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This paper introduces impatient players in a population of agents

playing a global game. Global games are coordination games with

incomplete information and they are used to study a variety of in-

teresting contexts: currency crises, bank runs, debt crises and rev-

olutions against an autocratic regime. In this model the patient

agents have the option to postpone their decision with the advan-

tage of receiving additional information; the impatient agents must

make a choice at time zero. The assumption that some agents are

impatient seems a plausible one since in situations of distress indi-

viduals are forced to make an immediate decision. The model shows

that defaults or regime changes are more likely if there are impa-

tient agents in the economy. This paper is composed by three parts.

The �rst part proposes a stylized example on Revolution Against

An Autocratic Regime, the generalization of this example, a speci-

�cation of the background and the main contribution of the paper.

The second part describes and analyzes the model. The third part

concludes.
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PART I

EXAMPLE (Revolution Against An Autocratic Regime). Island I

has an autocratic regime, its citizens are unhappy and they are considering to

attack the regime. To this purpose, a boat is recruiting dissenters in city A. The

boat leaves city A in t = 0 and the goal is to attack city B in t = 1. Dissenters

in city A have the option to jump on the boat and participate to the revolution.

In city A there are two types of dissenters: no-swimmers and swimmers. The

no-swimmers are a fraction f of the dissenters and the swimmers are a fraction

1� f . When the boat leaves city A the no-swimmers must decide if they want

to jump on the boat or not. Jumping on the boat is equivalent to attack the

regime. The swimmers have the option to postpone their decision. In fact either

they attack in t = 0 either they swim to city B, at a cost ", and once they reach

the boat in city B they decide if they want to attack or not attack the regime. In

city B, the swimmers can observe (with a small noise) how many dissenters are

on the boat before making their choice. Hence, the swimmers have the option

to postpone their decision and to observe additional information at a cost "

while the no-swimmers don�t. The variable � parameterizes the strength of the

regime, which is never common knowledge and dissenters instead have private

noisy information about �.

GENERALIZATION. This example captures the role of coordination in

a variety of interesting contexts: models of currency crises, bank runs, debt

crises and revolution against an autocratic regime. In all these environments
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the dichotomy swimmers/no-swimmers is substituted by the dichotomy patient

agents/impatient agents. The patient agents have the option to postpone their

decision with the advantage of observing additional information; the impatient

agents must make a choice in t = 0 and they do not have the option to postpone

their choice. The assumption that some agents are impatient seems a plausible

one since in situations of distress individuals are forced to make an immediate

decision.

BACKGROUND. This example has already been studied under the as-

sumption that f = 1: all agents move simultaneously in t = 0 because every-

body is impatient (or simply because agents have an agnostic view about who

moves when). Morris and Shin, in fact, demonstrate the existence of a unique

equilibrium when � is never common knowledge and individuals receive private

noisy information about the fundamentals. Denote the model with f = 1 as

M&S benchmark. This model has also been studied under the assumption

that f = 0: all agents can postpone their choice to t = 1 because everybody

is patient. Agents that postpone their choice are able to observe a statistic

based on the proportion of agents who chose to attack at t = 0 (this signal

is observed with some idiosyncratic noise). Dasgupta analyzed this situation

therefore denote the model with f = 0 as Dasgupta benchmark.

PAPER CONTRIBUTION. The contribution of this paper is to analyze

the example under the assumption that 0 < f < 1: the economy is aware

that some agents are unable to postpone their decision and some agents can.
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This analysis will deliver insights that were unexplored by the previous two

studies highlighting how the strategic interaction is a¤ected when some of the

participants to a coordination game with incomplete information are impatient.

� The impatient agents are forced to reveal, through their aggregate action

in t = 0, the information that they received. Knowing that the patient agents

will observe their choice in t = 1 and can potentially coordinate with them, how

aggressively will the impatient agents act?

� Will the patient agents be willing to postpone their decision in order to

observe the choice of the impatient agents? If so, in which circumstances they

will? Does their decision to postpone depend on the cost "?

� Does the choice or the aggressiveness of the impatient agents in t = 0

depend on the cost "?

� Is this regime more fragile compared with M&S benchmark? Is this regime

more fragile compared with Dasgupta benchmark?

� If this model admits a unique equilibrium, is it possible to suggest novel

comparative static exercises to understand how to reduce/increase the proba-

bility that the regime falls in equilibrium?

PART II

THE MODEL. The situation described in the example can be generalized

as follows. There are two possible regimes, the status quo and an alternative.

There is a continuum of agents, indexed by i 2 [0; 1]. Each agent can choose
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between an action that is favorable to the alternative regime and an action

that is favourable to the status quo. Denote these actions, respectively, attack

and not attack. Agents are heterogeneous, a fraction f must act in t = 0 and

a fraction (1� f) can either attack in t = 0 either postpone the decision to

t = 1 at a cost ". If they do so, they are able to observe a statistic based on

the proportion of agents who chose to attack at t = 0 (this signal is observed

with some idiosyncratic noise). The fraction of impatient agents, f , is common

knowledge. Denote the regime outcome withD 2 f0; 1g, whereD = 0 represents

survival of the status quo and D = 1 represents collapse. The following payo¤s

are realized at the end of the game:

IMPATIENT D = 1 D = 0

Attack b �c

Not Attack 0 0

PATIENT D = 1 D = 0

Attack at t = 0 b �c

Attack at t = 1 j Delay at t = 0 b� " �c� "

Not Attack at t = 1 j Delay at t = 0 �" �"

Denote the action of an impatient agent with aiIMP 2 AiIMP � f0; 1g, where

aiIMP = 0 represents not attack and a
i
IMP = 1 represents attack ; the action of

a patient agent in t = 0 with ai0;P 2 Ai0;P � f0; 1g, where ai0;P = 0 represents

delay and ai0;P = 1 represents attack ; the action of a patient agent in t = 1

with ai1;P 2 Ai1;P � f0; 1g, where ai1;P = 0 represents not attack and ai1;P = 1
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represents attack. Hence the impatient types in t = 0 maximize the following

expected utility:

t = 0 : max
aIMP
i

uIMP
i

uIMP
i = aIMP

i (DIMP
0 � r) (1)

where r = c
b+c 2 (0; 1) : Note that D

IMP
0 represents the probability that the

regime falls in t = 1 and this probability will be computed by the impatient

agents conditional on their information in t = 0. The patient agents in t = 0

maximize the following expected utility:

t = 0 : maxuPi

uPi = sup

(
max
ai0;P

�
ai0;P (D

P
0 � r)

�
;u�

)
(2)

where u� = maxai1;P

�
ai1;P (D

P
1 � r)� "

�
is the equilibrium continuation payo¤

of delaying the decision to t = 1. Note that DP
0 represents the probability that

the regime falls in t = 1 and this probability will be computed by the patient

agents conditional on their information in t = 0 and conditional on the fact

that they act in t = 0. DP
1 represents the probability that the regime falls in

t = 1 and this probability will be computed by the patient agents conditional on

their information in t = 0 and conditional on the fact that they act optimally in

t = 1. Note that there is no reason to think that di¤erent agents belonging to the

same group will have di¤erent response function, so the focus is on symmetric

equilibria. Finally, the status quo is abandoned (D = 1) if and only if A �

� where A �
R
aidi 2 [0; 1] denotes the mass of agents attacking and � 2
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R parameterizes the exogenous strength of the status quo (or the economic

fundamentals). The aggregate attack A = A0 + A1 is the sum of the mass

of agents attacking in t = 0 and the mass attacking in t = 1. Note that

A0 = A0IMP + A
0
P , i.e. the size of the attack in t = 0, is the sum of the attack

by the impatient agents and the attack by the patient agents that do not delay;

while A1 = A1P , i.e. the size of the attack in t = 1, is equal to the attack

by the patient agents that delay their decision. The actions of the agents are

strategic complements, since it pays for an individual to attack if and only if

the status quo collapses and, in turn, the status quo collapses if and only if a

su¢ ciently large fraction of the agents attacks. This coordination problem is

the heart of the model. The fundamentals � are never common knowledge and

individuals instead have private noisy information about �. Private information

serves as an anchor for individual�s actions that may avoid the indeterminacy

of expectations about others actions. Initially agents have a common prior

about �; for simplicity let this prior be (degenerate) uniform over the entire

real line. Agent i then observes his private signal xi = � + �"i; where the

idiosyncratic noise "i is N (0; 1) and is independent of �. The signal xi is thus

a su¢ cient statistic for the private information of an agent. Note that because

there is a continuum of agents the information contained by the entire economy,

fxigi2[0;1] is enough to infer the fundamentals �. However, this information is

dispersed throughout the population. In t = 1 the patient types that postponed

their decision will also observe an additional signal, a statistic based on the
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proportion of agents who chose to attack at t = 0.

yi = �
�1 �A0�+ ��i

Note that this signal is private and it assumes that agents learn form the aggre-

gate action. A modi�cation of the model will be proposed in which the second

period signal is a public indicator function.

IA0 = 1 if A0 � Â (Bad News)

= 0 if A0 < Â (Good News)

It is interesting to see how the strategic interaction and the equilibria of the game

change due to this modi�cation of the information structure (see Appendix).

There are two possible scenarios: (i) No Delay : the entire population moves in

t = 0. (ii) Delay : in t = 0 the impatient agents choose between attack and not

attack and the patient agents choose between attack and delay. Remember that

the impatient types do not have the option to postpone. In t = 1 the patient

types that postponed their choice, a fraction smaller or equal than (1� f),

choose between attack and not attack. Strategies, beliefs and equilibrium are

de�ned as follows.

� Strategies:

�IMP;i : [Xi]! �AiIMP 8i 2 IMP

�0;P;i : [Xi]!
�
�Ai0;P

	
8i 2 P

�1;P;i : [Xi]� [Yi]! �Ai1;P 8i 2 P
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Note that Xi is the signal�s support for agent i 2 fP; IMPg in t = 0; AiIMP

is the action space for an agent i 2 IMP in t = 0; Ai0;P is the action space for

an agent i 2 P in t = 0; Ai1;P is the action space for an agent i 2 P in t = 1 and

[Yi] is the support of the signal received by the patient agents that postpone

their decision.

� Beliefs:

DIMP
0 � �IMP

0 (� j xi)xi2Xi
2 [� (�)]Xi

DP
0 � �P0 (� j xi)xi2Xi

2 [� (�)]Xi

DP
1 � �P1 (� j xi; yi)xi2Xi;yi2Yi 2 [� (�)]

Xi�Yi

� Equilibrium (symmetric therefore drop the i):

�
��IMP ; �

�
0;P ; �

�
1;P

	
such that

(1) ��IMP optimal given (D
IMP
0 ; ��0;P ; �

�
1;P )

(2) ��0;P optimal given (D
P
0 ; D

P
1 ; �

�
IMP ; �

�
1;P )

(3) ��1;P optimal given (D
P
0 ; D

P
1 ; �

�
IMP ; �

�
0;P )

(4) Private Beliefs (DIMP
0 ; DP

0 ; D
P
1 ) must be

consistent given
�
��IMP�

�
0;P ; �

�
1;P

	
.

The objective is to look for equilibria in which: (i) The regime falls when

fundamentals are weaker than a threshold denoted �� (f). (ii) Impatient agents

9



choose monotone strategies with threshold (x�IMP ) and patient agents choose

monotone strategies with thresholds
�
x�0;P ; s

�
1;P

�
. The thresholds are such that:

impatient agents attack at t = 0 if xi � x�IMP , patient agents attack at t = 0 if

xi > x
�
0;P , if xi � x�0;P they delay; in t = 1 they attack if and only if si � s�1;P .

Impatient�s Strategy Patient�s Strategy

t = 0 8xi � x�IMP =) aIMP
i = 1 8xi � x�0;P =) ai0;P = 0

8xi > x�IMP =) aIMP
i = 0 8xi > x�0;P =) ai0;P = 1

t = 1 8si � s�1;P =) ai1;P = 1

8si > s�1;P =) ai1;P = 0

THE ANALYSIS

[M&S Benchmark] If it is common knowledge that f = 1 (everybody

must move in t = 0) or if there is an equilibrium with No Delay (impatient and

patient agents act in t = 0) the model is isomorphic to Morris and Shin 1998.

The aggregate attack in t = 0 is given by:

A (�) = f Pr (x � x�MS j �) + (1� f) Pr (x � x�MS j �)

A (�) = f�

�
x�MS � �

�

�
+ (1� f) �

�
x�MS � �

�

�
8 given f

A (�) = �

�
x�MS � �

�

�
independent of f

The aggregate attack is a decreasing function of � (same as Morris and Shin).

Given that the regime falls whenever A (�) � � and since A (�) is decreasing in
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� there will be a ��MS such that

�

�
x�MS � �

�
MS

�

�
= ��MS (3)

and therefore 8� � ��MS the regime falls and 8� > ��MS it survives. From the

indi¤erence condition of the agents, i.e. Pr (� � ��MS j x�MS) = r, it is possible

to derive another equation in ��MS and x
�
MS

1� �
�
x�MS � �

�
MS

�

�
= r (4)

hence given equation (3) and (4), it is possible to pin down two unique thresholds

��MS and x
�
MS characterizing the unique equilibrium.

Proposition 1 When f = 1 the game is isomorphic to M&S and there is a

unique equilibrium, represented by the thresholds (��MS ; x
�
MS) where �

�
MS is a

decreasing function of r: ��MS = 1� r.

[Dasgupta Benchmark] If it is common knowledge that f = 0 (every-

body can postpone the decision to attack to t = 1) the model is isomorphic to

Dasgupta 2007. The model has a unique equilibrium. In t = 0 agents attack

i¤ xi � x�D, otherwise they choose to wait. Conditional on reaching t = 1 they

attack i¤ si � s�D. The regime falls when � � �
�
D.

Proposition 2 When f = 0 the game is isomorphic to Dasgupta benchmark. In

the limit as � ! 0 and � ! 0, given the existence of a cost of delay, ��MS � ��D.

Thus, successful coordinated attack becomes more likely when agents can choose

both how to act and when to act.
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[This model] This paper analyzes the model under the assumption that

f 2 (0; 1): only patient agents, representing a fraction (1� f) of the population,

can postpone the decision to t = 1. The analysis proceeds in four steps. (i)

Write the aggregate attack A as a function of � . The aggregate attack is the

sum of A0 (�), the attack in t = 0 and A1 (�), the attack in t = 1. (ii) Prove

that A (�) is not monotone in � and since the regime changes if A (�) � �, there

might be multiple intersections. If there is only one, the regime falls when the

realization of � is less than ��, hence the bigger is this threshold the higher is the

probability that the regime falls in equilibrium. If there are many intersections

the instability of the regime is indeterminate. The probability that � � ��

(conditional on the available information) represents the belief of the agents

on the possibility that the regime changes, thus this probability is essential

to pin down the optimality conditions of the patient and impatient agents in

t = 0 and in t = 1. (iii) The optimality conditions plus the regime change

conditions give a system of four equations in four unknowns whose solution/s

deliver the equilibrium/equilibria. (iv) Describe these equations and discuss

how the solution/s and therefore the equilibrium/equilibria look like.

What is the attack in t = 0 when the impatient agents act and some patient

agents do not delay?

A0 (�) = f Pr (x � x�IMP j �) + (1� f) Pr
�
x > x�0;P j �

�
8 given f

A0 (�) = f�

�
x�IMP � �

�

�
+ (1� f)

�
1� �

�
x�0;P � �
�

��
(5)
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This attack is increasing in f . What is the attack in t = 1 by the patient agents

that delayed their decision at t = 0?

A1 (�) = (1� f) Pr
�
x � x�0;P ; s � s�1;P j �

�
8 given f

A1 (�) = (1� f) � (�) 8 given f (6)

What is the aggregate attack in t = 1 when some patient agents do not delay?

A � A0 (�) +A1 (�)

A = f Pr (x � x�IMP j �) + (1� f) Pr
�
x > x�0;P j �

�
+

+(1� f) Pr
�
x � x�0;P ; s � s�1;P j �

�

A = f�

�
x�IMP � �

�

�
+ (1� f)

�
1� �

�
x�0;P � �
�

��
+

+(1� f) � (�) (7)

When f is common knowledge the aggregate attack A is a function of � for any

given f ; when f is a random variable the aggregate attack is a function of two

unknowns, � and f . The regime falls whenever A (�) � �, this regime change

condition can be rewritten using (7):

f�

�
x�IMP � �

�

�
+ (1� f)

�
1� �

�
x�0;P � �
�

��
+ (1� f) � (�) � �
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Lemma 3 If A (�) is not monotone in �, for any given f , there are multiple

intersection points �� (f) such that

f�

�
x�IMP � �

� (f)

�

�
+ (1� f)

�
1� �

�
x�0;P � �

� (f)

�

��
+

+(1� f) � (�) = �� (f) (8)

hence the probability that the regime falls is indeterminate. Given some restric-

tions, there is a unique intersection �� (f) such that 8� � �� (f) the regime falls

and 8� > �� (f) it survives.

Note that �� (f) is a function of f whose analytical form will be pinned down

in equilibrium. Note also that when f is common knowledge agents know �� (f)

in equilibrium, but when f is a random variable the switching threshold �� (f)

is a function of f and therefore it is also a random variable. The optimality con-

ditions plus the regime change condition give a system of four equations in four

unknowns whose solution/s deliver the equilibrium/equilibria. The thresholds

that characterize each equilibrium are

(x�IMP ; x
�
0;P ; s

�
1;P ; �

� (f))

� Indi¤erence Condition Patient at t = 0 (trade o¤ the expected bene�t of

attacking early against the expected bene�t of waiting and then act optimally)

(Pr
�
� � �� (f) j x�0;P

�
� r) = (Pr

�
� � �� (f) ; s � s�1;P j x�0;P

�
� r)� " (9)

� Indi¤erence Condition Impatient at t = 0

Pr (� � �� (f) j x�IMP ) = r (10)
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� Indi¤erence Condition Patients at t = 1

Pr
�
� � �� (f) j s�1;P

�
= r (11)

� Critical Mass Condition

f Pr (x � x�IMP j �� (f)) + (1� f) Pr
�
x > x�0;P j �� (f)

�
+

+(1� f) Pr
�
x � x�0;P ; s � s�1;P j �� (f)

�
= �� (f) (12)

This system can be reduced to a simpler one. Rewrite condition (9)

" = Pr
�
� � �� (f) ; s � s�1;P j x�0;P

�
� Pr

�
� � �� (f) j x�0;P

�
(9^)

Also condition (10) can be rewritten

1� �IMP

�
x�IMP � �

� (f)

�

�
= r

x�IMP = ���1IMP (1� r) + �
� (f) (10^)

and condition (11) can be rewritten

1� �0;P
�
s�1;P � �

� (f)

�

�
= r

s�1;P = ���10;P (1� r) + �
� (f) (11^)

where MIMP � ���1IMP (1� r) and M0;P = ���10;P (1� r). Hence the new

system is:

" = Pr
�
� � �� (f) ; s � s�1;P j x�0;P

�
� Pr

�
� � �� (f) j x�0;P

�
(9^)
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x�IMP =MIMP + �
� (f) (10^)

s�1;P =M0;P + �
� (f) (11^)

f Pr (x � x�IMP j �� (f)) + (1� f) Pr
�
x > x�0;P j �� (f)

�
+ (12^)

+(1� f) Pr
�
x � x�0;P ; s � s�1;P j �� (f)

�
= �� (f)

Condition (9^) says that in equilibrium the delay cost " must be equal to the

bene�t, which is measured by the increase in the expected probability that the

regime falls conditional on the information that the patient agents receive in

t = 0 (and given that they act optimally in t = 1). The left hand side of this

expression (delay bene�t) is decreasing in x0;P (see Lemma 4, Appendix) and

crosses " when x0;P = x�0;P . Hence 8x0;P � x�0;P the delay bene�t is bigger than

the cost and is optimal to delay; 8x0;P > x�0;P the cost is bigger than the bene�t

and is optimal to attack in t = 0. Suppose " decreases. When " decreases the

switching threshold x�0;P is bigger, this increases the probability that each pa-

tient agent delays in equilibrium and hence the mass of patient agents that delay

in t = 0. How does it a¤ect the equilibrium strategy of the impatient agents

in t = 0 and the equilibrium strategy of the patient agents in t = 1? It can be

shown that when x�0;P increases and � ! 0, i.e. the second period signal is very
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precise, the aggregate attack is bigger for any given � (see Lemma 5, Appen-

dix) hence �� (f) is bigger (using Lemma 3 under the uniqueness restrictions).

According to the equilibrium conditions (10^) and (11^), if �� (f) increases the

equilibrium thresholds
�
x�IMP ; s

�
1;P

�
for the impatient agents in t = 0 and for

the patient agents in t = 1 also increase. Hence when " decreases the patient

agents in t = 0 are more willing to delay and are more willing to attack in

t = 1, also the impatient in t = 0 are more willing to attack. The regime is

more fragile when " decreases. Now suppose " increases. When " increases the

switching threshold x�0;P is smaller, reducing the probability that each patient

agent delays in equilibrium and hence the mass of patient agents that delay

in t = 0. By Lemma 5, a decrease of x�0;P reduces the aggregate attack for

any given � which implies a smaller �� (f) and therefore smaller equilibrium

thresholds
�
x�IMP ; s

�
1;P

�
. Hence when " increases, the patient agents in t = 0

are more willing to attack, but the impatient in t = 0 and the patient in t = 1

don�t. The second e¤ect more than compensate the �rst one and this explain

why, the regime is stronger when " increases. Lemma 3,4,5 and the equilibrium

conditions (9^), (10^), (11^),(12^) lead to the following proposition.

Proposition 4 When 0 < f < 1 the game has a unique equilibrium given some

restrictions on the precision of the information received by the patient agents.

The equilibrium is characterized by the equilibrium thresholds

(x�IMP ; x
�
0;P ; s

�
1;P ; �

� (f))

where �� (f) is a decreasing function of r and ".
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PART III

CONCLUSIONS. This model introduces a novel type of friction in co-

ordination games with incomplete information. Impatient agents must make a

choice at time zero, patient agents have the option to postpone their decision

with the advantage of observing additional information. Delay has a cost, ".

When this cost is small, the patient agents are more willing to postpone their

choice in order to coordinate with the impatient agents. In equilibrium the im-

patient agents anticipate this and use a more aggressive strategy. As a result

everybody act more aggressively, and the equilibrium probability of a regime

change becomes bigger the smaller is the delay cost.
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