Lecture IV:
 Convolutional Neural Network (CNN)

Three Steps for Deep Learning

Step 1:
 Neural
 Network
 Step 2: goodness of function
 Step 3: pick the best function

Deep Learning is so simple
Now If you want to find a function
If you have lots of function input/output (?) as training data

For example, you can do

For example, you can do

For example, you can do

- Image Recognition

Why CNN for Image?

- When processing image, the first layer of fully connected network would be very large

Can the fully connected network be simplified by considering the properties of image processing?

Why CNN for Image

- Some patterns are much smaller than the whole image

A neuron does not have to see the whole image to discover the pattern.

Connecting to small region with less parameters

Why CNN for Image

- The same patterns appear in different regions.

Why CNN for Image

- Subsampling the pixels will not change the object bird

subsampling

We can subsample the pixels to make image smaller
Less parameters for the network to process the image

The whole CNN

 cat dog

Flatten

The whole CNN

Can repeat many times

The whole CNN

cat dog

Can repeat many times

CNN - Convolution

The values in the matrices are learned from training data.

CNN - Convolution

The values in the matrices are learned from training data.

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6×6 image

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1
Matrix

-1	1	-1
-1	1	-1
-1	1	-1

Each filter detects a small pattern (3x3).

\section*{CNN - Convolution
 | $\mathbf{4}$ | -1 | -1 |
| :---: | :---: | :---: |
| -1 | \mathbf{x} | -1 |
| -1 | -1 | $\mathbf{3}$ |}

stride $=1$
Filter 1

6×6 image

CNN - Convolution

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2
stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6×6 image

Do the same process for every filter

CNN - Colorful image

Colorful image

-1	-1	-1
-1	1	-1
-1	-1	1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

1	0	0	0	0	1
0	1	0	0	1	0
-0	0	1	1	0	
-1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Convolution v.s. Fully Connected

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

-1	1	-1
-1	1	-1
-1	1	-1

Fullyconnected

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

The whole CNN

cat dog

Can repeat many times

CNN - Max Pooling

1	-1	-1
-1	1	-1
-1	-1	1

-1	1	-1
-1	1	-1
-1	1	-1

CNN - Max Pooling

6×6 image

New image but smaller

2×2 image
Each filter is a channel

The whole CNN

The whole CNN

Flatten

CNN in Keras
Only modified the network structure and input format (vector -> 3-D tensor)

1	-1				
-1	-1	1	-1		
-1	-1	-1	1	-1	
	-1	1	-1		

Input_shape $=(1,28,28)$
1: black/weight, 3: RGB 28×28 pixels

CNN in Keras

input
$1 \times 28 \times 28$
model2.add (Convolution2D ($25,3,3$,
input shape $=(1,28,28)$)
Convolution
How many parameters for each filter?
$9 \quad 25 \times 26 \times 26$
model2.add (MaxPooling2D ($(2,2))$)
$25 \times 13 \times 13$
model2.add (Convolution2D (50, 3, 3)) How many parameters for each filter?
$22550 \times 11 \times 11$
model2.add (MaxPooling2D ($(2,2))$)

Max Pooling

Convolution
$50 \times 5 \times 5$

CNN in Keras

input

model2.add (Dense (output_dim=100)) model2.add (Activation('relu'))
 model2.add (Dense (output_dim=10))
 model2.add (Activation('softmax'))

Feedforward network
output

Fully Connected

Only modified the network structure and input format (vector -> 3-D tensor)

Live Demo

What does CNN learn?

The output of the k-th filter is a

Degree of the activation of the k-th filter:

$x^{*}=\arg \max _{x} a^{k}$ (gradient ascent)

What does CNN learn?

The output of the k-th filter is a 11×11 matrix.
Degree of the activation of the k-th filter: $\quad a^{k}=$

$x^{*}=\arg \max _{x} a^{k}$ (gradient ascent)

Each small figure corresponds to a filter.

What does CNN learn?

Find an image maximizing the output of neuron:

$$
x^{*}=\arg \max _{x} a^{j}
$$

Each figure corresponds to a neuron
input

What does CNN learn?

Deep Neural Networks are Easily Fooled https://www.youtube.com/watch?v=M2lebCN9Ht4

Evolving AI Lab

What does CNN learn?

Over all pixel values

$$
x^{*}=\arg \max _{x} y^{i}
$$

$$
x^{*}=\arg \max _{x}\left(y^{i}+\sum_{i, j}\left|x_{i j}\right|\right)
$$

Deep Dream

http://deepdreamgenerator.com/

Deep Dream

- Given a photo, machine adds what it sees

http://deepdreamgenerator.com/

Deep Style

- Given a photo, make its style like famous paintings

https://dreamscopeapp.com/

Deep Style

- Given a photo, make its style like famous paintings

https://dreamscopeapp.com/

Deep Style

A Neural Algorithm of Artistic Style https://arxiv.org/abs/1508 .06576

CNN

Application: Playing Go

Black: 1
white: -1
none: 0

Fully-connected feedforward network can be used

But CNN performs much better.

Collecting records of many previous plays

Machine mimics human player

CNN

Why CNN for Go playing?

- Some patterns are much smaller than the whole image

Alpha Go uses 5×5 for first layer

- The same patterns appear in different regions.

Why CNN for Go playing?

- Subsampling the pixels will not change the object Max Pooling How to explain this???

Neural network architecture. The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23×23 image then convolves k filters of kernel size 5×5 with stride $\underline{1}$ with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden lavers 2 to 12 zero pads the respective previous hidden laver into a 21×21 image, then convolves k filters of kernel size 3×3 with stride - , again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with strid with diffonomthin formen man tion. The Alpha Go does not use Max Pooling Extended Data Table 3 additionally show the results of training with $k=128,256$ and 384 filters.

More Application: Speech

More Application: Text

sentence	convolutional	pooled
matrix	feature map	representation
$S \in \mathbb{R}^{d \times\|s\|}$	$C \in \mathbb{R}^{n \times\|s\|-m+1}$	$c_{\text {pool }} \in \mathbb{R}^{1 \times n}$

Lecture V :
 Recurrent Neural Network (RNN)

Example Application

- Slot Filling

Example Application

Solving slot filling by
Feedforward network?
Input: a word
(Each word is represented as a vector)

1-of-N encoding

How to represent each word as a vector?

1-of-N Encoding lexicon = \{apple, bag, cat, dog, elephant $\}$

The vector is lexicon size.
Each dimension corresponds to a word in the lexicon

The dimension for the word is 1 , and others are 0
apple $=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right]$ bag $=\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}\right]$ cat $=\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}\right]$ $\operatorname{dog}=\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}\right]$
elephant $=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}\right]$

Beyond 1-of-N encoding

Dimension for "Other"
Word hashing

Example Application

Solving slot filling by
Feedforward network?
Input: a word
(Each word is represented as a vector)

Output:
Probability distribution that the input word belonging to the slots

Taipei

Example Application

dest
time of departure

Neural network Taipei

needs memory!

Three Steps for Deep Learning

Step 3: pick the best function

Deep Learning is so simple

Recurrent Neural Network (RNN)

The output of hidden layer are stored in the memory.
 as another input.

Input sequence: $\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}2 \\ 2\end{array}\right]$

Example

output sequence: $\left[\begin{array}{l}4 \\ 4\end{array}\right]$

Input sequence: $\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}2 \\ 2\end{array}\right]$......

Example

All activation functions are linear

Input sequence: $\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}2 \\ 2\end{array}\right]$

Example

 output sequence: $\left[\begin{array}{l}4 \\ 4\end{array}\right]\left[\begin{array}{l}12 \\ 12\end{array}\right]\left[\begin{array}{c}32 \\ 32\end{array}\right]$
Changing the sequence order will change the output.

All activation functions are linear

The same network is used again and again.

Probability of
"arrive" in each slot

Probability of
"Taipei" in each slot

Probability of
"on" in each slot

RNN

Different

 in each slot

Prob of "Taipei"
in each slot

Prob of "arrive" in each slot

Prob of "Taipei" in each slot]

The values stored in the memory is different.

Of course it can be deep ...

Bidirectional RNN

Long Short-term Memory (LSTM)

Other part of the network

Signal control the output gate (Other part of the network)

Signal control the input gate (Other part of the network)

Output Gate

Special Neuron:

4 inputs,
1 output

Signal control the forget gate (Other part of the network)

LSTM

vector

LSTM

LSTM

Extension: "peephole"

I will not implement this!

This is quite standard now ...

https://img.komicolle.org/2015-09-20/src/14426967627131.gif

Three Steps for Deep Learning

Deep Learning is so simple

Learning Target

Three Steps for Deep Learning

Deep Learning is so simple

Learning

RNN Learning is difficult in practice.

Unfortunately

- RNN-based network is not always easy to learn Real experiments on Language modeling

The error surface is rough.

Why?

Helpful Techniques

- Long Short-term Memory (LSTM)
- Can deal with gradient vanishing (not gradient explode)
$>$ Memory and input are added
$>$ The influence never disappears unless forget gate is closed

No Gradient vanishing (If forget gate is opened.)

Gated Recurrent Unit (GRU): simpler than LSTM

Helpful Techniques

Clockwise RNN

[Jan Koutnik, JMLR'14]

Structurally Constrained
Recurrent Network (SCRN)

[Tomas Mikolov, ICLR'15]

Vanilla RNN Initialized with Identity matrix + ReLU activation function [Quoc V. Le, arXiv'15]
$>$ Outperform or be comparable with LSTM in 4 different tasks

More Applications

Probability of
"arrive" in each slot

Probability of
"Taipei" in each slot "on" in each slot

Keras Example:

Many to one

 https://github.com/fchollet/keras/blob /master/examples/imdb_Istm.py- Input is a vector sequence, but output is only one vector

Sentiment Analysis

Positive

Negative

Many to Many

－Both input and output are both sequences with different lengths．\rightarrow Sequence to sequence learning
－E．g．Machine Translation（machine learning \rightarrow 機器學習）

Many to Many（No Limitation）

－Both input and output are both sequences with different lengths．\rightarrow Sequence to sequence learning
－E．g．Machine Translation（machine learning \rightarrow 機器學習）

Many to Many（No Limitation）

－Both input and output are both sequences with different lengths．\rightarrow Sequence to sequence learning
－E．g．Machine Translation（machine learning \rightarrow 機器學習）

［Ilya Sutskever，NIPS＇14］［Dzmitry Bahdanau，arXiv＇15］

Many to Many: Title Generation
[Alexander M Rush, EMNLP 15][Chopra, NAACL 16][Lopyrev, arXiv 2015][Shen, arXiv 2016][Yu \& Lee,SLT 2016]

Input: a document (word sequence), output: its title (shorter word sequence)

Many to Many:
 Video Caption Generation

A group of people is knocked by a tree.

A group of people is walking in the forest.

Many to Many:
Video Caption Generation

- Can machine describe what it see from video?
- Input an image, but output a sequence of words

One to Many:
Image Caption Generation

- Can machine describe what it see from image?

Project of MTK

Attention-based Model

What you learned Breakfast in these lectures / today

What is deep
learning?

Answer Organize
vacation 10 years ago

Attention-based Model

Ref:
http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/Attain\ (v3).e cm.mp4/index.html

Attention-based Model v2

Neural Turing Machine

Reading Comprehension

Each sentence becomes a vector.

Reading Comprehension

- End-To-End Memory Networks. S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. NIPS, 2015.

The position of reading head:

Story (16: basic induction)	Support	Hop 1	Hop 2	Hop 3
Brian is a frog.	yes	0.00	0.98	0.00
Lily is gray.		0.07	0.00	0.00
Brian is yellow.	yes	0.07	0.00	1.00
Julius is green.		0.06	0.00	0.00
Greg is a frog.	yes	0.76	0.02	0.00
What color is Greg? Answer: yellow	Prediction: yellow			

Keras has example:
https://github.com/fchollet/keras/blob/master/examples/ba bi_memnn.py

Visual Question Answering

source: http://visualqa.org/

Visual Question Answering

Visual Question Answering

- Huijuan Xu, Kate Saenko. Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering. arXiv Pre-Print, 2015

Is there a red square on the bottom of the cat?
GT: yes
Prediction: yes

Speech Question Answering

- TOEFL Listening Comprehension Test by Machine
- Example:

Audio Story: (The original story is 5 min long.)
Question: " What is a possible origin of Venus' clouds? "
Choices:
(A) gases released as a result of volcanic activity
(B) chemical reactions caused by high surface temperatures
(C) bursts of radio energy from the plane's surface
(D) strong winds that blow dust into the atmosphere

Model Architecture

Everything is learned from training examples

Select the choice most similar to the answer

Question: "what is a possible origin of Venus' clouds?"
...... It be quite possible that this be due to volcanic eruption because volcanic eruption often emit gas. If that be the case volcanism could very well be the root cause of Venus 's thick cloud cover. And also we have observe burst of radio energy from the planet 's surface. These burst be similar to what we see when volcano erupt on earth

Model Architecture - Attention Mechanism

Understand the question \quad Vs : consider both Question and Story Concatenate the output of last hidden $--\overline{V_{Q}}-$ with attention weight $\boldsymbol{\alpha}$
layer in bi-directional GRU $\quad \alpha=\frac{V_{Q} \cdot S_{t}}{\left|V_{Q}\right| \cdot\left|S_{t}\right|} \quad \Sigma V_{s}=\sum_{t=1}^{8} \propto_{t} * S_{t}$

Module for
Vector Representation

(similarity score)

Story (through ASR)

Model Architecture

Sentence Representation

Bi-directional

Tree-structured Neural Network

Attention on all phrases

Simple Baselines

Experimental setup:
717 for training, 124 for validation, 122 for testing

Memory Network

Proposed Approach

[Tseng \& Lee, Interspeech 16] [Fang \& Hsu \& Lee, SLT 16]

Proposed Approach: 48.8\%

45
Memory Network: 39.2\%

Naive Approaches

Type 1: Comprehension
Analysis
Type 2: Pragmatic understanding
Type 3: Connecting information, making inference and drawing conclusions

