CLT and Bootstrap in High Dimensions

V. Chernozhukov (MIT) D. Chetverikov (UCLA) K. Kato (Tokyo)

October 27, 2016

Introduction

This presentation is based on:

1. "Central Limit Theorems and Bootstrap in High Dimensions," ArXiv, 2014, Ann. Prob., 2016.
2. "Gaussian Approximation of Suprema of Empirical Processes," Ann. Stat., 2014a
3. "Uniform Inference after Selection for LAD and Other Z-Estimation Problmes" Biometrika, 2014b (with A. Belloni). ArXiv 2013.
4. "Uniformly Valid Post-Regularization Confidence Regions for Many Functional Parameters in Z-Estimation Framework" (with A. Belloni and Y. Wei). ArXiv, 2015.

Introduction

Let X_{1}, \ldots, X_{n} be a sequence of centered independent random vectors in \mathbb{R}^{p}, with each X_{i} having coordinates denoted by $X_{i j}$; that is,

$$
X_{i}=\left(X_{i j}\right)_{j=1}^{p}
$$

Define the normalized sum:

$$
\begin{equation*}
S_{n}^{X}:=\left(S_{n j}^{X}\right)_{j=1}^{p}:=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i} . \tag{1}
\end{equation*}
$$

Let Y_{1}, \ldots, Y_{n} be independent Gaussian random vectors in \mathbb{R}^{p} :

$$
Y_{i} \sim N\left(0, \mathrm{E}\left[X_{i} X_{i}^{\prime}\right]\right)
$$

Define the Gaussian analog of S_{n}^{X} as:

$$
\begin{equation*}
S_{n}^{Y}:=\left(S_{n j}^{Y}\right)_{j=1}^{p}:=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_{i} . \tag{2}
\end{equation*}
$$

Introduction

Define the Kolmorogorov distance between S_{n}^{X} and S_{n}^{Y} :

$$
\rho_{n}:=\sup _{A \in \mathcal{A}}\left|\mathrm{P}\left(S_{n}^{X} \in A\right)-\mathrm{P}\left(S_{n}^{Y} \in \mathcal{A}\right)\right|
$$

where \mathcal{A} is some class of sets
Question: how fast can $p=p_{n}$ grow as $n \rightarrow \infty$ under the restriction that $\rho_{n} \rightarrow 0$?
Bentkus (2003): for i.i.d. X_{i}, if \mathcal{A} is the class of all convex sets, then

$$
\rho_{n}=O\left(\frac{p^{1 / 4} \mathrm{E}\left[\|X\|_{2}^{3}\right]}{\sqrt{n}}\right)
$$

Typically $\mathrm{E}\left[\|X\|_{2}^{3}\right]=O\left(p^{3 / 2}\right)$, so

$$
\rho_{n} \rightarrow 0 \quad \text { if } \quad p=o\left(n^{2 / 7}\right)
$$

Nagaev (1976): this result is nearly optimal, $\rho_{n} \gtrsim \mathrm{E}\left[\|X\|_{2}^{3}\right] / \sqrt{n}$

Introduction

However, in modern statistics, often $p \gg n$

- high dimensional regression models
- multiple hypothesis testing problems

Question: can we find a non-trivial class of sets \mathcal{A} such that

$$
p=p_{n} \gg n \quad \text { but } \quad \rho_{n} \rightarrow 0
$$

Our first main result(s):
Subject to some conditions, if \mathcal{A} is the class of all rectangles (or sparsely convex sets), then

$$
\rho_{n} \rightarrow 0 \quad \text { if } \quad \log p=o\left(n^{1 / 7}\right)
$$

Simulation Example

The example is motivated by the problem of removing the Gaussianity assumption in Dantzig/Lasso estimators of (very) high-dimensional sparse regression models. Let

$$
S_{n}^{X}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}, \quad X_{i j}=z_{i j} \varepsilon_{i}, \quad \varepsilon_{i} \text { i.i.d. } t(5) / c
$$

$z_{i j}$'s are fixed bounded "regressors", $\left|z_{i j}\right| \leq B$, drawn from $U(0,1)$ distribution once, and

$$
S_{n}^{Y}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_{i}, \quad Y_{i j}=z_{i j} e_{i}, \quad e_{i} \text { i.i.d. } N(0,1)
$$

so that $\mathrm{E}\left[Y_{i} Y_{i}^{\prime}\right]=\mathrm{E}\left[X_{i} X_{i}^{\prime}\right]$. Compare

$$
\mathrm{P}\left(\left\|S_{n}^{X}\right\|_{\infty} \leq t\right) \text { and } \mathrm{P}\left(\left\|S_{n}^{Y}\right\|_{\infty} \leq t\right)
$$

(i.e. ρ_{n} for $\mathcal{A}=$ cubes in \mathbb{R}^{p})

Simulation Example

Figure: P-P plots comparing $\mathrm{P}\left(\left\|S_{n}^{Y}\right\|_{\infty} \leq t\right)$ and $\mathrm{P}\left(\left\|S_{n}^{X}\right\|_{\infty} \leq t\right)$. The dashed line is the 45° line.

Introduction - Bootstrap

Generally, $\mathrm{P}\left(S_{n}^{Y} \in A\right)$ is unknown since don't know covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left[X_{i} X_{i}^{\prime}\right]$. So the second result, is that under similar conditions

$$
\rho_{n}^{*}=\sup _{A \in \mathcal{A}}\left|\mathrm{P}\left(S_{n}^{X *} \in A \mid\left\{X_{i}\right\}_{i=1}^{n}\right)-\mathrm{P}\left(S_{n}^{Y} \in A\right)\right| \rightarrow_{\mathrm{P}} 0
$$

We prove this result for the Gaussian Bootstrap (multiplier method with Gaussian multipliers):

$$
\begin{equation*}
S_{n}^{X_{*}}:=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) e_{i}, \quad \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \tag{3}
\end{equation*}
$$

where $\left(e_{i}\right)_{i=1}^{n}$ are i.i.d. $N(0,1)$ multipliers; and the Empirical Bootstrap:

$$
\begin{equation*}
S_{n}^{X *}:=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) m_{i, n}, \quad \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \tag{4}
\end{equation*}
$$

where $\left(m_{i, n}\right)_{i=1}^{n}$ is n-dimensional multinomial variate based on n trials with success probabilities $1 / n, \ldots, 1 / n$.

Conditions

Let $b>0$ and $q \geq 4$ be constants, and $\left(B_{n}\right)_{n=1}^{\infty}$ be a sequence of positive constants, possibly growing to ∞.
Consider the following conditions:
(M.1) $n^{-1} \sum_{i=1}^{n} \mathrm{E}\left[X_{i j}^{2}\right] \geq b$ for all $j=1, \ldots, p$,
(M.2) $n^{-1} \sum_{i=1}^{n} \mathrm{E}\left[\left|X_{i j}\right|^{2+k}\right] \leq B_{n}^{k}$ for all $j=1, \ldots, p$ and $k=1,2$.
and one of the following:
(E.1) $\mathrm{E}\left[\exp \left(\left|X_{i j}\right| / B_{n}\right)\right] \leq 2$ for all $i=1, \ldots, n$ and $j=1, \ldots, p$,
(E.2) $\mathrm{E}\left[\left(\max _{1 \leq j \leq p}\left|X_{i j}\right| / B_{n}\right)^{q}\right] \leq 2$ for all $i=1, \ldots, n$,

Let $\mathcal{A}=\mathcal{A}^{r}$ be a the class of all rectangles:

$$
A=\left\{z=\left(z_{1}, \ldots, z_{p}\right)^{\prime} \in \mathbb{R}^{p}: z_{j} \in\left[a_{j}, b_{j}\right] \text { for all } j=1, \ldots, p\right\}
$$

for some $-\infty \leq a_{j} \leq b_{j} \leq \infty, j=1, \ldots, p$.

Formal Results, I

Theorem (Central Limit Theorem)
Recall that

$$
\rho_{n}:=\sup _{A \in \mathcal{A}^{r}}\left|\mathrm{P}\left(S_{n}^{X} \in A\right)-\mathrm{P}\left(S_{n}^{Y} \in A\right)\right|
$$

Assume (M.1-2), then under (E.1)

$$
\begin{equation*}
\rho_{n} \leq C\left(\frac{B_{n}^{2} \log ^{7}(p n)}{n}\right)^{1 / 6} \tag{5}
\end{equation*}
$$

where the constant C depends only on b, and under (E.2)

$$
\begin{equation*}
\rho_{n} \leq C\left[\left(\frac{B_{n}^{2} \log ^{7}(p n)}{n}\right)^{1 / 6}+\left(\frac{B_{n}^{2} \log ^{3} p}{n^{1-2 / q}}\right)^{1 / 3}\right] \tag{6}
\end{equation*}
$$

where the constant C depends only on b and q.
Remark: Bentkus (1985) provides an example, with $\left(X_{i j}, 1 \leq j \leq p\right) \subset \mathcal{F}$, where \mathcal{F} is P-Donsker, such that $\rho_{n} \gtrsim(1 / n)^{1 / 6}$.

Formal Results, II

Theorem (Gaussian and Empirical Bootstrap Theorem)

Define

$$
\rho_{n}^{*}:=\sup _{A \in \mathcal{A}^{r}}\left|\mathrm{P}\left(S_{n}^{X_{*}} \in A \mid\left\{X_{i}\right\}_{i=1}^{n}\right)-\mathrm{P}\left(S_{n}^{Y} \in A\right)\right|
$$

Assume (M.1-2), then under (E.1), with probability at least $1-\alpha$,

$$
\begin{equation*}
\rho_{n}^{*} \leq C\left(\frac{B_{n}^{2} \log ^{5}(p n) \log ^{2}(1 / \alpha)}{n}\right)^{1 / 6} \tag{7}
\end{equation*}
$$

where the constant C depends only on b, and under (E.2), with probability at least $1-\alpha$,

$$
\begin{equation*}
\rho_{n}^{*} \leq C\left[\left(\frac{B_{n}^{2} \log ^{5}(p n) \log ^{2}(1 / \alpha)}{n}\right)^{1 / 6}+\left(\frac{B_{n}^{2} \log ^{3} p}{\alpha^{2 / q} n^{1-2 / q}}\right)^{1 / 3}\right] \tag{8}
\end{equation*}
$$

where the constant C depends only on b and q.

Some ingredients behind the proofs, I

Focus on max rectangles for simplicity:

$$
A=\left\{z=\left(z_{1}, \ldots, z_{p}\right)^{\prime} \in \mathbb{R}^{p}: \max _{1 \leq j \leq p} z_{j} \leq s\right\}, \quad s \in \mathbb{R}
$$

- Slepian's interpolation:

Define

$$
Z(t):=\sqrt{t} S_{n}^{X}+\sqrt{1-t} S_{n}^{Y}, \quad t \in[0,1]
$$

Then

$$
\mathrm{P}\left(S_{n}^{X} \in A\right)-\mathrm{P}\left(S_{n}^{Y} \in A\right)=\mathrm{E}[1(Z(1) \in A)]-\mathrm{E}[1(Z(0) \in A)]
$$

- Smoothing:

Approximate the indicator map

$$
z \mapsto 1(z \in A)=1\left(\max _{1 \leq j \leq p} z_{j} \leq s\right)
$$

by some smooth map

$$
z \mapsto m(z)
$$

by smoothing the interval indicator $y \mapsto 1(y \leq s)$ and smoothing the max operator $z \mapsto \max _{1 \leq j \leq p} z_{j}$.

Some ingredients behind the proofs, II

- Calculations:

$$
\begin{aligned}
\mathrm{E}[1(Z(1) \in A)]-\mathrm{E}[1(Z(0) \in A)] & \stackrel{(1)}{\approx} \mathrm{E}[m(Z(1))]-\mathrm{E}[m(Z(0))] \\
& =\int_{0}^{1} \mathrm{E}\left[\frac{d m(Z(t))}{d t}\right] d t \\
& \stackrel{(2)}{\approx} 0
\end{aligned}
$$

by proving the (1) first and that

$$
\mathrm{E}\left[\frac{d m(Z(t))}{d t}\right] \approx 0
$$

- Approximation of max operator by a logistic potential:

$$
\left|\max _{1 \leq j \leq p} z_{j}-\beta^{-1} \log \left(\sum_{j=1}^{p} \exp \left(\beta z_{j}\right)\right)\right| \leq \frac{\log p}{\beta}
$$

Some ingredients behind the proofs, III

- Anti-concentration of suprema of Gaussian processes: (needed to show negligibility of errors due to smoothing the indicator function)

$$
\sup _{t \in \mathbb{R}} \mathrm{P}\left(t \leq \max _{1 \leq j \leq p} S_{n, j}^{Y} \leq t+\epsilon\right) \leq 4 \epsilon\left(\mathrm{E}\left[\max _{1 \leq j \leq p} S_{n, j}^{Y}\right]+1\right) \lesssim \epsilon \sqrt{\log p}
$$

stated for the case when $\mathrm{E}\left[\left(S_{n, j}^{Y}\right)^{2}\right]=1$ for each j. This is opposite of the (super)-concentration.
Ref: CCK, PTRF.

- Stein's leave-one-out method (needed to simplify computations of expectations)
(stability property of third-order derivatives of the logistic potential over certain subsets of \mathbb{R}^{p} play a crucial role)

Some ingredients behind the proofs, IV

- Double Slepian Interpolation: to improve the dependence of bounds on n (Inspired by Bolthausen's (1984) arguments for combinatorial CLTs)

Details on Double Slepian Interpolation

- By using single Slepian interpolant

$$
Z(t):=\sqrt{t} S_{n}^{X}+\sqrt{1-t} S_{n}^{Y}, \quad t \in[0,1]
$$

the argument gives

$$
\rho_{n} \leq \rho_{n}^{\prime}:=\sup _{t \in[0,1], A \in \mathcal{A}^{r}}|\mathrm{P}(Z(t) \in A)-\mathrm{P}(Z(0) \in A)| \leq n^{-1 / 8} \times C(n, p) .
$$

- Define the double Slepian interpolation

$$
D(v, t):=\sqrt{v} Z(t)+\sqrt{1-v} S_{n}^{W}, \quad v \in[0,1], \quad t \in[0,1]
$$

where S_{n}^{W} is an independent copy of S_{n}^{Y}.

- By doing double interpolation and using other ingredients mentioned above, obtain

$$
\rho_{n}^{\prime} \leq \frac{1}{2} \rho_{n}^{\prime}+n^{-1 / 6} \times C(n, p)^{\prime} \Longrightarrow \text { result }
$$

Connections to Literature

Classical CLTs under expanding dimension:

- Senatov (1980), Asriev and Rotar (1985), Portnoy (1986), Götze (1991), Bentkus (2003), L.H.Y. Chen and Roellin (2011), and others
Bootstrap and Multiplier methods:
- Gine and Zinn (1990), Koltchinskii (1981), Pollard (1982)

Stein's Method and other modern invariance principles

- Chatterjee (2005), Roellin (2011).

Spin glasses

- Panchenko (2013), Talagrand (2003), and others.

Further Results

- (CCK, Ann. Stat. 2014a). The results presented extend to suprema of empirical processes:

$$
\sup _{t \in \mathbb{R}}\left|\mathrm{P}\left(\sup _{f \in \mathcal{F}_{n}} \mathbb{G}_{n}(f) \leq t\right)-\mathrm{P}\left(\sup _{f \in \mathcal{F}_{n}} \mathrm{G}_{P}(f) \leq t\right)\right| \rightarrow 0
$$

provided the complexity of \mathcal{F}_{n} does not grow too quickly. The approximations are more generally applicable than Hungarian couplings (e.g. Rio), and competitive when both apply.

- There is also an analogous result for Gaussian and Empirical bootstrap.

Results do extend beyond rectangles

Definition (Sparsely convex sets)

For integer $s>0$, we say that $A \subset \mathbb{R}^{p}$ is an s-sparsely convex set if there exist an integer $Q \leq p^{C}$ and convex sets $A_{q} \subset \mathbb{R}^{p}$,
$q=1, \ldots, Q$, such that

$$
A=\cap_{q=1}^{Q} A_{q}
$$

and the indicator function of each A_{q},

$$
w \mapsto 1\left\{w \in A_{q}\right\},
$$

depends at most on s components of its argument $w=\left(w_{1}, \ldots, w_{p}\right)$

Examples of Sparsely Convex Sets

- Example 1: Rectangle (1-sparse) - intersection of 1-d shells

$$
A=\left\{z \in \mathbb{R}^{p}: z_{j} \in\left[a_{j}, b_{j}\right] \quad \text { for all } j=1, \ldots, p\right\}
$$

for some $-\infty \leq a_{j} \leq b_{j} \leq \infty, j=1, \ldots, p$

- Example 2: Sparse Polytope (s-sparse) - intersection of sparsely defined hyperplanes.

$$
A=\left\{z \in \mathbb{R}^{p}: v_{j}^{\prime} z \leq a_{j}, \quad \text { for all } j=1, \ldots, m\right\}
$$

for some $a_{j} \in \mathbb{R}$ such that $v_{j} \in \mathcal{S}^{p-1}$ with $\left\|v_{j}\right\|_{0} \leq s, j=1, \ldots, m$

- Example 3: Sparse convex body (s-sparse) - generated by the intersection of cylinders with s-dimensional base:

$$
A=\left\{z \in \mathbb{R}^{p}:\left\|\left(z_{j}\right)_{j \in J_{k}}\right\|_{2}^{2} \leq a_{k}: k=1, \ldots, m\right\}
$$

for some $a_{k}>0$ and J_{k} being a subset of $\{1, \ldots, p\}$ of fixed cardinality $s, k=1, \ldots, m$

Conditions

Let $b>0$ and $q \geq 4$ be constants, and $\left(B_{n}\right)_{n=1}^{\infty}$ be a sequence of positive constants, possibly growing to ∞.
Consider the following conditions:
(M.1') $n^{-1} \sum_{i=1}^{n} \mathrm{E}\left[\left(v^{\prime} X_{i}\right)^{2}\right] \geq b$ for all $v \in \mathcal{S}^{p-1}$ with $\|v\|_{0} \leq s$,
(M.2) $n^{-1} \sum_{i=1}^{n} \mathrm{E}\left[\left|X_{i j}\right|^{2+k}\right] \leq B_{n}^{k}$ for all $j=1, \ldots, p$ and $k=1,2$.
(E.1) $\mathrm{E}\left[\exp \left(\left|X_{i j}\right| / B_{n}\right)\right] \leq 2$ for all $i=1, \ldots, n$ and $j=1, \ldots, p$,
(E.2) $\mathrm{E}\left[\left(\max _{1 \leq j \leq p}\left|X_{i j}\right| / B_{n}\right)^{q}\right] \leq 2$ for all $i=1, \ldots, n$,

Formal Results, III

Theorem (CLT for Sparsely Convex Sets)

For \mathcal{A}^{s} denoting the class of all s-sparsely convex sets, let

$$
\rho_{n}:=\sup _{A \in \mathcal{A}^{s}}\left|\mathrm{P}\left(S_{n}^{X} \in A\right)-\mathrm{P}\left(S_{n}^{Y} \in A\right)\right|
$$

Assume (M.1') and (M.2), then under (E.1)

$$
\begin{equation*}
\rho_{n} \leq C\left(\frac{B_{n}^{2} \log ^{7}(p n)}{n}\right)^{1 / 6} \tag{9}
\end{equation*}
$$

where the constant C depends only on b and s, and under (E.2)

$$
\begin{equation*}
\rho_{n} \leq C\left[\left(\frac{B_{n}^{2} \log ^{7}(p n)}{n}\right)^{1 / 6}+\left(\frac{B_{n}^{2} \log ^{3} p}{n^{1-2 / q}}\right)^{1 / 3}\right] \tag{10}
\end{equation*}
$$

where the constant C depends only on b, q, and s.

Formal Results, IV

Theorem (Gaussian Bootstrap Theorem)

Define

$$
\rho_{n}^{*}:=\sup _{A \in \mathcal{A}^{s}}\left|\mathrm{P}\left(S_{n}^{X *} \in A \mid\left\{X_{i}\right\}_{i=1}^{n}\right)-\mathrm{P}\left(S_{n}^{Y} \in A\right)\right| .
$$

Assume (M.1-2), then under (E.1), with probability at least $1-\alpha$,

$$
\begin{equation*}
\rho_{n}^{*} \leq C\left(\frac{B_{n}^{2} \log ^{5}(p n) \log ^{2}(1 / \alpha)}{n}\right)^{1 / 6} \tag{11}
\end{equation*}
$$

where the constant C depends only on b and s, and under (E.2), with probability at least $1-\alpha$,

$$
\begin{equation*}
\rho_{n}^{*} \leq C\left[\left(\frac{B_{n}^{2} \log ^{5}(p n) \log ^{2}(1 / \alpha)}{n}\right)^{1 / 6}+\left(\frac{B_{n}^{2} \log ^{3} p}{\alpha^{2 / q} n^{1-2 / q}}\right)^{1 / 3}\right] \tag{12}
\end{equation*}
$$

where the constant C depends only on b, q, and s.

Applications to Confidence Bands

- In [3], we used the results to give confidence bands for a large collection of approximately linear estimators in high-dimensional (approximately) sparse linear median regression and Z-estimation problems
- In [4], we used the results to give confidence bands for a large collection of approximately linear function-valued estimators in high-dimensional (approximately) sparse functional regression and Z-estimation problems
- As explained in [3-4], approximately linear estimators gan be generated by solving Neyman-orthogonal estimating equations.

Example: High-Dimensional Logistic Regression

Suppose that we are interested in studying the dependence of a random variable Y on a p-dimensional vector of covariates,
$X=\left(X_{1}, \ldots, X_{p}\right)^{\prime}$, where p is large
One approach to study this dependence is the following:

- For $u \in \mathcal{U}$, define

$$
Y_{u}=1\{Y \leq u\}
$$

- For each $u \in \mathcal{U}$, consider the logistic regression:

$$
\mathrm{E}\left[Y_{u} \mid X\right]=\Lambda\left(X^{\prime} \theta_{u}\right)+r_{u}(X)
$$

where $\Lambda(\cdot)$ is the logistic link function;

- The map

$$
u \mapsto \theta_{u}=\left(\theta_{u 1}, \ldots, \theta_{u p}\right)^{\prime}
$$

is a function-valued parameter of interest, and $r_{u}(X)$ is an asymptotically vanishing approximation error (pretend that $\left.r_{u}(X) \equiv 0\right)$

General Moment Conditions Setup and Z-estimators

For each $u \in \mathcal{U}$ and $j=1, \ldots, p$:

- Assume that the parameter $\theta_{u j}$ satisfies the following moment condition:

$$
\mathrm{E}\left[\psi_{u j}\left(W, \theta_{u j}, \eta_{u j}\right)\right]=0,
$$

where W is a random vector, $\eta_{u j}$ is a nuisance parameter, and $\psi_{u j}$ is a known moment function

- Let $\left(W_{i}\right)_{i=1}^{n}$ be a random sample from the distribution of W
- Here both p and the dimension of $\eta_{u j}$ can be larger than n; in fact, $\eta_{u j}$ can be a function
- Let $\widehat{\eta}_{u j}$ be an ML-type estimator of $\eta_{u j}$ (in the logistic regression example, we assume that $\hat{\eta}_{u j}$ is either a Lasso-type or Post-Lasso-type estimator of $\eta_{u j}$)
- Define a Z-estimator of $\theta_{u j}$:

$$
\widehat{\theta}_{u j}=\arg \min _{\theta \in \Theta_{u j}}\left|\frac{1}{n} \sum_{i=1}^{n} \psi_{u j}\left(W_{i}, \theta, \widehat{\eta}_{u j}\right)\right|,
$$

where $\Theta_{u j}$ is a set where $\theta_{u j}$ is known to belong to

Neyman Orthogonality Condition

We assume that the moment functions $\psi_{u j}$ satisfy the following Neyman orthogonality condition: for all $u \in \mathcal{U}, j=1, \ldots, p$, and $\eta \in \mathcal{T}_{u j}$, the Gateaux derivative map with respect to the nuisance parameter vanishes:

$$
\left.\partial_{r} \mathrm{E} \psi_{u j}\left\{W, \theta_{u j}, \eta_{u j}+r\left(\eta-\eta_{u j}\right)\right\}\right|_{r=0}=0
$$

where $\mathcal{T}_{u j}$ is a set such that $\widehat{\eta}_{u j} \in \mathcal{T}_{u j}$ with probability approaching one uniformly over $u \in \mathcal{U}$ and $j=1, \ldots, p$

Neyman orthogonality condition: Heuristically, small deviations in nuisance parameters $\eta_{u j}$ do not invalidate moment conditions.

Constructing Orthogonal Moment Conditions for Likelihood Models, I

In the likelihood models, we can generally construct moment functions satisfying the orthogonality condition building upon classic ideas of Neyman $(1958,1979)$

Suppose log-likelihood function is given by $\ell(W, \theta, \beta)$ where

- θ is a scalar parameter of interest
- β is a d-dimensional nuisance parameter

Under regularity, true parameter values, θ_{0} and β_{0}, satisfy

$$
\mathrm{E}\left[\partial_{\theta} \ell\left(W, \theta_{0}, \beta_{0}\right)\right]=0, \quad \mathrm{E}\left[\partial_{\beta} \ell\left(W, \theta_{0}, \beta_{0}\right)\right]=0
$$

However, the original moment function $\varphi(W, \theta, \beta)=\partial_{\theta} \ell(W, \theta, \beta)$ in general does not satisfy the orthogonality condition

Constructing Orthogonal Moment Conditions for Likelihood Models, II

We, therefore, construct new moment function satisfying the orthogonality condition:

$$
\psi(W, \theta, \eta)=\partial_{\theta} \ell(W, \theta, \beta)-\mu \partial_{\beta} \ell(W, \theta, \beta)
$$

- Nuisance parameter: $\eta=\left(\beta^{\prime}, \mu^{\prime}\right)^{\prime}$
- μ is the d-dimensional orthogonalization parameter
- True value μ_{0} of the parameter μ is given by $\mu_{0}=J_{\beta \beta}^{-1} J_{\beta \theta}$ for

$$
J=\left(\begin{array}{ll}
J_{\theta \theta} & J_{\theta \beta} \\
J_{\beta \theta} & J_{\beta \beta}
\end{array}\right)=\left.\partial_{\left(\theta^{\prime}, \beta^{\prime}\right)} \mathrm{E}\left[\partial_{\left(\theta^{\prime}, \beta^{\prime}\right)^{\prime}} \ell(W, \theta, \beta)\right]\right|_{\theta=\theta_{0} ; \beta=\beta_{0}}
$$

- Then $\mathrm{E}\left[\psi\left(W, \theta_{0}, \eta_{0}\right)\right]=0$ for $\eta_{0}=\left(\beta_{0}^{\prime}, \mu_{0}^{\prime}\right)^{\prime}$ (provided μ_{0} is well-defined)
- And ψ obeys the orthogonality condition: $\left.\partial_{\eta} \mathrm{E}\left[\psi\left(W, \theta_{0}, \eta\right)\right]\right|_{\eta=\eta_{0}}=0$ This construction can be used to derive the moment functions $\psi_{u j}$ satisfying the orthogonality condition in the logistic regression example with the log-likelihood function

$$
\ell\left(X, Y_{u}, \theta_{u}\right)=Y_{u} \log \Lambda\left(X^{\prime} \theta_{u}\right)+\left(1-Y_{u}\right) \log \left(1-\Lambda\left(X^{\prime} \theta_{u}\right)\right)
$$

using $\theta_{u j}$ as a parameter of interest and $\eta=\left(\mu, \theta_{u,-j}\right)$ as the nuisance

Asymptotic Normality for Many Z-estimators

Theorem (Asymptotic normality)
Under certain regularity conditions, the estimators $\widehat{\theta}_{u j}$ satisfy

$$
\frac{\sqrt{n}\left(\widehat{\theta}_{u j}-\theta_{u j}\right)}{\sigma_{u j}}=G_{n} \bar{\psi}_{u j}+o_{P}(1) \quad \text { uniformly over } u \in \mathcal{U} \text { and } j=1, \ldots, p
$$

where

$$
\sigma_{u j}^{2}=\frac{\mathrm{E}\left[\psi_{u j}^{2}\left(W, \theta_{u j}, \eta_{u j}\right)\right]}{J_{u j}^{2}}, \quad J_{u j}=\left.\partial_{\theta}\left\{\mathrm{E}\left[\psi_{u j}\left(W, \theta, \eta_{u j}\right)\right]\right\}\right|_{\theta=\theta_{u j}}
$$

and

$$
\bar{\psi}_{u j}(W)=-\frac{\psi_{u j}\left(W, \theta_{u j}, \eta_{u j}\right)}{\sigma_{u j} J_{u j}}
$$

As a consequence, under further regularity conditions,
$\sup _{t \in \mathbb{R}}\left|\mathrm{P}\left(\sup _{u \in \mathcal{U}, 1 \leq j \leq p}\left|\frac{\sqrt{n}\left(\widehat{\theta}_{u j}-\theta_{u j}\right)}{\sigma_{u j}}\right| \leq t\right)-\mathrm{P}\left(\sup _{u \in \mathcal{U}, 1 \leq j \leq p}\left|\mathcal{N}_{u j}\right| \leq t\right)\right|=o(1)$,
where $\left\{\mathcal{N}_{u j}: u \in \mathcal{U}, j=1, \ldots, p\right\}$ is a certain Gaussian process.

Simultaneous Confidence Bands via Bootstrap

The theorem above can be used to construct simultaneous confidence bands for the parameters $\theta_{u j}$:
(1) For each $u \in \mathcal{U}$ and $j=1, \ldots, p$, let $\widehat{\sigma}_{u j}$ and $\widehat{J}_{u j}$ be estimators of $\sigma_{u j}$ and $J_{u j}$, respectively
(2) For each $u \in \mathcal{U}$ and $j=1, \ldots, p$, let

$$
\widehat{\psi}_{u j}(\cdot)=-\frac{\psi_{u j}\left(\cdot, \widehat{\theta}_{u j}, \widehat{\eta}_{u j}\right)}{\widehat{\sigma}_{u j} \widehat{J}_{u j}}
$$

be an estimator of $\bar{\psi}_{u j}(\cdot)$
(3) Let $\left(\xi_{i}\right)_{i=1}^{n}$ be a random sample from the $N(0,1)$ distribution that is independent of the data $\left(W_{i}\right)_{i=1}^{n}$
(4) For $\alpha \in(0,1)$, let c_{α} be the $(1-\alpha)$ quantile of the conditional distribution of

$$
T=\sup _{u \in \mathcal{U}, 1 \leq j \leq p}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \xi_{i} \widehat{\psi}_{u j}\left(W_{i}\right)\right| \quad \text { given the data }\left(W_{i}\right)_{i=1}^{n}
$$

(5) Define the simultaneous confidence bands:

$$
\widehat{\Theta}_{u j}=\left(\widehat{\theta}_{u j}-\frac{c_{\alpha} \widehat{\sigma}_{u j}}{\sqrt{n}}, \widehat{\theta}_{u j}+\frac{c_{\alpha} \widehat{\sigma}_{u j}}{\sqrt{n}}\right), \quad u \in \mathcal{U}, j=1, \ldots, p
$$

Bootstrap Validity

Theorem
Under certain regularity conditions, the simultaneous confidence bands $\widehat{\Theta}_{u j}$ satisfy

$$
\mathrm{P}\left(\theta_{u j} \in \widehat{\Theta}_{u j} \text { for all } u \in \mathcal{U}, j=1, \ldots, p\right)=1-\alpha+o(1) .
$$

In fact, the result holds uniformly over a large class of data-generating processes.

Conclusion

Thank you!

