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Introduction

Let X1, . . . ,Xn be a sequence of centered independent random
vectors in Rp, with each Xi having coordinates denoted by Xij ; that is,

Xi = (Xij )
p
j=1.

Define the normalized sum:

SX
n := (SX

nj )
p
j=1 :=

1√
n

n

∑
i=1

Xi . (1)

Let Y1, . . . ,Yn be independent Gaussian random vectors in Rp:

Yi ∼ N(0,E[XiX ′i ]).

Define the Gaussian analog of SX
n as:

SY
n := (SY

nj )
p
j=1 :=

1√
n

n

∑
i=1

Yi . (2)



Introduction

Define the Kolmorogorov distance between SX
n and SY

n :

ρn := sup
A∈A

∣∣∣P(SX
n ∈ A)− P(SY

n ∈ A)
∣∣∣

where A is some class of sets

Question: how fast can p = pn grow as n→ ∞ under the restriction
that ρn → 0?

Bentkus (2003): for i.i.d. Xi , if A is the class of all convex sets, then

ρn = O

(
p1/4E[‖X‖3

2]√
n

)

Typically E[‖X‖3
2] = O(p3/2), so

ρn → 0 if p = o(n2/7)

Nagaev (1976): this result is nearly optimal, ρn & E[‖X‖3
2]/
√

n



Introduction

However, in modern statistics, often p � n
high dimensional regression models
multiple hypothesis testing problems

Question: can we find a non-trivial class of sets A such that

p = pn � n but ρn → 0

Our first main result(s):

Subject to some conditions, if A is the class of all rectangles (or
sparsely convex sets), then

ρn → 0 if log p = o(n1/7)



Simulation Example

The example is motivated by the problem of removing the
Gaussianity assumption in Dantzig/Lasso estimators of (very)
high-dimensional sparse regression models. Let

SX
n =

1√
n

n

∑
i=1

Xi , Xij = zij ε i , ε i i.i.d. t(5)/c

zij ’s are fixed bounded "regressors", |zij | ≤ B, drawn from U(0,1)
distribution once, and

SY
n =

1√
n

n

∑
i=1

Yi , Yij = zijei , ei i.i.d. N(0,1),

so that E[YiY ′i ] = E[XiX ′i ]. Compare

P
(
‖SX

n ‖∞ ≤ t
)

and P
(
‖SY

n ‖∞ ≤ t
)
.

(i.e. ρn for A = cubes in Rp)



Simulation Example
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Figure: P-P plots comparing P
(
‖SY

n ‖∞ ≤ t
)

and P
(
‖SX

n ‖∞ ≤ t
)

. The
dashed line is the 45◦ line.



Introduction – Bootstrap

Generally, P(SY
n ∈ A) is unknown since don’t know covariance matrix

1
n ∑n

i=1 E[XiX ′i ]. So the second result, is that under similar conditions

ρ∗n = sup
A∈A

∣∣∣P(SX∗
n ∈ A | {Xi}n

i=1)− P(SY
n ∈ A)

∣∣∣→P 0

We prove this result for the Gaussian Bootstrap (multiplier method
with Gaussian multipliers):

SX∗
n :=

1√
n

n

∑
i=1

(Xi − X̄ )ei , X̄ =
1
n

n

∑
i=1

Xi , (3)

where (ei )
n
i=1 are i.i.d. N(0,1) multipliers; and the Empirical

Bootstrap:

SX∗
n :=

1√
n

n

∑
i=1

(Xi − X̄ )mi,n, X̄ =
1
n

n

∑
i=1

Xi , (4)

where (mi,n)
n
i=1 is n-dimensional multinomial variate based on n trials

with success probabilities 1/n, . . . ,1/n.



Conditions

Let b > 0 and q ≥ 4 be constants, and (Bn)∞
n=1 be a sequence of

positive constants, possibly growing to ∞.

Consider the following conditions:

(M.1) n−1 ∑n
i=1 E[X 2

ij ] ≥ b for all j = 1, . . . ,p,

(M.2) n−1 ∑n
i=1 E[|Xij |2+k ] ≤ Bk

n for all j = 1, . . . ,p and k = 1,2.

and one of the following:

(E.1) E[exp(|Xij |/Bn)] ≤ 2 for all i = 1, . . . ,n and j = 1, . . . ,p,

(E.2) E[(max1≤j≤p |Xij |/Bn)q ] ≤ 2 for all i = 1, . . . ,n,

Let A = Ar be a the class of all rectangles:

A =
{

z = (z1, . . . , zp)
′ ∈ Rp : zj ∈ [aj ,bj ] for all j = 1, . . . ,p

}
for some −∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . ,p.



Formal Results, I

Theorem (Central Limit Theorem)
Recall that

ρn := sup
A∈Ar

∣∣∣P(SX
n ∈ A)− P(SY

n ∈ A)
∣∣∣

Assume (M.1-2), then under (E.1)

ρn ≤ C

(
B2

n log7(pn)
n

)1/6

(5)

where the constant C depends only on b, and under (E.2)

ρn ≤ C

(B2
n log7(pn)

n

)1/6

+

(
B2

n log3 p
n1−2/q

)1/3
 (6)

where the constant C depends only on b and q.

Remark: Bentkus (1985) provides an example, with (Xij ,1 ≤ j ≤ p) ⊂ F , where F is
P-Donsker, such that ρn & (1/n)1/6 .



Formal Results, II

Theorem (Gaussian and Empirical Bootstrap Theorem)

Define

ρ∗n := sup
A∈Ar

∣∣∣P(SX∗
n ∈ A | {Xi}n

i=1)− P(SY
n ∈ A)

∣∣∣ .
Assume (M.1-2), then under (E.1), with probability at least 1− α,

ρ∗n ≤ C

(
B2

n log5(pn) log2(1/α)

n

)1/6

, (7)

where the constant C depends only on b, and under (E.2), with
probability at least 1− α,

ρ∗n ≤ C

(B2
n log5(pn) log2(1/α)

n

)1/6

+

(
B2

n log3 p
α2/qn1−2/q

)1/3
 (8)

where the constant C depends only on b and q.



Some ingredients behind the proofs, I
Focus on max rectangles for simplicity:

A =

{
z = (z1, . . . , zp)

′ ∈ Rp : max
1≤j≤p

zj ≤ s
}
, s ∈ R

Slepian’s interpolation:

Define
Z (t) :=

√
tSX

n +
√

1− tSY
n , t ∈ [0,1]

Then

P(SX
n ∈ A)− P(SY

n ∈ A) = E[1(Z (1) ∈ A)]− E[1(Z (0) ∈ A)]

Smoothing:

Approximate the indicator map

z 7→ 1(z ∈ A) = 1
(

max
1≤j≤p

zj ≤ s
)

by some smooth map
z 7→ m(z)

by smoothing the interval indicator y 7→ 1(y ≤ s) and smoothing the
max operator z 7→ max1≤j≤p zj .



Some ingredients behind the proofs, II

Calculations:

E[1(Z (1) ∈ A)]− E[1(Z (0) ∈ A)]
(1)
≈ E[m(Z (1))]− E[m(Z (0))]

=
∫ 1

0
E
[

dm(Z (t))
dt

]
dt

(2)
≈ 0

by proving the (1) first and that

E
[

dm(Z (t))
dt

]
≈ 0

Approximation of max operator by a logistic potential:∣∣∣∣∣ max
1≤j≤p

zj − β−1 log

(
p

∑
j=1

exp(βzj )

)∣∣∣∣∣ ≤ log p
β



Some ingredients behind the proofs, III

Anti-concentration of suprema of Gaussian processes: (needed to show
negligibility of errors due to smoothing the indicator function)

sup
t∈R

P
(

t ≤ max
1≤j≤p

SY
n,j ≤ t + ε

)
≤ 4ε

(
E
[

max
1≤j≤p

SY
n,j

]
+ 1

)
. ε

√
log p,

stated for the case when E[(SY
n,j )

2] = 1 for each j . This is opposite of
the (super)-concentration.
Ref: CCK, PTRF.

Stein’s leave-one-out method (needed to simplify computations of
expectations)
(stability property of third-order derivatives of the logistic potential over
certain subsets of Rp play a crucial role)



Some ingredients behind the proofs, IV

Double Slepian Interpolation: to improve the dependence of
bounds on n (Inspired by Bolthausen’s (1984) arguments for
combinatorial CLTs)



Details on Double Slepian Interpolation

By using single Slepian interpolant

Z (t) :=
√

tSX
n +
√

1− tSY
n , t ∈ [0,1]

the argument gives

ρn ≤ ρ′n := sup
t∈[0,1],A∈Ar

|P(Z (t) ∈ A)− P(Z (0) ∈ A)| ≤ n−1/8 ×C(n,p).

Define the double Slepian interpolation

D(v , t) :=
√

vZ (t) +
√

1− vSW
n , v ∈ [0,1], t ∈ [0,1]

where SW
n is an independent copy of SY

n .

By doing double interpolation and using other ingredients mentioned
above, obtain

ρ′n ≤
1
2

ρ′n + n−1/6 ×C(n,p)′ =⇒ result



Connections to Literature

Classical CLTs under expanding dimension:
Senatov (1980), Asriev and Rotar (1985), Portnoy (1986), Götze
(1991), Bentkus (2003), L.H.Y. Chen and Roellin (2011), and
others

Bootstrap and Multiplier methods:
Gine and Zinn (1990), Koltchinskii (1981), Pollard (1982)

Stein’s Method and other modern invariance principles
Chatterjee (2005), Roellin (2011).

Spin glasses
Panchenko (2013), Talagrand (2003), and others.



Further Results

(CCK, Ann. Stat. 2014a). The results presented extend to
suprema of empirical processes:

sup
t∈R

∣∣∣∣∣P
(

sup
f∈Fn

Gn(f ) ≤ t

)
− P

(
sup
f∈Fn

GP(f ) ≤ t

)∣∣∣∣∣→ 0

provided the complexity of Fn does not grow too quickly.
The approximations are more generally applicable than
Hungarian couplings (e.g. Rio), and competitive when both apply.
There is also an analogous result for Gaussian and Empirical
bootstrap.



Results do extend beyond rectangles

Definition (Sparsely convex sets)

For integer s > 0, we say that A ⊂ Rp is an s-sparsely convex set if
there exist an integer Q ≤ pC and convex sets Aq ⊂ Rp,
q = 1, . . . ,Q, such that

A = ∩Q
q=1Aq

and the indicator function of each Aq ,

w 7→ 1{w ∈ Aq},

depends at most on s components of its argument w = (w1, . . . ,wp)



Examples of Sparsely Convex Sets

Example 1: Rectangle (1-sparse) – intersection of 1-d shells

A = {z ∈ Rp : zj ∈ [aj ,bj ] for all j = 1, . . . ,p}

for some −∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . ,p

Example 2: Sparse Polytope (s-sparse) — intersection of
sparsely defined hyperplanes.

A = {z ∈ Rp : v ′j z ≤ aj , for all j = 1, . . . ,m}

for some aj ∈ R such that vj ∈ Sp−1 with ‖vj‖0 ≤ s, j = 1, . . . ,m

Example 3: Sparse convex body (s-sparse) — generated by the
intersection of cylinders with s-dimensional base:

A = {z ∈ Rp : ‖(zj )j∈Jk ‖
2
2 ≤ ak : k = 1, ...,m},

for some ak > 0 and Jk being a subset of {1, . . . ,p} of fixed
cardinality s, k = 1, . . . ,m



Conditions

Let b > 0 and q ≥ 4 be constants, and (Bn)∞
n=1 be a sequence of

positive constants, possibly growing to ∞.

Consider the following conditions:

(M.1′) n−1 ∑n
i=1 E[(v ′Xi )

2] ≥ b for all v ∈ Sp−1 with ‖v‖0 ≤ s,

(M.2 ) n−1 ∑n
i=1 E[|Xij |2+k ] ≤ Bk

n for all j = 1, . . . ,p and k = 1,2.

(E.1 ) E[exp(|Xij |/Bn)] ≤ 2 for all i = 1, . . . ,n and j = 1, . . . ,p,

(E.2 ) E[(max1≤j≤p |Xij |/Bn)q ] ≤ 2 for all i = 1, . . . ,n,



Formal Results, III

Theorem (CLT for Sparsely Convex Sets)
For As denoting the class of all s-sparsely convex sets, let

ρn := sup
A∈As

∣∣∣P(SX
n ∈ A)− P(SY

n ∈ A)
∣∣∣

Assume (M.1’) and (M.2), then under (E.1)

ρn ≤ C

(
B2

n log7(pn)
n

)1/6

(9)

where the constant C depends only on b and s, and under (E.2)

ρn ≤ C

(B2
n log7(pn)

n

)1/6

+

(
B2

n log3 p
n1−2/q

)1/3
 (10)

where the constant C depends only on b, q, and s.



Formal Results, IV

Theorem (Gaussian Bootstrap Theorem)

Define

ρ∗n := sup
A∈As

∣∣∣P(SX∗
n ∈ A | {Xi}n

i=1)− P(SY
n ∈ A)

∣∣∣ .
Assume (M.1-2), then under (E.1), with probability at least 1− α,

ρ∗n ≤ C

(
B2

n log5(pn) log2(1/α)

n

)1/6

, (11)

where the constant C depends only on b and s, and under (E.2), with
probability at least 1− α,

ρ∗n ≤ C

(B2
n log5(pn) log2(1/α)

n

)1/6

+

(
B2

n log3 p
α2/qn1−2/q

)1/3
 (12)

where the constant C depends only on b, q, and s.



Applications to Confidence Bands

In [3], we used the results to give confidence bands for a large
collection of approximately linear estimators in high-dimensional
(approximately) sparse linear median regression and
Z-estimation problems

In [4], we used the results to give confidence bands for a large
collection of approximately linear function-valued estimators in
high-dimensional (approximately) sparse functional regression
and Z-estimation problems

As explained in [3-4], approximately linear estimators gan be
generated by solving Neyman-orthogonal estimating equations.



Example: High-Dimensional Logistic Regression

Suppose that we are interested in studying the dependence of a
random variable Y on a p-dimensional vector of covariates,
X = (X1, . . . ,Xp)′, where p is large

One approach to study this dependence is the following:

For u ∈ U , define
Yu = 1

{
Y ≤ u

}
For each u ∈ U , consider the logistic regression:

E[Yu | X ] = Λ(X ′θu) + ru(X ),

where Λ(·) is the logistic link function;
The map

u 7→ θu = (θu1, . . . , θup)
′

is a function-valued parameter of interest, and ru(X ) is an
asymptotically vanishing approximation error (pretend that
ru(X ) ≡ 0)



General Moment Conditions Setup and Z-estimators
For each u ∈ U and j = 1, . . . ,p:

Assume that the parameter θuj satisfies the following moment
condition:

E[ψuj (W , θuj , ηuj )] = 0,

where W is a random vector, ηuj is a nuisance parameter, and
ψuj is a known moment function
Let (Wi )

n
i=1 be a random sample from the distribution of W

Here both p and the dimension of ηuj can be larger than n; in
fact, ηuj can be a function
Let η̂uj be an ML-type estimator of ηuj (in the logistic regression
example, we assume that η̂uj is either a Lasso-type or
Post-Lasso-type estimator of ηuj )
Define a Z-estimator of θuj :

θ̂uj = arg min
θ∈Θuj

∣∣∣∣∣1n n

∑
i=1

ψuj (Wi , θ, η̂uj )

∣∣∣∣∣ ,
where Θuj is a set where θuj is known to belong to



Neyman Orthogonality Condition

We assume that the moment functions ψuj satisfy the following
Neyman orthogonality condition: for all u ∈ U , j = 1, . . . ,p, and
η ∈ Tuj , the Gateaux derivative map with respect to the nuisance
parameter vanishes:

∂r Eψuj{W , θuj , ηuj + r (η − ηuj )}
∣∣∣
r=0

= 0

where Tuj is a set such that η̂uj ∈ Tuj with probability approaching one
uniformly over u ∈ U and j = 1, . . . ,p

Neyman orthogonality condition: Heuristically, small deviations in
nuisance parameters ηuj do not invalidate moment conditions.



Constructing Orthogonal Moment Conditions for
Likelihood Models, I

In the likelihood models, we can generally construct moment
functions satisfying the orthogonality condition building upon classic
ideas of Neyman (1958, 1979)

Suppose log-likelihood function is given by `(W , θ, β) where
θ is a scalar parameter of interest
β is a d-dimensional nuisance parameter

Under regularity, true parameter values, θ0 and β0, satisfy

E[∂θ`(W , θ0, β0)] = 0, E[∂β`(W , θ0, β0)] = 0

However, the original moment function ϕ(W , θ, β) = ∂θ`(W , θ, β) in
general does not satisfy the orthogonality condition



Constructing Orthogonal Moment Conditions for
Likelihood Models, II

We, therefore, construct new moment function satisfying the orthogonality
condition:

ψ(W , θ, η) = ∂θ`(W , θ, β)− µ∂β`(W , θ, β),

Nuisance parameter: η = (β′, µ′)′

µ is the d-dimensional orthogonalization parameter
True value µ0 of the parameter µ is given by µ0 = J−1

ββ Jβθ for

J =

(
Jθθ Jθβ

Jβθ Jββ

)
= ∂(θ′,β′)E

[
∂(θ′,β′)′ `(W , θ, β)

]∣∣∣
θ=θ0; β=β0

Then E[ψ(W , θ0, η0)] = 0 for η0 = (β′0, µ′0)
′ (provided µ0 is well-defined)

And ψ obeys the orthogonality condition: ∂ηE[ψ(W , θ0, η)]
∣∣∣
η=η0

= 0

This construction can be used to derive the moment functions ψuj satisfying
the orthogonality condition in the logistic regression example with the
log-likelihood function

`(X ,Yu , θu) = Yu log Λ(X ′θu) + (1− Yu) log(1−Λ(X ′θu))

using θuj as a parameter of interest and η = (µ, θu,−j ) as the nuisance
parameter



Asymptotic Normality for Many Z-estimators

Theorem (Asymptotic normality)
Under certain regularity conditions, the estimators θ̂uj satisfy

√
n(θ̂uj − θuj )

σuj
= Gnψ̄uj + oP (1) uniformly over u ∈ U and j = 1, . . . ,p,

where

σ2
uj =

E[ψ2
uj (W , θuj , ηuj )]

J2
uj

, Juj = ∂θ

{
E[ψuj (W , θ, ηuj )]

}∣∣∣
θ=θuj

,

and

ψ̄uj (W ) = −
ψuj (W , θuj , ηuj )

σujJuj
.

As a consequence, under further regularity conditions,

sup
t∈R

∣∣∣∣∣P
(

sup
u∈U ,1≤j≤p

∣∣∣∣∣
√

n(θ̂uj − θuj )

σuj

∣∣∣∣∣ ≤ t

)
− P

(
sup

u∈U ,1≤j≤p
|Nuj | ≤ t

)∣∣∣∣∣ = o(1),

where {Nuj : u ∈ U , j = 1, . . . ,p} is a certain Gaussian process.



Simultaneous Confidence Bands via Bootstrap
The theorem above can be used to construct simultaneous confidence bands
for the parameters θuj :

1 For each u ∈ U and j = 1, . . . ,p, let σ̂uj and Ĵuj be estimators of σuj and
Juj , respectively

2 For each u ∈ U and j = 1, . . . ,p, let

ψ̂uj (·) = −
ψuj (·, θ̂uj , η̂uj )

σ̂uj Ĵuj

be an estimator of ψ̄uj (·)
3 Let (ξi )

n
i=1 be a random sample from the N(0,1) distribution that is

independent of the data (Wi )
n
i=1

4 For α ∈ (0,1), let cα be the (1− α) quantile of the conditional
distribution of

T = sup
u∈U ,1≤j≤p

∣∣∣∣∣ 1√
n

n

∑
i=1

ξi ψ̂uj (Wi )

∣∣∣∣∣ given the data (Wi )
n
i=1

5 Define the simultaneous confidence bands:

Θ̂uj =

(
θ̂uj −

cασ̂uj√
n

, θ̂uj +
cασ̂uj√

n

)
, u ∈ U , j = 1, . . . ,p



Bootstrap Validity

Theorem
Under certain regularity conditions, the simultaneous confidence bands Θ̂uj
satisfy

P
(

θuj ∈ Θ̂uj for all u ∈ U , j = 1, . . . ,p
)
= 1− α + o(1).

In fact, the result holds uniformly over a large class of data-generating
processes.



Conclusion

Thank you!


