Lecture IV: Convolutional Neural Network (CNN)

Three Steps for Deep Learning

Deep Learning is so simple

Now If you want to find a function

If you have lots of function input/output (?) as training data

You can use deep learning

For example, you can do

For example, you can do

For example, you can do

Image Recognition

Why CNN for Image?

• When processing image, the first layer of fully connected network would be very large

100 x 100 x 3 1000

Can the fully connected network be simplified by considering the properties of image processing?

Why CNN for Image

Some patterns are much smaller than the whole image

A neuron does not have to see the whole image to discover the pattern.

Connecting to small region with less parameters

Why CNN for Image

• The same patterns appear in different regions.

Why CNN for Image

Subsampling the pixels will not change the object

bird

We can subsample the pixels to make image smaller

Less parameters for the network to process the image

The values in the matrices are learned from training data.

The values in the matrices are learned from training data.

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Property 1

Each filter detects a small pattern (3 x 3).

Filter 1

stride=1

6 x 6 image

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Do the same process for every filter

CNN – Colorful image

Convolution v.s. Fully Connected

Fullyconnected

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Less parameters!

Even less parameters!

CNN – Max Pooling

Filter 2

CNN – Max Pooling

6 x 6 image

Each filter is a channel

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

Live Demo

The output of the k-th filter is a 11 x 11 matrix.

Degree of the activation of the k-th filter:

25 3x3 filters

 $x^* = arg \max a^k$ (gradient ascent) х

Each small figure corresponds to a filter.

Find an image maximizing the output of neuron: $x^* = arg \max a^j$

X

Each figure corresponds to a neuron

Evolving AI Lab

Over all pixel values

$$x^* = \arg \max_x y^i$$

$$x^* = \arg \max_{x} \left(y^i + \sum_{i,j} |x_{ij}| \right)$$

Deep Dream

CNN

3.9

2.3

-1.5

• Given a photo, machine adds what it sees

http://deepdreamgenerator.com/

Deep Dream

• Given a photo, machine adds what it sees

http://deepdreamgenerator.com/

Deep Style

• Given a photo, make its style like famous paintings

https://dreamscopeapp.com/

Deep Style

• Given a photo, make its style like famous paintings

https://dreamscopeapp.com/

Deep Style

Application: Playing Go

Training

Collecting records of many previous plays

Machine mimics human player

Why CNN for Go playing?

Some patterns are much smaller than the whole image

Alpha Go uses 5 x 5 for first layer

• The same patterns appear in different regions.

Why CNN for Go playing?

• Subsampling the pixels will not change the object

Max Pooling How to explain this???

Neural network architecture. The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5 \times 5 with stride 1 with the input image and applies a <u>rectifier nonlinearity</u>. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves *k* filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1 with a different bies for each position and applies a softmax func-tion. The Alpha Go does not use Max Pooling Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

More Application: Speech

More Application: Text

d?doi=10.1.1.703.6858&rep=rep1&type=pdf

Lecture V: Recurrent Neural Network (RNN)

Neural Network with Memory

Example Application

• Slot Filling

Example Application

1-of-N encoding

How to represent each word as a vector?

1-of-N Encodinglexicon = {apple, bag, cat, dog, elephant}The vector is lexicon size. $apple = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$ Each dimension corresponds $bag = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix}$ to a word in the lexicon $cat = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}$ The dimension for the word $dog = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ is 1, and others are 0elephant = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix}

Beyond 1-of-N encoding

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Output:

Probability distribution that the input word belonging to the slots

Taipei

Three Steps for Deep Learning

Deep Learning is so simple

Recurrent Neural Network (RNN)

RNN The same network is used again and again.

Probability of "arrive" in each slot Probability of "Taipei" in each slot Probability of "on" in each slot

Of course it can be deep ...

Bidirectional RNN

Multiple-layer LSTM

I will not implement this!

ct-1

ct-1

ct-1

This is quite standard now ...

https://img.komicolle.org/2015-09-20/src/14426967627131.gif

ct

Ct+1

Three Steps for Deep Learning

Deep Learning is so simple

Three Steps for Deep Learning

Deep Learning is so simple

RNN Learning is difficult in practice.

Unfortunately

• RNN-based network is not always easy to learn

Real experiments on Language modeling

The error surface is rough.

=w⁹⁹⁹

Helpful Techniques

- Long Short-term Memory (LSTM)
 - Can deal with gradient vanishing (not gradient explode)
 - Memory and input are <u>added</u>
 - The influence never disappears unless forget gate is closed
- No Gradient vanishing (If forget gate is opened.)

Gated Recurrent Unit (GRU): simpler than LSTM

Helpful Techniques

Clockwise RNN

Structurally Constrained Recurrent Network (SCRN)

[Jan Koutnik, JMLR'14]

[Tomas Mikolov, ICLR'15]

Vanilla RNN Initialized with Identity matrix + ReLU activation function [Quoc V. Le, arXiv'15]

Outperform or be comparable with LSTM in 4 different tasks

More Applications

Probability of "arrive" in each slot **Probability of** "Taipei" in each slot "on" in each slot

Probability of

Many to one

Keras Example: https://github.com/fchollet/keras/blob /master/examples/imdb_lstm.py

Input is a <u>vector sequence</u>, but output is only <u>one vector</u>

Many to Many

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. Machine Translation (machine learning→機器學習)

Many to Many (No Limitation)

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. Machine Translation (machine learning→機器學習)

Many to Many (No Limitation)

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. Machine Translation (machine learning→機器學習)

[Alexander M Rush, EMNLP 15][Chopra, NAACL Many to Many: 16][Lopyrev, arXiv 2015][Shen, arXiv 2016][Yu & Lee, SLT 2016] **Title Generation**

Title 3

Input: a document (word sequence), output: its title (shorter word sequence)

https://arxiv.org/pdf/1512.01712v1.pdf

Many to Many: Video Caption Generation

Many to Many: Video Caption Generation

• Can machine describe what it see from video?

One to Many: Image Caption Generation

• Input an image, but output a sequence of words

One to Many: Image Caption Generation

• Can machine describe what it see from image?

Project of MTK

Attention-based Model

http://henrylo1605.blogspot.tw/2015/05/blog-post_56.html

Attention-based Model

Ref:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/Attain%20(v3).e cm.mp4/index.html

Attention-based Model v2

Neural Turing Machine

Reading Comprehension

Reading Comprehension

• End-To-End Memory Networks. S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. NIPS, 2015.

The position of reading head:

Story (16: basic induction)	Support	Hop 1	Hop 2	Hop 3
Brian is a frog.	yes	0.00	0.98	0.00
Lily is gray.	-	0.07	0.00	0.00
Brian is yellow.	yes	0.07	0.00	1.00
Julius is green.	-	0.06	0.00	0.00
Greg is a frog.	yes	0.76	0.02	0.00
What color is Greg? Answer: yellow	er: yellow Prediction: yellow			

Keras has example: https://github.com/fchollet/keras/blob/master/examples/ba bi_memnn.py

Visual Question Answering

source: http://visualqa.org/

Visual Question Answering

Visual Question Answering

 Huijuan Xu, Kate Saenko. Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering. arXiv Pre-Print, 2015

> Is there a red square on the bottom of the cat? GT: yes Prediction: yes

Speech Question Answering

- TOEFL Listening Comprehension Test by Machine
- Example:

Audio Story: (The original story is 5 min long.) Question: "What is a possible origin of Venus' clouds?" Choices:

(A) gases released as a result of volcanic activity

- (B) chemical reactions caused by high surface temperatures
- (C) bursts of radio energy from the plane's surface
- (D) strong winds that blow dust into the atmosphere

Model Architecture

Everything is learned from training examples

Model Architecture - Attention Mechanism

 V_{o} : vector representation for question

Story (through ASR)

Model Architecture

Attention Machannaies piepiles is the tover to be is a solution of the tower the base of the base of the tower the base of the base of the tower the base of the tower the base of the b

Sentence Representation

Attention on all phrases

Simple Baselines

Experimental setup: 717 for training, 124 for validation, 122 for testing

Memory Network

Proposed Approach

[Tseng & Lee, Interspeech 16] [Fang & Hsu & Lee, SLT 16]

Analysis

Type 1: ComprehensionType 2: Pragmatic understandingType 3: Connecting information, making inference and drawing conclusions

