Deep Learning Tutorial

Hung-yi Lee

Outline

Part I: Introduction of Deep Learning

Three Steps for Deep Learning

Deep Learning is so simple

Fully Connected Feedforward Network

Neural Network

Neural Network

y = f(x)

Using parallel computing techniques to speed up matrix operation

$$= \sigma(W^{L} \cdots \sigma(W^{2} \sigma(W^{1} x + b^{1}) + b^{2}) \cdots + b^{L})$$

Output Layer

Softmax layer as the output layer

Ordinary Layer

In this case, the output of network can have any value.

May not be easy to interpret

Output Layer

Softmax layer as the output layer

Softmax Layer

Three Steps for Deep Learning

Image Recognition

target

Learning: Nothing special, just gradient descent

What is the difference between multi-layer perceptron (MLP) and deep learning? Basically, old wine in new bottles.

In the past, Deeper \neq Better

Part II: Tips for Training Deep Neural Network

What people did not know in 1980s

New Techniques

New Activation Function

• ReLU and Maxout network

New Structure

• Residue network and Highway network

Better optimization Strategy

• E.g. Adam

Dropout

• Prevent Overfitting

New Techniques

New Activation Function

• ReLU and Maxout network

New Structure

• Residue network and Highway network

Better optimization Strategy

• E.g. Adam

Dropout

• Prevent Overfitting

Using this approach when you obtained good results on the training data.

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

New Activation Function

α also learned by gradient descent

Maxout

ReLU is a special case of Maxout

• Learnable activation function [Ian J. Goodfellow, ICML'13]

You can have more than 2 elements in a group.

Maxout

- Learnable activation function [Ian J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

Maxout - Training

 Given a training data x, we know which z would be the max

Maxout - Training

 Given a training data x, we know which z would be the max

• Train this thin and linear network

Different thin and linear network for different examples

New Techniques

New Activation Function

• ReLU and Maxout network

New Structure

• Residue network and Highway network

For ultra deep network

Better optimization Strategy

• E.g. Adam

Dropout

• Prevent Overfitting

Skyscraper

https://zh.wikipedia.org/wiki/%E9%9B%99%E5%B3%B0%E5%A1%94#/me

dia/File:BurjDubaiHeight.svg

Ultra Deep Network

Worry about overfitting?

Worry about training first!

100.00 273 100.00 273 100.00 273 100.00 273 100.00 274 100.00 274

This ultra deep network have special structure.

7.3%

16.4%

AlexNet

(2012)

Ultra Deep Network

• Ultra deep network is the ensemble of many networks with different depth.

Residual Networks are Exponential Ensembles of Relatively Shallow Networks https://arxiv.org/abs/1605.06431

Ultra Deep Network

- Residual Network
- Highway Network

Deep Residual Learning for Image Recognition http://arxiv.org/abs/1512.03385 Training Very Deep Networks https://arxiv.org/pdf/1507.06228v 2.pdf

New Techniques

New Activation Function

• ReLU and Maxout network

New Structure

• Residue network and Highway network

Better optimization Strategy

• E.g. Adam

Dropout

• Prevent Overfitting

Learning Rates

Set the learning rate η carefully

Learning Rates

Set the learning rate η carefully

Learning Rates

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - At the beginning, we are far from the destination, so we use larger learning rate
 - After several epochs, we are close to the destination, so we reduce the learning rate
 - E.g. 1/t decay: $\eta^t = \eta/\sqrt{t+1}$
- Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates

Adagrad

Summation of the square of the previous derivatives

2. Smaller derivatives, larger learning rate, and vice versa

2. Smaller derivatives, larger learning rate, and vice versa

RMSProp

Error Surface can be very complex when training NN.

$$\begin{aligned} \mathsf{RMSProp} \\ w^{1} \leftarrow w^{0} - \frac{\eta}{\sigma^{0}} g^{0} & \sigma^{0} = g^{0} \\ w^{2} \leftarrow w^{1} - \frac{\eta}{\sigma^{1}} g^{1} & \sigma^{1} = \sqrt{\alpha(\sigma^{0})^{2} + (1 - \alpha)(g^{1})^{2}} \\ w^{3} \leftarrow w^{2} - \frac{\eta}{\sigma^{2}} g^{2} & \sigma^{2} = \sqrt{\alpha(\sigma^{1})^{2} + (1 - \alpha)(g^{2})^{2}} \\ \vdots \\ w^{t+1} \leftarrow w^{t} - \frac{\eta}{\sigma^{t}} g^{t} & \sigma^{t} = \sqrt{\alpha(\sigma^{t-1})^{2} + (1 - \alpha)(g^{t})^{2}} \end{aligned}$$

Root Mean Square of the gradients with previous gradients being decayed

Hard to find optimal network parameters

The value of a network parameter w

In physical world

Momentum

How about put this phenomenon in gradient descent?

Momentum

Still not guarantee reaching global minima, but give some hope

 $\partial L/\partial w = 0$

Momentum

Movement: movement of last step minus gradient at present

Start at point θ^0 Movement v⁰=0 Compute gradient at θ^0 Movement $v^1 = \lambda v^0 - \eta \nabla L(\theta^0)$ Move to $\theta^1 = \theta^0 + v^1$ Compute gradient at θ^1 Movement $v^2 = \lambda v^1 - \eta \nabla L(\theta^1)$ Move to $\theta^2 = \theta^1 + v^2$

Movement not just based on gradient, but previous movement.

Adam

RMSProp + Momentum

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9, \beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t. **Require:** α : Stepsize **Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) \rightarrow for momentum $v_0 \leftarrow 0$ (Initialize 2nd moment vector) ➤ for RMSprop $t \leftarrow 0$ (Initialize timestep) while θ_t not converged **do** $t \leftarrow t + 1$ $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\widehat{m}_t \leftarrow m_t / (1 - \beta_1^t)$ (Compute bias-corrected first moment estimate) $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters) end while **return** θ_t (Resulting parameters)

New Techniques

New Activation Function

• ReLU and Maxout network

New Structure

• Residue network and Highway network

Better optimization Strategy

• E.g. Adam

Dropout

• Prevent Overfitting

- > Each time before updating the parameters
 - Each neuron has p% to dropout

- Each time before updating the parameters
 - Each neuron has p% to dropout

The structure of the network is changed.

Using the new network for training

For each mini-batch, we resample the dropout neurons

Dropout

Testing:

No dropout

- If the dropout rate at training is p%, all the weights times 1-p%
- Assume that the dropout rate is 50%.
 If a weight w = 1 by training, set w = 0.5 for testing.

Dropout - Intuitive Reason

- When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- However, if you know your partner will slack off (dropout), you will do better.
- When testing, no one dropout actually, so obtaining good results eventually.

Dropout - Intuitive Reason

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

No dropout

Train a bunch of networks with different structures

Dropout is a kind of ensemble.

Ensemble

Dropout is a kind of ensemble.

Using one mini-batch to train one network
 Some parameters in the network are shared

Dropout is a kind of ensemble.

Testing of Dropout

 $z = w_1 x_1$

$$w_1$$
 w_2
 $z=0$

 x_1 x_2 w_1 w_2 $z=w_1x_1+w_2x_2$

(only for this case)

Concluding Remarks

New Activation Function

• ReLU and Maxout network

New Structure

• Residue network and Highway network

Better optimization Strategy

• E.g. Adam

Dropout

• Prevent Overfitting

Part III: Why Deep?

Deeper is Better?

Layer X Size	Word Error Rate (%)	
1 X 2k	24.2	
2 X 2k	20.4	
3 X 2k	18.4	
4 X 2k	17.8	
5 X 2k	17.2	
7 X 2k	17.1	

Not surprised, more parameters, better performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Universality Theorem

Any continuous function f

 $f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{M}}$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason: http://neuralnetworksandde eplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

Fat + Short v.s. Thin + Tall

Fat + Short v.s. Thin + Tall

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4	Why?	
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2 🔶	→ 1 X 3772	22.5
7 X 2k	17.1 🔶	→ 1 X 4634	22.6
		1 X 16k	22.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

• Deep \rightarrow Modularization

http://rinuboney.github.io/2015/10/18/theoretical-motivations-deep-learning.html

• Deep \rightarrow Modularization

Each basic classifier can have sufficient training examples.

• Deep \rightarrow Modularization

Classifiers for the attributes

• Deep \rightarrow Modularization \rightarrow Less training data?

Modularization - Image

• Deep \rightarrow Modularization

Reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In *Computer Vision–ECCV 2014* (pp. 818-833)

Modularization - Speech

Phoneme:

• The hierarchical structure of human languages what do you think

hh w aa t d uw y uw th ih ng k <u>Tri-phone:</u> t-d+uw d-uw+y uw-y+uw y-uw+th t-d+uw1 t-d+uw2 t-d+uw3 d-uw+y1 d-uw+y2 d-uw+y3 *State:*

Modularization - Speech

- The first stage of speech recognition
 - Classification: input \rightarrow acoustic feature, output \rightarrow state

Determine the state each acoustic feature belongs to

Modularization - Speech

Modularization - Speech

Each state has a stationary distribution for acoustic features

Modularization - Speech

Each state has a stationary distribution for acoustic features

Modularization - Speech

- By GNN, all the phonemes are modeled independently
 - Not an effective way to model human voice

Modularization

Vu, Ngoc Thang, Jochen Weiner, and Tanja Schultz. "Investigating the Learning Effect of Multilingual Bottle-Neck Features for ASR." *Interspeech*. 2014.

Output of hidden layer reduce to two dimensions

- The lower layers detect the manner of articulation
- All the phonemes share the results from the same set of detectors.
- Use parameters effectively

Analogy

Logic circuits

- Logic circuits consists of gates
- A two layers of logic gates can represent any Boolean function.
- Using multiple layers of logic gates to build some functions are much simpler

less gates needed

Neural network

- Neural network consists of neurons
- A hidden layer network can represent any continuous function.
- Using multiple layers of neurons to represent some functions are much simpler

This page is for EE background.

Universality Theorem

Any continuous function f

 $f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{M}}$

Can be realized by a network with one hidden layer

(given enough hidden neurons)

10000000 Reference for the reason: http://neuralnetworksandde eplearning.com/chap4.html

Yes, shallow network can represent any function.

However, using deep structure is more effective.

Complex Task ...

A. Mohamed, G. Hinton, and G. Penn, "Understanding how Deep Belief Networks Perform Acoustic Modelling," in ICASSP, 2012.

 Speech recognition: Speaker normalization is automatically done in DNN

Complex Task ...

A. Mohamed, G. Hinton, and G. Penn, "Understanding how Deep Belief Networks Perform Acoustic Modelling," in ICASSP, 2012.

 Speech recognition: Speaker normalization is automatically done in DNN

Input Acoustic Feature (MFCC)

To learn more ...

- Do Deep Nets Really Need To Be Deep? (by Rich Caruana)
- http://research.microsoft.com/apps/video/default.aspx?id= 232373&r=1

Do deep nets really need to be deep?	Yes!
Rich Caruana Microsoft Research Lei Jimmy Ba MSR Intern, University of Toronto	Any Questions?
Thanks also to: Gregor Urban, Krzysztof Geras, Samira Kahou, Abdelrahman Mohamed, Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong	

keynote of Rich Caruana at ASRU 2015