P

i=1

J�1P
j=i

�jS(j)

	
�̂t+i�k

!

�
J�1P
k=2

�(k)�̂t�k+1; where �(k) =

J�1P
j=k

S(j)

J�1P
j=1
S(j)

; 	 =
J�1P
k=0

�jS(j): (17)

At the �rst glance, this Phillips curve is quite di¤erent from the one in the Calvo model.
It involves not only lagged in�ation but also lagged expectations that were built into pricing
decisions in the past. All coe¢ cients in the NKPC are derived from structural parameters
which are either the hazard function parameters or the preference parameters. When J = 3, for
example, then the NKPC is of the following form

�̂t =
1

(�1 + �1�2)	
cmct + �1

(�1 + �1�2)	
cmct�1 + �1�2

(�1 + �1�2)	
cmct�2

+
1

�1 + �1�2
Et

�
��1
	
cmct+1 + �2�1�2

	
cmct+2 + ��1 + �2�1�2

	
�̂t+1 +

�2�1�2
	

�̂t+2

�
+

�1
�1 + �1�2

Et�1

�
��1
	
cmct + �2�1�2

	
cmct+1 + ��1 + �2�1�2

	
�̂t +

�2�1�2
	

�̂t+1

�
+

�1�2
�1 + �1�2

Et�2

�
��1
	
cmct�1 + �2�1�2

	
cmct + ��1 + �2�1�2

	
�̂t�1 +

�2�1�2
	

�̂t

�
� �1�2
�1 + �1�2

�̂t�1; (18)

where : 	 = 1 + ��1 + �
2�1�2:

In this example, we see more clearly how current in�ation depends on marginal costs, lagged
in�ation and a complex weighted sum of lagged expectations. All coe¢ cients are expressed in
terms of hazard rates (�j = 1� hj) and a preference parameter �:

3 Analytical Result

In this section, I explore the dynamic structure of the generalized NKPC (17) to show which
new insights we can learn from relaxing the constant hazard function underlying the Calvo
assumption.

3.1 Economic Intuition behind the Generalized NKPC

Proposition 1 : When assuming the hazard function is constant over the in�nite horizon, the
generalized NKPC (17) reduces to the standard Calvo NKPC:

�̂t =
(1� �)(1� ��)

�
mct + �Et�̂t+1 (19)
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Proof : see Appendix (C).

By iterating equation (19) backwards, the following equations hold

�̂t�1 = Et�1

�
(1� �)(1� ��)

1P
i=0
�i�imct+i�1 + (1� �)

1P
i=0
�i�i�̂t+i�1

�
�̂t�2 = Et�2

�
(1� �)(1� ��)

1P
i=0
�i�imct+i�1 + (1� �)

1P
i=0
�i�i�̂t+i�1

�
...

In light of these analytical results, we learn that the generalized NKPC nests the Calvo
Phillips curve in the sense that, given the constant hazard function, the e¤ects of lagged in�ation
terms exactly equal the e¤ects of lagged expectations. Moreover, lagged in�ation and lagged
expectations are not extrinsic to the time-dependent nominal rigidity model. They are missing
in the Calvo setup only because the constant hazard assumption causes them to be canceled
out.

To understand the economic intuition of the generalized NKPC (GNKPC here after), we
need to decompose in�ation into its parts and study the in�uence of each dynamic component
of the GNKPC on the parts of in�ation. By de�nition, in�ation is equal to the log di¤erence
between two consecutive aggregate prices and the aggregate price in the period t can be further
written as the distributed sum of current and past optimal prices.

�̂t = p̂t � p̂t�1

+
=

�
�(0)p̂�t + �(1)p̂

�
t�1 + � � �+ �(J)p̂�t�J

�
� p̂t�1

Next, I summarize the GNKPC into the following three components: 1) all forward-looking
and current terms (�rst two rows of the example NKPC 18), 2) Lagged expectations (third and
fourth rows) and 3) lagged in�ations (last row). In the following expression, I represent these
three components of the GNKPC with short-hand notations Et(:), Et�j(:) and �̂t�k respectively
andWx(hj).represents coe¢ cients attached to those terms, which depend on the hazard function
hj .

�̂t = W1(hj)Et(:) + W2(hj)Et�j(:)� W3(hj)�̂t�k

+ + +
�̂t = �(0)p̂�t +

�
�(1)p̂�t�1 + � � �+ �(J)p̂�t�J

�
� p̂t�1

The economic reason why those three components should appear in the GNKPC is: �rst, because
the optimal price decision in this model is based on the sum of all current and future real marginal
costs over the spell of time during which the reset price is �xed, the current and forward-looking
terms re�ect the in�uence of the current reset price on the current aggregate price. This is the
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channel highlighted in the Calvo model. Second, due to nominal rigidity, some fraction of past
reset prices continue to a¤ect the current aggregate price. Lagged expectational terms represent
those in�uences of past reset prices on the current aggregate price and hence on current in�ation.
The higher past reset price is, the higher the current aggregate price is and hence the current
in�ation. Last, past in�ations re�ect the in�uence of past price decisions on the lagged aggregate
price p̂t�1: The higher the past in�ations prevail, higher the lagged aggregate price would be,
and thereby it deters current in�ation to be high. Put them together, the last two counteracting
channels change current in�ation through p̂t and p̂t�1 respectively. The magnitudes of these
e¤ects depend on the price reset hazard function. In the general case, the e¤ect of past optimal
prices on current aggregate price p̂t should be di¤erent to those a¤ecting lagged aggregate price
p̂t�1. As a result, lagged expectations and lagged in�ations should appear in the generalized
NKPC. Conversely, in the Calvo case, the constant hazard function leads relevant reset prices
to exert the exactly same amount of impact on both p̂t and p̂t�1, and thereby it causes them to
be cancelled out. This insight can be also seen in the derivation of the Calvo NKPC,

p̂t = (1� �)
1X
j=0

�j p̂�t�j

= (1� �)
�
p̂�t + �p̂

�
t�1 + �

2p̂�t�2 + � � �
�

= (1� �)p̂�t + (1� �)
�
�p̂�t�1 + �

2p̂�t�2 + � � �
�| {z }

=�p̂t�1

p̂t = (1� �)p̂�t + �p̂t�1
...

�̂t =
(1� �)(1� ��)

�
cmct + �Et(�̂t+1):

The crucial substitution from line (3) to line (4) is only possible, when the distribution of price
durations takes the power function form under the Calvo assumption. Therefore the dynamic
relationship between in�ation and real marginal cost is over-simpli�ed by the constant hazard
function assumed in the Calvo sticky price model.

4 Numerical Results

4.1 The General Equilibrium Model

In the numerical experiment, I study the behavior of in�ation dynamics in a general equilibrium
setup. For this purpose, I close the model by adding a nominal money stock growth rule. The
log-linearized equilibrium equations are summarized here:
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�̂t =
J�1P
k=0

W1(k)Et�k

 
J�1P
j=0

W2(j)cmct+j�k + J�1P
i=1

W3(i)�̂t+i�k

!
�
J�1P
k=2

W4(k)�̂t�k+1

cmct =
�+ � + a

1 + ��+ �a
ŷt �

1 + �

1 + ��+ �a
ẑt

�Et [ŷt+1] = �ŷt + (̂{t � Et [�̂t+1])

m̂t = �ŷt �
�

1� � {̂t

m̂t = m̂t�1 � �̂t + gt where gt v N(0; 0:00252)
ẑt = �z � ẑt�1 + �t where �t v N(0; 0:0072)

Where all variable are expressed in terms of log deviations from the non-stochastic steady state.
The weights (W1;W2;W3;W4) in the NKPC are de�ned in the equation (17). m̂t is the real
money balance, and gt denotes the growth rate of the nominal money stock, which consists of
a constant g and a white-noise shock ut, representing the regular and irregular parts of the
standing monetary policy.

4.2 Calibration

In the calibration, instead of referring to any microeconometric evidence on the hazard function,
I parameterize the hazard function a parsimonious way. The reason is that, until now, there
is not yet consensus on the shape of hazard functions in the empirical literature. As discussed
in the introduction, it is evident that the shape of hazard functions is changing over time with
the underlying economic conditions. Since the main purpose of the paper is to demonstrate the
impact of varying hazard rates on the in�ation dynamics, I choose to calibrate it based on the
statistical theory of duration analysis. In particular, the functional form I apply is the hazard
function of the Weibull distribution, which has two parameters:

h(j) =
�

�

�
j

�

���1
(20)

� is the scale parameter, which controls the average duration of the price adjustment, while �
is the shape parameter to determine the monotonic property of the hazard function. It enables
the incorporation of a wide range of hazard functions by using various values for the shape
parameter. In fact, any value of the shape parameter that is greater than one corresponds to
an increasing hazard function, while values ranging between zero and one lead to a decreasing
hazard function. By setting the shape parameter to one, we can retrieve the Poisson process
from the Weibull distribution.

In this numerical experiment, I choose �, such that it implies an average price duration of 3
quarters, which is largely consistent with the median price durations of 7 - 9 months documented
by Nakamura and Steinsson (2008). The shape parameter is set in the interval between one and
three, which covers a wide range of shapes of the hazard function4. As for the rest of the

4This range only covers increasing hazard functions because it makes the maximum number of price duration
J well de�ned.

13



0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hazard Function

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Weibull Distribution

Tau=0.8
Tau=1
Tau=1.5
 Tau=2

structural parameters, I use some common values in the literature to facilitate comparison the
results. In the calibration of the preference parameters, I assume � = 0:9902, which implies a
steady state real return on �nancial assets of about four percent per annum. I also assume the
intertemporal elasticity of substitution � = 1, implying log utility of consumption. I choose the
Frisch elasticity of the labor supply to equal 0:5, a value that is motivated by using balanced-
growth-path considerations in the macro literature. As for the technology parameters, I set
labor�s share (1 � a) to be either 1 or 0:64 to show the e¤ect of real rigidity. The elasticity of
substitution between intermediate goods � = 10, which implies the desired markup over marginal
cost should be about 11%. Finally, I set the standard deviation of the innovation to the nominal
money growth rate to be 25 basic points per quarter. For the aggregate technology shock, I
choose �z = 0:95 and the standard deviation of 0.007, in line with commonly used values in the
RBC literature, for example King and Rebelo (2000).

4.3 Simulation Results

To evaluate the quantitative implication for the aggregate dynamics, I apply the standard algo-
rithm to solve for the log-linearized rational expectation model.

4.3.1 E¤ects of Increasing Hazard Functions

In the �rst experiment, I study the e¤ects of varying the shape parameter on the equilibrium
dynamics without any real rigidity and the trend in�ation. In Table (2), I report second moments
generated by the theoretical models, which are di¤erent with respect to the shape of the hazard
function. Because I use the Weibull hazard function to calibrate the model, I can change the
shape of the hazard function by varying the value of the shape parameter � . In this experiment, I
focus on the comparison between the baseline Calvo case, with a corresponding shape parameter
of � = 1, and the increasing hazard models, where � falls in the range between 1.6 and 3. In
all cases, the moments are for a Hodrick-Prescott �ltered time series. For each of these hazard
functions, two sets of statistics are reported: �rst, the �rst-order autocorrelation coe¢ cient of
deviations on in�ation, real marginal cost and output; and second, contemporaneous correlation
coe¢ cients between in�ation and real marginal cost. In all models, I use a persistent technology
shock and a transitory monetary shock, whose stochastic properties are speci�ed above.
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Figure 2: Comparing impulse responses functions

Calvo Model Increasing Hazard Models
� 1 1.6 1.8 2 2.5 3

AR(1) �̂ 0.166 0.524 0.537 0.549 0.567 0.576
AR(1) ŷ 0.811 0.876 0.874 0.873 0.870 0.868
AR(1) cmc 0.169 0.362 0.338 0.318 0.280 0.264

Corr(�̂; cmc) 0.998 0.977 0.965 0.950 0.915 0.891

Table 2: Second moments of the simulated data (HP �ltered, lambda=1600)

The �rst noteworthy result from the table is that models with increasing hazard rates gen-
erate much higher persistence in in�ation than in the Calvo model, ceteris paribus. Secondly,
increases in the shape parameter reduces the persistence of real marginal cost and output. In the
Calvo case, because in�ation persistence is solely determined by the dynamics of real marginal
cost, in�ation persistence cannot exceed persistence of real marginal cost. In the increasing
hazard model, however, the autoregressive terms of real marginal cost are brought into the
Phillips curve through lagged expectations, and thus, in comparison to the Calvo model, this
new transmission mechanism propagates more in�ation persistence. Fuhrer (2006) presented
empirical evidence showing that it is di¢ cult to have a sizable coe¢ cient on the driving process
in the Calvo NKPC and that a reduced form shock in the NKPC explains a signi�cant portion
of the in�ation persistence. We can understand this evidence through the lens of the general-
ized NKPC. The problem of the conventional NKPC is essentially caused by ignoring terms like
lagged in�ations and lagged expectations. As I show in the analytical result, this is not the case
in the more general time-dependent pricing model. The misspeci�ed Phillips curve fails to ex-
plain in�ation persistence with its limited structure. Consequently, we either need to introduce
the ad hoc backward-looking behavior or a persistent reduced-form shock to achieve a good �t
to the data. Last but not least, as shown in the �nal row of the table, the increasing-hazard
pricing model also helps to reduce the correlation between in�ation and current real marginal
cost, a rather robust feature of the data (See: e.g. Hornstein, 2007).

Figure 2 shows the impulse responses of the Calvo model compared to the increasing-hazard
model with the shape parameter of 2. The left panel depicts the impulse responses of in�ation
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Figure 3: Impulse responses of in�ation with real rigidity

while the right panel shows those of the output gap to a 1% increase in the annual nominal
money growth rate. Without real rigidity and trend in�ation, we observe that, even though
the impulse response function of the increasing-hazard model is somewhat more persistent,
the general pattern of the impulse responses are the same in both cases, namely, they drop
monotonically back to the steady state.

4.3.2 E¤ects of Real Rigidity

As in�uentially argued in Woodford (2003), real price rigidity plays an important role in in�ation
dynamics in addition to nominal rigidity. In this model I introduce real rigidity in a parsimonious
way, following Sbordone (2002). I now set the labor share parameter (1�a) equal to 0:64. Com-
bining this with other parameter values in the model, it implies that the real rigidity parameter
(
�1 =

a+�+�(1�a)
1�a+a� ) equals 0.35, representing a modest level of strategic complementarity.

In Figure (3), I compare the impulse responses of in�ation to a transitory money growth
shock with and without real rigidity. The left panel shows the comparison in the Calvo model.
Incorporation of real rigidity makes the impulse responses more long-lasting, but still monotonic.
By contrast, in the right panel, impulse responses of in�ation in the increasing hazard model
change substantially with real rigidity. One can see that not only the persistence of the impulse
response function gets improved, but, more importantly, the shape of it as well. In this case,
the IRF becomes hump-shaped with a peak at around the second quarter.

The economic intuition behind this result is that, on the one hand, increasing hazard function
postpones the timing of the price adjustment, i.e. only a few �rms adjust their prices immediately
after a shock, and more and more adjust later on. On the other hand, real rigidity helps to
amplify this postponing e¤ect even further. Because price decisions are strategic complementary,
when fewer �rms adjust their prices at the beginning phase of the IRF, even the adjusting
�rms choose a small size of the adjustment. Afterwards, however, when more �rms reset their
prices, the size of the price adjustment becomes also larger. In another words, the increasing-
hazard pricing together with some degree of real rigidity not only a¤ect the timing of the price
adjustment, but also the average magnitude of �rms�adjustments, leading to a hump-shaped
response.
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4.3.3 Real E¤ects of the Monetary Shock

In the previous sections, I have informally shown that the real e¤ects of the monetary shock is
larger in the increasing hazard model than in the Calvo case. Here I introduce a quantitative
measure of the real e¤ects of money. In Table (3), I report the accumulative IRF of the real
output gap to a transitory 1% increase in the annual nominal money growth rate. The accumu-
lative IRF is the area below the impulse response function over the whole horizon, and it is in
the unit of percentage of the steady state level of real output.

Real E¤ects Calvo Model Increasing Hazard Model (� = 2)
a=0 a=0.36 a=0, g=1 a=0.36, g=1 a=0.36, g=1.02

Acc:IRF (%) 0.09 0.26 0.22 0.48 0.56

Table 3: Real E¤ects of A Transitory Monetary Shock) with varying trend in�ation

In the Calvo model without any real rigidity, the real e¤ect of money is only about 0:09% of
real output in the steady state, while this �gure rises by a factor of 3 when a modest level of real
rigidity is present. On the other hand, the increasing hazard model can generate this level of real
e¤ects of the monetary shock even without any helping features. When adding real rigidity into
the increasing hazard model, however, real e¤ects rise to 0:48% of steady state real output, and
presenting trend in�ation reinforces real e¤ects even further. All in all, the increasing hazard
model implies 2-3 times more real e¤ects of the monetary shock than the constant-hazard Calvo
model.

5 Conclusion

The central theme of this paper is to study consequences of a non-constant price reset hazard
function for in�ation dynamics and implications of monetary policy. I derive a general New
Keynesian Phillips curve under a general hazard function and real rigidity. My main analytical
results show that the dynamic relationship between in�ation and real marginal cost is over-
simpli�ed by the constant hazard function assumed in the Calvo sticky price model. Results
presented above have important implications for monetary policy. It reveals that the dependence
of in�ation on its own lags should be in�uenced by the monetary policy through expectations.
The expectation channel plays a central role in the propagation mechanism of the monetary
shock. Even though the Calvo sticky price model also delivers this key message through the
forward-looking expectations, here I show that this expectation channel has a long-lasting e¤ect
on in�ation due to the presence of lagged expectations in the generalized NKPC. Furthermore
models that treat the dependence between current in�ation and lagged in�ation as a �xed
primitive coe¢ cient should be subject to the Lucas critique, and thereby can not be used in the
monetary policy analysis.
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A Deviation of the Marginal Cost

I assume that there is an economy-wide competitive labor market, and hence intermediate �rms
are price takers in this market. In each period, �rms choose optimal demands for labor inputs
to maximize their real pro�ts given wage and the production technology (8).

max
Lt(i)

�t(i) =
Pt(i)

Pt
Yt(i)�

Wt

Pt
Lt(i) (21)

Real marginal cost can be derived from this maximization problem in the form:

mct(i) =
Wt=Pt

(1� a)ZtLt(i)�a

Using the production function (8), output demand equation (9), the labor supply condition (5)
and the fact that at the equilibrium Ct = Yt, we obtain the real marginal cost as follows:

mct(i) =
1

1� aY
�+�(1�a)+a

1�a
t Z

� 1+�
1�a

t

�
Pt(i)

Pt

���a
1�a

(22)

Because marginal costs depend on the demand of the individual good, the price set by the �rm
also a¤ects the marginal costs of the �rm. Next, �rms determine their optimal prices given
marginal costs and the market demand for their goods (9)

max
Pt(i)

�t(i) = Yt(i)

�
Pt(i)

Pt
�mct(i)

�
The �rst order condition for Pt(i) yields:

P �t (i)

Pt
=

�

� � 1mct(i)

The optimal relative price is equal to the markup multiplied by real marginal cost. By substi-
tuting the real marginal cost with equation (22), we get the economy-wide average relative price
in the form:

P �t
Pt
=

�
�

� � 1
1

1� a

� 1�a
1�a+�a

Y
�+�(1�a)+a
1�a+�a

t Z
� 1+�
1�a+�a

t (23)
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B Deviation of the New Keynesian Phillips Curve

Here I derive the NKPC for g = 1, Starting from 15

p̂�t = Et

24J�1X
j=0

�jSj
	

(cmct+j + p̂t+j)
35 (24)

= Et
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�jSj
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�jSj
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35 (25)

The last term can be further expressed in terms of future rates of in�ation
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The optimal price can be expressed in terms of in�ation rates, real marginal cost and aggre-
gate prices.

p̂�t = p̂t + Et
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Next, I derive the aggregate price equation as the sum of past optimal prices. I lag equation
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26 and substitute it for each p̂�t�j into equation 16
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Where Ft summarizes all current and lagged expectations formed at period t.
Finally, we derive the New Keynesian Phillips curve from equation 27.
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The generalized New Keynesian Phillips curve is:
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�̂t =

J�1X
k=0

�(k)

1� �(0)Et�k

0@J�1X
j=0

�jSj
	

cmct+j�k + J�1X
i=1

J�1X
j=i

�jSj
	

�̂t+i�k

1A

�
J�1X
k=2

�(k)�̂t�k+1; where �(k) =

J�1P
j=k

Sj

J�1P
j=1
Sj

; 	 =

J�1X
j=0

�jSj (28)
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C Proof for Proposition 1

In the Calvo pricing case, all hazards are equal to a constant between zero and one. Denote the
constant hazard as h = 1� �, and substitute it into the NKPC (17):

�̂t +
1X
k=1

�k�̂t�k = (1� �)
1X
k=0

�kEt�k

 
(1� ��)

1X
i=0

�i�imct+i�k +
1X
i=0

�i�i�̂t+i�k

!

�̂t + ��̂t�1 + �
2�̂t�2 + � � � = Et

 
(1� �)(1� ��)

1X
i=0

�i�imct+i + (1� �)
1X
i=0

�i�i�̂t+i

!

+ �Et�1

 
(1� �)(1� ��)

1X
i=0

�i�imct+i�1 + (1� �)
1X
i=0

�i�i�̂t+i�1

!

+ �2Et�2

 
(1� �)(1� ��)

1X
i=0

�i�imct+i�2 + (1� �)
1X
i=0

�i�i�̂t+i�2

!
...: (29)

Iterate this equation one period forward, I obtain

�̂t+1 + ��̂t + �
2�̂t�1 + �

3�̂t�2 � � � = Et+1

 
(1� �)(1� ��)

1X
i=0

�i�imct+i+1 + (1� �)
1X
i=0

�i�i�̂t+i+1

!

+ �Et

 
(1� �)(1� ��)

1X
i=0

�i�imct+i + (1� �)
1X
i=0

�i�i�̂t+i

!

+ �2Et�1

 
(1� �)(1� ��)

1X
i=0

�i�imct+i�1 + (1� �)
1X
i=0

�i�i�̂t+i�1

!
...:

Use equation (29) to substitute terms in the left hand side of the equation (�̂t; �̂t�1; �̂t�2 � � � ), I
get
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�̂t+1 + �Et

 
(1� �)(1� ��)

1X
i=0

�i�imct+i + (1� �)
1X
i=0

�i�i�̂t+i

!

+�2Et�1

 
(1� �)(1� ��)

1X
i=0

�i�imct+i�1 + (1� �)
1X
i=0

�i�i�̂t+i�1

!

+�3Et�2

 
(1� �)(1� ��)

1X
i=0

�i�imct+i�2 + (1� �)
1X
i=0

�i�i�̂t+i�2

!
...

= Et+1

 
(1� �)(1� ��)

1X
i=0

�i�imct+i+1 + (1� �)
1X
i=0

�i�i�̂t+i+1

!

+�Et

 
(1� �)(1� ��)

1X
i=0

�i�imct+i + (1� �)
1X
i=0

�i�i�̂t+i

!

+�2Et�1

 
(1� �)(1� ��)

1X
i=0

�i�imct+i�1 + (1� �)
1X
i=0

�i�i�̂t+i�1

!
:

...

After canceling out equal terms from both sides of the equation, It yields the following equation:

�̂t+1 = Et+1

 
(1� �)(1� ��)

1X
i=0

�i�imct+i+1 + (1� �)
1X
i=0

�i�i�̂t+i+1

!
Lag this equation and rearrange it, I obtain the NKPC of the Calvo model.

�̂t = Et

 
(1� �)(1� ��)

1X
i=0

�i�imct+i + (1� �)
1X
i=0

�i�i�̂t+i

!
(30)

�̂t = (1� �)(1� ��)mct + (1� �)�̂t + ��Et (�̂t+1)

�̂t =
(1� �)(1� ��)

�
mct + �Et (�̂t+1)

Proof done
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