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Introduction

I Causal analysis is very important and yet, complicated
I Cannot perform controlled experiments to single out the

impact of any particular variable.



Two most difficult challenges

1. Correlation does not imply causality. Distinguishing
between these two is by no means an easy task.

2. There always exist the possibility of ignored common
factors. The causal relationship among variables might
disappear when the previously ignored common causes
are considered.

Partial soultions:
I Granger causality: forecastability
I Directed graph theory



Two assumptions

1. The future cannot cause the past. The past causes the
present or future. (How about expectation?)

2. A cause contains unique information about an effect not
available elsewhere.



Definition

Xt is said not to Granger-cause Yt if for all h > 0

F (Yt+h|Ωt ) = F (Yt+h|Ωt − Xt )

where F denotes the conditional distribution and Ωt − Xt is all
the information in the universe except series Xt . In plain words,
Xt is said not to Granger-cause Yt+h if X cannot help predict
future Y .



Remarks:

I The whole distribution F is generally difficult to handle
empirically and we turn to conditional expectation and
variance.

I It is defined for all h > 0 and not only for h = 1. Causality
at different h does not imply each other. They are neither
sufficient nor necessary.

I Ωt contains all the information in the universe up to time t
that excludes the potential ignored common factors
problem. The question is: how to measure Ωt in practice?
The unobserved common factors are always a potential
problem for any finite information set.

I Instantaneous causality Ωt+h − xt+h and feedback is
difficult to interpret unless one has additional structural
information.



A refined definition

Xt does not Granger cause Yt+h relative to information Jt , if

E(Yt+h|Jt ,Xt ) = E(Yt+h|Jt )

Remark: Note that causality here is defined as relative to. In
other words, no effort is made to find the complete causal path
and possible common factors.



Equivalent definition

For a l-dimension stationary process, Zt , there exists a
canonical MA representation

Zt = µ+ Φ(B)ut

= µ+
∞∑

i=1

Φiut−i ,Φ0 = Il

A necessary and sufficient condition for variable k not to
Granger-cause variable j is that Φjk ,i = 0, for i = 1,2, · · · . If
the process is invertible, then

Zt = C + A(B)Zt−1 + ut

= C +
∞∑

i=1

AiZt−i + ut



For two variables, or two-group of variables, j and k , variable k
not to Granger-cause variable j iff Ajk ,i = 0, for i = 1,2, · · · .
The condition is good for all forecast horizon, h.
For a VAR(1) process with dimension equal or greater than 3,
Ajk ,i = 0, for i = 1,2, · · · is sufficient for non-causality at
h = 1 but insufficient for h > 1.
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Summary

1. For bivariate or two groups of variables, IR analysis is
equivalent to applying Granger-causality test to VAR
model;

2. For testing the impact of one variable on the other within a
high dimensional (> 2) system, IR analysis can not be
substituted by the Granger-causality test. For example, for
an VAR(1) process with dimension greater than 2, it does
not suffice to check the upper right-hand corner element of
the coefficient matrix in order to determine if the last
variable is noncausal for the first variable. Test has to be
based upon IR.

See Lutkepohl(1993) and Dufor and Renault (1998) for detailed
discussion.



Impulse response and causal ordering

Residuals from a VAR model are generally correlated and
applying the Cholesky decomposition is equivalent to assuming
recursive causal ordering from the top variable to the bottom
variable.

Changing the order of the variables could greatly change the
results of the impulse response analysis.



Causal analysis for bivariate VAR

For a bivariate system, yt , xt defined by[
yt
xt

]
=

[
A11(B) A12(B)
A21(B) A22(B)

] [
yt−1
xt−1

]
+

[
uyt
uxt

]
=

[
Φ11(B) Φ12(B)
Φ21(B) Φ22(B)

] [
uyt−1
uxt−1

]
+

[
uyt
uxt

]
xt does not Granger-cause yt if Φ12(B) = 0 or
Φ12,i = 0, for i = 1,2, · · · .
This condition is equivalent to A12,i = 0, for i = 1,2, · · · ,p.
The restrictions that all cross-lags coefficients are all zeros
which can be tested by Wald statistics.



Bivariate AR(1) process Aij(B) = Aij , i , j = 1,2
Four possible causal directions between x and y are:

1. Feedback, H0, x ↔ y

H0 =

(
A11 A12
A21 A22

)
2. Independent, H1 : x ⊥ y

H1 =

(
A11 0
0 A22

)
3. x causes y but y does not cause x ,H2, y 6 →x

H2 =

(
A11 A12
0 A22

)
4. y causes x but x does not cause y ,H3, x 6 →y

H3 =

(
A11 0
A21 A22

)



Caines, Keng and Sethi(1981) two-stage testing procedure
First stage: test H1 (null) against H0, H2 (null) against H0, and
H3 (null) against H0.
Second stage (if necessary): test H1 (null) against H2, and H1
(null) against H3.



Causal analysis for multivariate VAR

Possible causal structure grows exponentially as number of
variables increase. Pairwise causal structure might change
when different conditioning variables are added.



Caines, Keng and Sethi (1981) procedure
1. For a pair (X ,Y ), construct bivariate VAR with order

chosen to minimize multivariate final prediction error
(MFPE);

2. Apply the stagewise procedure to determine the causal
structure of X ,Y .

3. If a process X , has n multiple causal variables, y1, . . . , yn,
rank these variables according to the decreasing order of
their specific gravity which is the inverse of MFPE(X , yi).

4. For each caused variable process, X , first construct the
optimal univariate AR model using FPE to determine the
lag order. The, add the causal variable, one at a time
according to their causal rank and use FPE to determine
the optimal orders at each step. Finally, we get the optimal
ordered univariate multivariable AR model of X against its
causal variables.

5. Pool all the optimal univariate AR models above and apply
the Full Information Maximum Likelihood (FIML) method to
estimate the system. Finally perform the diagnostic
checking with the whole system as maintained model.



Causal analysis for Vector ARMA model

Let X be n × 1 vector generated by

Φ(B)Xt = Θ(B)at

Xi does not cause Xj if and only if

det(Φi(z),Θ(j)(z)) = 0

where Φi(B) is the i th column of the matrix Φ(z) and Θ(j)(z) is
the matrix Θ(z) without its j th column.



Bivariate (two-group) case

(
Φ11(B) Φ12(B)
Φ21(B) Φ22(B)

)(
Xit
X2t

)
=

(
Θ11(B) Θ12(B)
Θ21(B) Θ22(B)

)(
a1t
a2t

)
Then, Xi does not cause Xj if and only if

Φ21(z)−Θ21(z)Θ−1
11 (z)Φ11(z) = 0

If n1 = n2 = 1, Then, Xi does not cause Xj if and only if

Θ11(z)Φ12(z)−Θ21(z)Φ11(z) = 0



General testing procedures

1. Build a multivariate ARMA model for Xt ,
2. Derive the noncausalisty conditions in term of AR and MA

parameters, say Rj(βl) = 0, j = 1, . . . ,K
3. Choose a test criterion, Wald, LM or LR test.

Let

T (β̂l) = (
∂Rj(B)

∂βl
|βl−β̂l

)k×k

Let V (βl) be the asymptotic covariance matrix of
√

N(β̂l = βl).
Then the Wald and LR test statistics are:

ξW = NR(β̂l)
′[T (β̂l)

′V (β̂l)T (β̂l)]−1R(β̂l),

ξLR = 2(L(β̂,X )− L(β̂∗,X ))

where β̂∗ is the MLE of β under the constraint of noncausality.



ARMA(1,1)case

To illustrate, let Xt be a invertible 2-dimensional ARMA(1,1)
model.(

1− φ11B −φ12B
−φ21B 1− φ22B

)(
X1t
X2t

)
=

(
1− θ11B θ12B
θ21B θ22B

)(
a1t
a2t

)
X1 does not cause X2 if and only if

Θ11(z)Φ21(z)−Θ21(z)Φ11(z) = 0
(φ21 − θ21)z + (θ11θ21 − φ21θ11)z2 = 0
φ21 − θ21 = 0, φ11θ21 − φ21θ11 = 0



For the vector, βl = (φ11, φ21, θ11, θ21)′, the matrix

T (βl) =


0 θ21
1 −θ11
0 −φ21
−1 φ11


might not be nonsingular under the null of H0 : X1 does not
cause X2.



Remarks:
I The conditions are weaker than φ21 = θ21 = 0
I φ21 − θ21 = 0 is a necessary condition for H0, φ21 = θ21 = 0

is sufficient condition and φ21 − θ21 = 0,&φ11 = θ11 are
sufficient for H0.

Let H0 : X1 does not cause X2. Consider the following
hypotheses:

H1
0 : φ21 − θ21 = 0;

H2
0 : φ21 = θ21 = 0

H3
0 : φ21 6= 0, φ21 − θ21 = 0, and φ11 − θ11 = 0

H̃3
0 : φ11 − θ11 = 0

Then, H3
0 = H̃3

0 ∩ H1
0 ,H

2
0 ⊆ H0 ⊆ H1

0 ,H
3
0 ⊆ H0 ⊆ H1

0 .



Testing procedures

1. Test H1
0 at level α1. If H1

0 is rejected, then H0 is rejected.
Stop.

2. If H1
0 is not rejected, test H2

0 at level α2. If H2
0 is not

rejected, H0 cannot be rejected. Stop
3. If H2

0 is rejected, test H̃3
0 : φ11 − θ11 = 0 at level α2. If H̃3

0 is
rejected, then H0 is also rejected. If H̃3

0 is not reject ed,
then H0 is also not rejected.



Causal analysis for nonstationary processes

The asymptotic normal or χ2 distribution in previous section is
build upon the assumption that the underlying processes Xt is
stationary. The existence of unit root and cointegration might
make the traditional asymptotic inference invalid.



Unit root

What is unit root?
The time series yt as defined in Ap(B)yt = C(B)εt has an unit
root if Ap(1) = 0, C(1) 6= 0.

Why do we care about unit root?
I For yt , the existence of unit roots implies that a shock in εt

has permanent impacts on yt .
I If yt has a unit root, then the traditional asymptotic

normality results usually no longer apply. We need
different asymptotic theorems.



What is cointegration?

When linear combination of two I(1) process become an I(0)
process, then these two series are cointegrated.

Why do we care about cointegration?
I Cointegration implies existence of long-run equilibrium;
I Cointegration implies common stochastic trend;
I With cointegration, we can separate short- and long- run

relationship among variables;
I Cointegration can be used to improve long-run forecast

accuracy;
I Cointegration implies restrictions on the parameters and

proper accounting of these restrictions could improve
estimation efficiency.



Let Yt be k -VAR(p) series with r cointegration vector β(p × r).

Ap(B)Yt = Ut

∆Yt = ΠYt−1 +

p−1∑
i=1

Γi∆Yt−i + ΦDt + Ut

Yt = C
t∑

i=1

(Ut + ΦDi) + C∗(B)(Ut + ΦDt ) + Pβ⊥Y0

Ap(1) = −Π = αβ′

C = β⊥(α′⊥Γβ⊥)−1α′⊥

I Cointegration introduces one additional causal channel
(error correction term) for one variable to affect the other
variables. Ignoring this additional channel will lead to
invalid causal analysis.

I For cointegrated system, impulse response estimates from
VAR model in level without explicitly considering
cointegration will lead to incorrect confidence interval and
inconsistent estimates of responses for long horizons.



Recommended procedures for testing cointegration:
1. Determine order of VAR(p). Suggest choosing the minimal

p such that the residuals behave like vector white noise;
2. Determine type of deterministic terms: no intercept,

intercept with constraint, intercept without constraint, time
trend with constraint, time trend without constraint.
Typically, model with intercept without constraint is
preferred;

3. Use trace or λmax tests to determine number of unit root;
4. Perform diagnostic checking of residuals;
5. Test for exclusion of variables in cointegration vector;
6. Test for weak erogeneity to determine if partial system is

appropriate;
7. Test for stability;
8. Test for economic hypotheses that are converted to

homogeneous restrictions on cointegration vectors and/or
loading factors.



Unit root, Cointegration and causality

For a VAR system, Xt with possible unit root and cointegration,
the usual causality test for the level variables could be
misleading. Let Xt = (X1t ,X2t ,X3t )

′ with n1,n2,n3 dimension
respectively. The VAR level model is:

Xt = J(B)Xt−1 + ut

=
k∑

i=1

JiXt−i + ut

The null hypothesis of X3 does not cause X1 cen be formulated
as:

H0 : J1,13 = J2,13 = · · · = Jk ,13 = 0



Let FLS be the Wald statistics for testing H0.
1. If Xt has unit root and is not cointegrated, FLS converges to

a limiting distribution which is the sum of χ2 and unit root
distribution. The test is similar and critical values can be
constructed. Yet, it is more efficient and easier to
difference Xt and test causality for the differenced VAR.

2. If there is sufficient cointegration for X3 then FLS → χ2
n1n2k .

More specifically, let A = (A1,A2,A3) be the cointegration
vector. The usual asymptotic distribution results hold if
rank(A3) = n3, ie. all X3 appear in the cointegration vector.

3. If there is not sufficient cointegration, ie. not all X3 appears
in the cointegration vector, then the limiting distribution
contain unit root and nuisance parameters.



Error correction model

∆Xt = J∗(B)∆Xt−1 + ΓA′Xt−1 + ut

where Γ,A are respectively the loading matrix and cointegration
vector. Partition Γ,A conforming to X1,X2,X3.
Then, if rank(A3) = n3 or rank(Γ1) = n1, FML → χ2

n1n2k .
Testing with ECM the usual asymptotic distribution hold when
there are sufficient cointegrations or sufficient loading vector.
Remark: The Johansen test seems to assume sufficient
cointergation or sufficient loading vector.



Toda and Yamamoto (1995)

Test of causality without pretesting cointegration.
For an VAR(p) process and each series is at most I(k), then
estimate the augmented VAR(p+k) process even the last k
coefficient matrix is zero.
Xt = A1Xt−1 + · · ·+ ApXt−p + · · ·+ Ap+kXt−p−k + Ut
and perform the usual Wald test Akj,i = 0, i = 1, · · · ,p. The test
statistics is asymptotical χ2 with degree of freedom m being the
number of constraints.
The result holds no matter whether Xt is I(0) or I(1) and
whether there exist cointegration.



As there is no free lunch under the sun, the Toda-Yamamoto
test suffer the following weakness.

I Inefficient as compared with ECM where cointegration is
explicitly considered.

I Cannot distinguish between short run and long run
causality.

I Cannot test for hypothesis on long run equilibrium, say
PPP which is formulated on cointegration vector.



One more remark: Cointegration between two variables implies
existence of long-run causality for at least one direction. Testing
cointegration and causality should be considered jointly.



Causal analysis using graphical models

A directed graph assigns a contemporaneous causal flow
among a set of variables based on correlations and partial
correlations.
The edge relationship of each pair of variables characterizes
the causal relationship between them.

I No edge: (conditional) independence between two
variables

I an undirected edge (X − Y ): correlation with no particular
causal interpretation.

I directed edge (Y → X ): Y causes X but X does not cause
Y conditional upon other variables.

I bidirected edge (X ↔ Y ): bidirectional causality between
these two variables. There is contemporaneous feedback
between X and Y .



Illustration

let X ,Y ,Z be three variables under investigation.
Y ← X → Z represents the fact that X is the common cause of
Y and Z . Unconditional correlation between Y and Z is
nonzero but conditional correlation between Y and Z given X is
zero.
Y → X ← Z says that both Y and Z cause X . Thus,
unconditional correlation between Y and Z is zero but
conditional correlation between Y and Z given X is nonzero.
Y → X → Z states the fact that Y causes X and X causes Z .
Being conditional upon X ,Y is uncorrelated with Z .



The direction of the arrow is then transformed into the zero
constraints of A(i , j), i 6= j .
Let ut = (Xt ,Yt ,Zt )

′ and then the corresponding A matrix for
the three cases discussed above denoted as A1,A2 and A3 are:

A1 =

 1 0 0
a21 1 0
a31 0 1

 ; A2 =

 1 a12 a13
0 1 0
0 0 1

 ; A3 =

 1 a12 0
0 1 0

a31 0 1





Search algorithms
Several search algorithms are available and the PC algorithm
seems to be the most popular one.

1. Start with a graph in which each variable is connected by
an edge with every other variable.

2. Compute the unconditional correlation between each pair
of variables and remove the edge for the insignificant pairs.

3. Compute the 1-th order conditional correlation between
each pair of variables and eliminate the edge between the
insignificant ones.

4. Repeat the procedure to compute the i-th order conditional
correlation until i = N-2, where N is the number of
variables under investigation.

Fisher’s z statistic is used in the significance test:

z(i , j |K ) = 1/2(n − |K | − 3)(1/2)ln(
|1 + r [i , j |K ]|
|1− r [i , j |K ]|

)

where r([i , j |K ]) denotes conditional correlation between
variables, which i and j being conditional upon the K variables,
and |K | the number of series for K .
Under some regularity conditions, z approximates the standard
normal distribution.



1. For each pair of variables (Y ,Z ) that are unconnected by a
direct edge but are connected through an undirected edge
through a third variable X , assign Y → X ← Z if and only if
the conditional correlations of Y and Z conditional upon all
possible variable combinations with the presence of the X
variable are nonzero.

2. Repeat the above process until all possible cases are
exhausted.

3. If X → Z , Z − Y and X and Y are not directly connected,
assign Z → Y .

4. If there is a directed path between X and Y (say
X → Z → Y ) and there is an undirected edge between X
and Y , assign X → Y .



Causality on spectral domain

Causality on time domain is qualitative but the strength of
causality y at each frequency can be measured on spectral
domain.
An ideal model for analyzing permanent consumption theory.



Bivariate case
[

xt
yt

]
=

[
Λ11(B) Λ12(B)
Λ21(B) Λ22(B)

] [
ext
eyt

]
Rewrite the above as[

xt
yt

]
=

[
Γ11(B) Γ12(B)
Γ21(B) Γ22(B)

] [
ẽxt
ẽyt

]
where[

Γ11(B) Γ12(B)
Γ21(B) Γ22(B)

]
=

[
Λ11(B) Λ12(B)
Λ21(B) Λ22(B)

] [
1 0
ρ 1

]
and [

ẽxt
ẽyt

]
=

[
1 0
−ρ 1

] [
ext
eyt

]

fx (w) =
1

2π
{|Γ11(z)|2 + |Γ12(z)|2(1− ρ2)}

where z = e−iw .



Hosoya’s measure of one-way causality

My→x (w) = log[
fx (w)

1/2π|Γ11(z)|2
]

= log[1 +
|Λ12(z)|2(1− ρ2)

|Λ11(z) + ρΛ12(z)2|
]



Error correction model

Let xt , yt be I(1) and ut = yt − Axt be an I(0). The the error correction
model is:

∆xt = λ1ut−1 + a1(B)∆xt−1 + b1(B)∆yt−1 + ext

∆yt = λ2ut−1 + a2(B)∆xt−1 + b2(B)∆yt−1 + eyt

[
D(B)xt
D(B)yt

]
=

[
(1− B)(1− b2B)λ2B λ1B + b1B(1− B)
(1− B)a2B − λ2AB λ1AB + (1− a1B)(1− B)

] [
ext
eyt

]
where D(B) arises from matrix inversion. Then,

My→x (w) = log[1 +
|λ1 + b1(1− z)|2(1− ρ2)

|{(1− z)(z̄ − b2)− λ2}+ {λ1 + b1(1− z)}|ρ|2

= log
[
1 +

λ2
1(1− ρ2)

(λ1ρ− λ2)2 + O(ω2)

]
as ω → 1

where z̄ = eiw .



Don’t Do

1. Don’t do single equation causality testing and draw
inference on the causal direction,

2. Don’t test causality between each possible pair of variables
and then draw conclusions on the causal directions among
variables,

3. Do not employ the two-step causality testing procedure
though it is not an uncommon practice.
People often test for cointegration first and then treat the
error-correction term as an independent regressor and
then apply the usual causality testing. This procedure is
flawed for the following reasons. First, EC term is
estimated and using it as an regressor in the next step will
give rise to generated regressor problem. That is, the usual
standard deviation in the second step is not right. Second,
there could be more than one cointegration vectors and
linear combination of them are also cointegrated vectors.



Do
1. Examine the graphs first. Look for pattern, mismatch of

seasonality, abnormality, outliers, etc.
2. Always perform diagnostic checking of residuals:

Time series modelling does not obtain help from economic
theory and depends heavily upon statistical aspects of
correct model specification. Whiteness of residuals are the
key assumption.

3. Often graph the residuals and check for abnormality and
outliers.

4. Be aware of seasonality for data not seasonally adjusted.
5. Apply the Wald test within the Johansen framework where

one can test for hypothesis on long- and short- run
causality.

6. When you employ several time series methods or analyze
several similar models, be careful about the consistency
among them.

7. Always watch for balance between explained and
explanatory variables in regression analysis. For example,
if the dependent variable has a time-trend but explanatory
variables are limited between 0 and 1, then the regression
coefficient can never be a fixed constant. Be careful about
mixing I(0) and I(1) variables in one equation.

8. For VAR, number of parameters grows rapidly with number
of variables and lags. Removing the insignificant
parameters to achieve estimation efficiency is strongly
recommended. The resulting IR will be more accurate.



Empirical examples

On-line demonstration of the following examples
1. Evaluating the effectiveness of interest rate policy in

Taiwan: an impulse responses analysis
Lin(2003a).

2. Modelling information flow among four stock markets in
China
Lin and Wu (2003).

3. Causality between export expansion and manufacturing
growth
Liang, Chou and Lin (1995).
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