The implied market price of weather risk

Wolfgang Karl Härdle Brenda López Cabrera

Institute for Statistics and Econometrics CASE - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin http://ise.wiwi.hu-berlin.de

Weather

- ☑ Influences our daily lives and choices
- Impact on corporate revenues and earnings
- Metereological institutions: business activity is weather dependent
 - British Met Office: daily beer consumption increases by 10% if temperature decreases by 3°C
 - If temperature in Chicago is less than 0°C: consumption orange juice declines 10% in average

Examples

- Natural gas company suffers negative impact in mild winter
- □ Construction companies buy WD (rain period)
- ⊡ Cloth retailers sell fewer clothes in hot summer
- ⊡ Salmon fishery suffer losses by increase of sea temperatures
- □ Ice cream producers (cold summers)
- Disney World (rain period)

3

What are Weather derivatives (WD)?

Hedge weather related risk exposures:

- □ Payments based on weather-related measurements
- ⊡ Underlying: temperature, rainfall, wind, snow, frost

Chicago Mercantile Exchange (CME):

- Monthly/seasonal/weekly temperature Future/Option contracts
- 24 US, 6 Canadian, 9 European and 2 Asian-Pacific cities (Tokyo & Osaka)
- From 2.2 billion USD in 2004 to 22 billion USD through September 2005

5

Figure 1: CME offers weather contracts on 42 cities throughout the world

Weather Derivative

Towner Really MOR	ITH HED Apr09C ladex • 01	Deport • Related Functions	Favores V Terminal V He			
KHELP> for ex	planation, <menu> f</menu>	or similar functions.	Index OTD			
Print Failed: r	Print Failed: rc1=-2 rc2=-1 err1=1223 err2=6					
Option Ticker Description Page 2/						
Sanp	le Option	Underlying Se	curity Strik			
Ticker J8J8C	240 <index></index>	Ticker J8J8 (I	NDEX>			
Name Call	on 1818	Nane Call on J	8J8 215			
Price .0	1010 5 1	Price 240.0	221 225			
Contract on 1	J8J8 Future	Contract Size 20 BP	x 1ndex 20			
First Trade	\$.00 Thu May 2 2007	Circt Delivery 54	,800.00 200 Mau 2 2000			
Last Trade	Fri May 3, 2007	Lact Trada Eri	May 2, 2000			
Edst Trade	FII nay 2, 2006	Last Dalivary Fri	May 2, 2006 20			
Expression Type	CHDODEAN		nay 2, 2000 20			
Exercise Type EUKUPEAN						
Exchange Data	Evchange Data (CNE) Chicago Marcantile Evchange					
Chicoso OPTION 17	Chicage OPTION 17:00-15:15 Analysis					
Chicogo FUTURE 17	:00-15:15		Righanizal West Little			
NAME AND TRACK	Option	Future	30 Day HVT 0.0			
Value of 1 pt	\$ 20	\$ 20	60 Day HVT 0.0			
Tick Size			90 Day HVT 0.0			
Tick Value	\$ 20	\$ 20				
			Implied n.a.			
Related Functions			Delta n.a.			
1)OMON Option Bid/s	isk Monitor 2) <mark>HIVG</mark> Inplied	Vol Graph 3)GIP Introday Price	overt Ganna n.a.			
4)GPO Delly Ban Chart 5)OV Option Valuation						
BLAW Read about major IRS changes that impact the health care industry. HLLR <go></go>						
Rat WHUS						

Figure 2: A WD table quoting prices of May 2008 contracts. Source: Bloomberg

The implied market price of weather risk -

6

Weather vs. Human Capital

Investor WH organized a workshop on the 24-28 July 2006. He had a budget of £3000 for conference expenses. He estimated that for each °C in excess of the 150°C cumulative average temperature for that week, he incurs £15 in additional costs of human capital, including water costs.

What can he do to make his plans work well?

Figure 3: Sleeping audience due to extrem hot weather The implied market price of weather risk

Temperature futures price

Temperature is not a tradable asset, no replication of any temperature futures: incompleteness.

An equivalent measure $Q = Q_{\theta_t}$ is pinned down to compute the arbitrage free price of a temperature future:

$$\mathcal{F}_{(t,\tau_1,\tau_2)} = \mathsf{E}^{Q_{\theta_t}}\left[Y|\mathcal{F}_t\right] \tag{1}$$

where Y is the payoff from the temperature index and θ_t denotes the time dependent market price of risk (MPR)

By the Girsanov theorem $B_t^{\theta} = B_t - \int_0^t \theta_u du$ is a Brownian motion for $t \leq \tau_{\max}$,

Black-Scholes Model:

 $\boxdot \ \theta_t = (\mu - r)/\sigma, \text{ with the expected growth rate } \mu, \text{ volatility } \sigma \text{ and the risk free interest rate } r$

Benth et al.(2007):

 \boxdot θ_t a real valued, bounded and piecewise continous function

9

CME WD data

The accumulated average temperature (CAT) over $[\tau_1, \tau_2]$ days is defined as $Y = \int_{\tau_1}^{\tau_2} T_u du$, where T_t is the average temperature on day t:

Figure 4: Berlin CAT Future Prices traded at the CME: 20031003 - 20080521. Months traded: Apr, May, Jun, Jul, Aug, Sept, Oct The implied market price of weather risk

10

Implied Market Price of Risk θ_t

CME - WD data (Bloomberg): 20031003 - 20070521

Trading-Period			Measurement-Period	
Code	First-trade	Last-trade	τ_1	τ_2
J7	20060503	20070502	20070401	20070430
K7	20060603	20070602	20070501	20070531
M7	20060705	20070702	20070601	20070630
N7	20060803	20070802	20070701	20070731
Q7	20060906	20070904	20070801	20070831
U7	20061003	20071002	20070901	20070930
V7	20061103	20071102	20071001	20071031

11

Table 1: Contracts listed at the CME. J8 stands for 2008.

Implied MPR

Explicit formula for CAT futures:

 $F_{CAT(t,\tau_1,\tau_2)} = g_1(\Lambda_t) + g_2(trend_t) + g_3(\theta_t)$ (2)

where Λ_t defines a seasonality function.

- ⊡ Benth et al.(2007): theoretical results, θ_t =0
 - Constant volatility: underestimate prices
- \Box Imply market price of risk θ_t from WD data:
 - 1. MPR θ constant or time dependent
 - 2. Price derivatives (future/options) and perfect replication
 - 3. Price non standard contract with "crazy maturities"

MPR Algorithm

Outline

- 1. Motivation \checkmark
- 2. Weather Dynamics: Berlin data
- 3. Stochastic Pricing Model
- 4. Implied Market price of risk

Berlin temperature

Seasonal function with trend: $\Lambda_t = a_0 + a_1 t + a_2 cos \left\{ \frac{2\pi(t-a_3)}{365} \right\}$

Figure 5: Seasonality effect (red line) and daily average temperatures 19480101-20080527. Source: Deutscher Wetterdienst. Seasonality estimates: $\hat{a}_0 = 8.43$, $\hat{a}_1 = 0.00$, $\hat{a}_2 = 9.79$, $\hat{a}_3 = -157.25$ with 95% confidence bounds, $R^2 : 0.7672$

Seasonality

Figure 6: Daily average temperature from Berlin 20000101-20080527

Temporal dependence

Remove seasonality: $X_t = T_t - \Lambda_t$

ADF-Test:

 $(1-L)X = c_1 + \mu t + \tau LX + \alpha_1(1-L)LX + \dots \alpha_p(1-L)L^pX + \varepsilon_t$

 $\boxdot~\hat{\tau}=-35.001,$ with 1% critical value equal to -2.5659

 \Box Reject H_0 ($\tau = 0$), hence X_t is a stationary process I(0)

KPSS Test: $X_t = c + \mu t + k \sum_{i=1}^{t} \xi_i + \varepsilon_t$,

• Accept H_0 : k = 0 at 10% significance level that the process is stationary. The test statistic for the constant is equal to 0.653 and for the trend equal to 0.139.

PACF

AR(3): $X_{t+3} = 0.91X_{t+2} - 0.20X_{t+1} + 0.07X_t + \sigma_t \varepsilon_t$

Figure 7: Partial autocorrelation function (PACF) for Xt 19480101-20080527

Figure 8: Residuals $\hat{\varepsilon}_t$ (up) and squared residuals $\hat{\varepsilon}_t^2$ (down) of the AR(3) during 19480101-20080527. No rejection of H_0 that the residuals are uncorrelated at 0% significance level, according to the modified Li-McLeod Portmanteau test

Seasonal volatility

Close to zero ACF for residuals and highly seasonal ACF for squared residuals of AR(3)

Figure 9: ACF for residuals $\hat{\varepsilon}_t$ (up) and squared residuals $\hat{\varepsilon}_t^2$ (down) of the AR(3) during 19480101-20080527

Calibration of daily variances of residuals AR(3) for 56 years:

$$\sigma_t^2 = c_1 + \sum_{i=1}^4 \left\{ c_{2i} \cos\left(\frac{2i\pi t}{365}\right) + c_{2i+1} \sin\left(\frac{2i\pi t}{365}\right) \right\}$$

Figure 10: Seasonal variance: daily empirical variance (blue line), fitted squared volatility function (red line) at 10% significance level. $\hat{c}_1 = 5.09$, $\hat{c}_2 = 0.64$, $\hat{c}_3 = 0.74$, $\hat{c}_4 = 0.95$, $\hat{c}_5 = -0.45$, $\hat{c}_6 = 0.44$, $\hat{c}_7 = 0.05$, $\hat{c}_8 = 0.81$, $\hat{c}_9 = 0.81$ The implied market price of weather risk

Weather Dynamics

Figure 11: ACF for Berlin temperature residuals $\hat{\varepsilon}_t$ (up) and squared residuals $\hat{\varepsilon}_t^2$ (down) after correcting for seasonal volatility

Residuals become normal

Skewness= -0.08, Kurtosis= 3.56, Jarques Bera statistics equal to 319.39, acceptance of H_0 : Normality, at 1% sig. level.

Figure 12: Left: Kernel smoothing density estimate (blue line) vs Normal Kernel (red line) for Berlin temperature residuals. Right: Log of Kernel smoothing density estimate (blue line) vs Log of Normal Kernel (gray line) for Berlin temperature residuals

Temperature dynamics

Temperature time series:

 $T_t = \Lambda_t + X_t$

with seasonal function Λ_t . X_t can be seen as a discretization of a continuous-time process AR(p) (CAR(p)).

This stochastic model allows CAR(p) futures/options pricing.

The implied market price of weather risk -

24

Stochastic Pricing

Ornstein-Uhlenbeck process $X_t \in \mathbb{R}^p$:

$$d\mathbf{X}_t = A\mathbf{X}_t dt + \mathbf{e}_{pt} \sigma_t dB_t$$

 \mathbf{e}_k : k'th unit vector in \mathbb{R}^p for k = 1, ...p, $\sigma_t > 0$, A: $p \times p$ -matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \dots & \dots & 0 & 1 \\ -\alpha_{p} & -\alpha_{p-1} & \dots & -\alpha_{1} \end{pmatrix}$$

Solution of $X_t = x \in \mathbb{R}^p$:

$$\mathbf{X}_{s} = \exp{\{A(s-t)\}\mathbf{x} + \int_{s}^{t} \exp{\{A(s-u)\}\mathbf{e}_{p}\sigma_{u}dB_{u}\}}$$

X_t can be written as a Continuous-time AR(p) (CAR(p)): For p = 1,

$$dX_{1t} = -\alpha_1 X_{1t} dt + \sigma_t dB_t$$

For p = 2,

$$\begin{array}{ll} X_{1(t+2)} &\approx & (2-\alpha_1)X_{1(t+1)} \\ &+ & (\alpha_1-\alpha_2-1)X_{1(t)}+\sigma_t(B_{t-1}-B_t) \end{array}$$

For p = 3,

$$\begin{array}{rcl} X_{1(t+3)} &\approx & (3-\alpha_1)X_{1(t+2)} + (2\alpha_1 - \alpha_2 - 3)X_{1(t+1)} \\ &+ & (-\alpha_1 + \alpha_2 - \alpha_3 + 1)X_{1(t)} + \sigma_t(B_{t-1} - B_t) \end{array}$$

For Berlin temperature, consider p = 3:

$$\Box \text{ AR(3): } X_{t+3} = 0.91X_{t+2} - 0.20X_{t+1} + 0.07X_t + \sigma_t \varepsilon_t$$

• CAR(3)-parameters:
$$\alpha_1 = 2.09, \alpha_2 = 1.38, \alpha_3 = 0.22$$

Stationarity condition for the CAR(3) is fulfilled: $\lambda_1 = -0.2069, \lambda_{2,3} = -0.9359 \pm 0.3116i$

Temperature futures price

 $\exists Q_{\theta}$ pricing so that:

$$F_{(t,\tau_1,\tau_2)} = \mathsf{E}^{Q_{\theta}}\left[Y|\mathcal{F}_t\right] \tag{3}$$

where Y equals the payoff and by Girsanov theorem:

$$B_t^{\theta} = B_t - \int_0^t \theta_u du$$

is a Brownian motion for $t \leq \tau_{max}$. θ_t : a real valued, bounded and piecewise continous function (market price of risk)

Temperature dynamics under Q_{θ}

Under Q_{θ} :

$$d\mathbf{X}_{t} = (A\mathbf{X}_{t} + \mathbf{e}_{p}\sigma_{t}\theta_{t})dt + \mathbf{e}_{p}\sigma_{t}dB_{t}^{\theta}$$
(4)

with explicit dynamics, for $s \ge t \ge 0$:

$$\mathbf{X}_{s} = \exp \{A(s-t)\}\mathbf{x} + \int_{t}^{s} \exp \{A(s-u)\}\mathbf{e}_{p}\sigma_{u}\theta_{u}du + \int_{t}^{s} \exp \{A(s-u)\}\mathbf{e}_{p}\sigma_{u}dB_{u}^{\theta}$$
(5)

Temperature Indices

Heating degree day (HDD): over a period $[\tau_1, \tau_2]$

$$\int_{\tau_1}^{\tau_2} \max(c - T_u, 0) du \tag{6}$$

Cooling degree day (CDD): over a period $[\tau_1, \tau_2]$

$$\int_{\tau_1}^{\tau_2} \max(T_u - c, 0) du$$
 (7)

c is the baseline temperature (typically 18° C or 65° F), T_u is the average temperature on day u.

Weather indices: temperature

Cumulative averages (CAT): The accumulated average temperature over $[\tau_1, \tau_2]$ days is:

$$\int_{\tau_1}^{\tau_2} T_u du \tag{8}$$

HDD-CDD parity:

 $CDD(\tau_1,\tau_2) - HDD(\tau_1,\tau_2) = CAT(\tau_1,\tau_2) - c(\tau_2 - \tau_1)$

□ Sufficient to analyse only CDD and CAT futures

CAT futures

For
$$0 \le t \le \tau_1 < \tau_2$$
:

$$F_{CAT(t,\tau_1,\tau_2)} = \mathbb{E}^{Q_{\theta}} \left[\int_{\tau_1}^{\tau_2} T_s ds | \mathcal{F}_t \right]$$

$$= \int_{\tau_1}^{\tau_2} \Lambda_u du + \mathbf{a}_{t,\tau_1,\tau_2} \mathbf{X}_t + \int_t^{\tau_1} \theta_u \sigma_u \mathbf{a}_{t,\tau_1,\tau_2} \mathbf{e}_p du$$

$$+ \int_{\tau_1}^{\tau_2} \theta_u \sigma_u \mathbf{e}_1^{\mathsf{T}} A^{-1} \left[\exp \left\{ A(\tau_2 - u) \right\} - I_p \right] \mathbf{e}_p du$$

with $\mathbf{a}_{t,\tau_1,\tau_2} = \mathbf{e}_1^\top A^{-1} [\exp \{A(\tau_2 - t)\} - \exp \{A(\tau_1 - t)\}]$, $l_p : p \times p$ identity matrix

Benth et al. (2007)

Samuelson Effect

For contracts traded within the measurement period: CAT volatility $\sigma_t \mathbf{a}_{t,\tau_1,\tau_2} \mathbf{e}_p$ is close to zero when the time to measurement is large. It decreases up to the end of the measurement period:

Figure 13: The Berlin CAT term structure of volatility from 2004-2008 (left side) and 2006 (right side) for contracts traded within the measurement period The implied market price of weather risk

Samuelson Effect

For contracts traded before the measurement period: CAT volatility $\sigma_t \mathbf{a}_{t,\tau_1,\tau_2} \mathbf{e}_p$ is close to zero when the time to measurement is large. It increases up to the start of the measurement period:

Figure 14: The Berlin CAT term structure of volatility from 2004-2008 (left side) and 2006 (right side) for contracts traded before the measurement period The implied market price of weather risk

Samuelson and Autoregressive effect

Figure 15: Berlin CAT volatility and AR(3) effect of 2 contracts issued on 20060517: one with whole June as measurement period (blue line) and the other one with only the 1st week of June (red line)

CAT call option

written on a CAT future with strike K at exercise time $\tau < \tau_1$ during the period $[\tau_1, \tau_2]$:

$$C_{CAT(t,\tau,\tau_{1},\tau_{2})} = \exp \{-r(\tau - t)\} \\ \times \left[\left(F_{CAT(t,\tau_{1},\tau_{2})} - K \right) \Phi \{ d(t,\tau,\tau_{1},\tau_{2}) \} \right. \\ + \left. \int_{t}^{\tau} \Sigma_{CAT(s,\tau_{1},\tau_{2})}^{2} ds \Phi \{ d(t,\tau,\tau_{1},\tau_{2}) \} \right]$$
(9)

where

$$d(t,\tau,\tau_1,\tau_2) = \frac{F_{CAT(t,\tau_1,\tau_2)} - K}{\sqrt{\int_t^{\tau} \sum_{CAT(s,\tau_1,\tau_2)}^2 ds}}$$
$$\Sigma_{CAT(s,\tau_1,\tau_2)} = \sigma_t \mathbf{a}_{t,\tau_1,\tau_2} \mathbf{e}_p$$

and Φ denotes the standard normal cdf.

The implied market price of weather risk -

36

Hedging strategy for CAT call option

Delta of the call option:

$$\Phi\left\{d\left(t,\tau,\tau_{1},\tau_{2}\right)\right\} = \frac{\partial C_{CAT\left(t,\tau,\tau_{1},\tau_{2}\right)}}{\partial F_{CAT\left(t,\tau_{1},\tau_{2}\right)}}$$
(10)

Hold: close to zero CAT futures when the option is far out of the money, otherwise close to 1.

CDD futures price

$$F_{CDD(t,\tau_1,\tau_2)} = \mathsf{E}^{Q_{\theta}} \left[\int_{\tau_1}^{\tau_2} \max(T_u - c, 0) du | \mathcal{F}_t \right]$$
$$= \int_{\tau_1}^{\tau_2} \upsilon_{t,s} \psi \left[\frac{m_{\{t,s,\mathbf{e}_1^\top \exp\{A(s-t)\}\mathbf{X}_t\}} - c}{\upsilon_{t,s}} \right] ds$$

where $m_{\{t,s,x\}} = \Lambda_s - c + \int_t^s \sigma_u \theta_u \mathbf{e}_1^\top \exp \{A(s-t)\} \mathbf{e}_p du + x$

$$v_{t,s}^2 = \int_t^s \sigma_u^2 \left[\mathbf{e}_1^\top \exp\left\{ A(s-t) \right\} \mathbf{e}_p \right]^2 du$$

and $\psi(x) = x\Phi(x) + \varphi(x)$ with $x = \mathbf{e}_1^\top \exp \{A(s-t)\} \mathbf{X}_t$

CDD call options

$$C_{CDD(t,T,\tau_{1},\tau_{2})} = \exp\left\{-r(\tau-t)\right\}$$

$$\times \mathsf{E}\left[\max\left(\int_{\tau_{1}}^{\tau_{2}} \upsilon_{\tau,s}\psi\left(\frac{m_{\mathsf{index}}-c}{\upsilon_{t,s}}\right)ds - K, 0\right)\right]_{\mathbf{x}=\mathbf{X}_{t}}^{(11)}$$

index =
$$\tau, s, \mathbf{e}_1^\top \exp \{A(s-t)\} \mathbf{x}$$

+ $\int_t^\tau \mathbf{e}_1^\top \exp \{A(s-u)\} \mathbf{e}_p \sigma_u \theta_u du + \Sigma_{s,t,\tau} Y$

 $Y \sim N(0,1), \ \Sigma_{s,t,\tau}^2 = \int_t^\tau \left[\mathbf{e}_1^\top \exp \left\{ A(s-u) \right\} \mathbf{e}_p \right]^2 \sigma_u^2 du$

Infering θ_t from CME - WD data

"Implied Market Price of risk" θ_t :

- 1. Price of temperature derivatives
- 2. Price of non-standard contract with "crazy maturities"

$$F_{CAT(t,\tau_1,\tau_2)} = \int_{\tau_1}^{\tau_2} \Lambda_u du + \mathbf{a}_{t,\tau_1,\tau_2} \mathbf{X}_t + \int_t^{\tau_1} \theta_u \sigma_u \mathbf{a}_{t,\tau_1,\tau_2} \mathbf{e}_p du + \int_{\tau_1}^{\tau_2} \theta_u \sigma_u \mathbf{e}_1^\top A^{-1} \left[\exp \left\{ A(\tau_2 - u) \right\} - I_p \right] \mathbf{e}_p du$$

 $\mathbf{a}_{t,\tau_1,\tau_2} = \mathbf{e}_1^\top A^{-1} \left[\exp \left\{ A(\tau_2 - t) \right\} - \exp \left\{ A(\tau_1 - t) \right\} \right]$

Constant MPR θ_t^i

 $\hat{\theta}_t^i = constant$ for each *i* contract, with i = 1, 2...7:

$$\begin{aligned} \underset{\hat{\theta}_{t}^{i}}{\operatorname{arg\,min}} & \left(- \mathcal{F}_{CAT(t,\tau_{1}^{i},\tau_{2}^{i})} - \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} \hat{\Lambda}_{u} du - \hat{\mathbf{a}}_{t,\tau_{1}^{i},\tau_{2}^{i}} hat \mathbf{X}_{t} \right. \\ & \left. - \left. \hat{\theta}_{t}^{i} \left\{ \int_{t}^{\tau_{1}^{i}} \hat{\sigma}_{u} \hat{\mathbf{a}}_{t,\tau_{1}^{i},\tau_{2}^{i}} \mathbf{e}_{\rho} du \right. \right. \\ & \left. + \left. \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} \hat{\sigma}_{u} \mathbf{e}_{1}^{\top} A^{-1} \left[\exp \left\{ A(\tau_{2}^{i} - u) \right\} - l_{\rho} \right] \mathbf{e}_{\rho} du \right\} \right)^{2} \end{aligned}$$

CAT Future Prices and MPR θ_t^i

Figure 16: Berlin CAT Future Prices and MPR $\hat{\theta}_t^i$. Reject $H_0 : E(\hat{\theta}) = 0$ under the Wald statistic: 0.087 with probability 0.2322

Constant MPR θ_t

With least squares (LS), constant θ_t for all contracts at time t:

$$\begin{aligned} \underset{\hat{\theta}_{t}}{\operatorname{arg\,min}} \Sigma_{i=1}^{7} & \left(-F_{CAT(t,\tau_{1}^{i},\tau_{2}^{i})} - \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} \hat{\Lambda}_{u} du - \hat{\mathbf{a}}_{t,\tau_{1}^{i},\tau_{2}^{i}} hat \mathbf{X}_{t} \right. \\ & - & \hat{\theta}_{t} \left\{ \int_{t}^{\tau_{1}^{i}} \hat{\sigma}_{u} \hat{\mathbf{a}}_{t,\tau_{1}^{i},\tau_{2}^{i}} \mathbf{e}_{p} du \right. \\ & + & \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} \hat{\sigma}_{u} \mathbf{e}_{1}^{\top} A^{-1} \left[\exp \left\{ A(\tau_{2}^{i} - u) \right\} \right. \\ & - & \left. l_{p} \right] \mathbf{e}_{p} du \left. \right\} \right)^{2} \end{aligned}$$

LS θ_t^1, θ_t^2 constant for all contracts *i* at time *t* Let $\hat{\theta}_t = I(u \le \xi) \hat{\theta}_t^1 + I(u > \xi) \hat{\theta}_t^2$, with break point ξ (take e.g. half of measurement period),

$$\begin{aligned} \underset{\hat{\theta}_{1}^{1}, \hat{\theta}_{2}^{2}}{\arg\min \Sigma_{i=1}^{7}} & \left(F_{CAT(t, \tau_{1}^{i}, \tau_{2}^{i})} - \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} \hat{\Lambda}_{u} du - \hat{\mathbf{a}}_{t, \tau_{1}^{i}, \tau_{2}^{i}} hat \mathbf{X}_{t} \right. \\ & - \left. \hat{\theta}_{t}^{1} \left\{ \int_{t}^{\tau_{1}^{i}} l\left(u \leq \xi \right) \hat{\sigma}_{u} \hat{\mathbf{a}}_{t, \tau_{1}^{i}, \tau_{2}^{i}} \mathbf{e}_{p} du \right. \\ & + \left. \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} l\left(u \leq \xi \right) \hat{\sigma}_{u} \mathbf{e}_{1}^{\top} A^{-1} \left[\exp \left\{ A(\tau_{2}^{i} - u) \right\} - l_{p} \right] \mathbf{e}_{p} du \right\} \\ & - \left. \hat{\theta}_{t}^{2} \left\{ \int_{t}^{\tau_{1}^{i}} l\left(u > \xi \right) \hat{\sigma}_{u} \hat{\mathbf{a}}_{t, \tau_{1}^{i}, \tau_{2}^{i}} \mathbf{e}_{p} du \right. \\ & + \left. \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} l\left(u > \xi \right) \hat{\sigma}_{u} \mathbf{e}_{1}^{\top} A^{-1} \left[\exp \left\{ A(\tau_{2}^{i} - u) \right\} - l_{p} \right] \mathbf{e}_{p} du \right\} \right)^{2} \end{aligned}$$
The implied market price of weather risk

CAT Future Prices and MPR

 $\hat{\theta}^1_t, \hat{\theta}^2_t$ constant for all contracts i at time t

Figure 17: Berlin CAT Future Prices and MPR $\hat{\theta}_t^1$ and $\hat{\theta}_t^2$. Reject $H_0 : E(\hat{\theta}) = 0$ under the Wald statistic 0.005 with probability 0.058 The implied market price of weather risk

45

MPR General case

$$\begin{aligned} \underset{\hat{\gamma}_{k}}{\operatorname{arg\,min}} \Sigma_{i=1}^{7} & \left(- \mathcal{F}_{CAT(t,\tau_{1}^{i},\tau_{2}^{i})} - \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} \hat{\Lambda}_{u} du - \hat{\mathbf{a}}_{t,\tau_{1}^{i},\tau_{2}^{i}} \hat{\mathbf{X}}_{t} \right. \\ & - \int_{t}^{\tau_{1}^{i}} \sum_{k=1}^{K} \hat{\gamma}_{k} \hat{h}_{k}(u) \hat{\sigma}_{u} \hat{\mathbf{a}}_{t,\tau_{1},\tau_{2}} \mathbf{e}_{p} du \\ & - \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} \sum_{k=1}^{K} \hat{\gamma}_{k} \hat{h}_{k}(u) \hat{\sigma}_{u} \mathbf{e}_{1}^{\top} \mathcal{A}^{-1} \left[\exp \left\{ \mathcal{A}(\tau_{2}^{i} - u) \right\} \right. \\ & - \left. I_{p} \right] \mathbf{e}_{p} du \right)^{2} \end{aligned}$$
(12)

where $h_k(u)$ is a vector of known basis functions, γ_k defines the coefficients.

CAT Future Prices and MPR

 $h_k(u)$ obtained with splines:

Figure 18: Berlin CAT Future Prices and MPR obtained with spline (6 knots) The implied market price of weather risk

47

MPR Bootstrap

$$\begin{aligned} 1. & \arg\min_{\hat{\theta}_{1}^{1}} \left(F_{CAT(t,\tau_{1}^{1},\tau_{2}^{1})} - \int_{\tau_{1}^{2}}^{\tau_{1}^{2}} \hat{\Lambda}_{u} du - \hat{\mathbf{a}}_{t,\tau_{1}^{1},\tau_{2}^{1}} \hat{\mathbf{X}}_{t} - \\ & \hat{\theta}_{t}^{1} \left\{ \int_{t}^{\tau_{1}^{1}} \hat{\sigma}_{u} \hat{\mathbf{a}}_{t,\tau_{1}^{1},\tau_{2}^{1}} \mathbf{e}_{p} du + \int_{\tau_{1}^{1}}^{\tau_{2}^{1}} \hat{\sigma}_{u} \mathbf{e}_{1}^{\top} A^{-1} \left[\exp \left\{ A(\tau_{2}^{1}-u) \right\} - l_{p} \right] \mathbf{e}_{p} du \right\} \right)^{2} \\ 2. & \arg\min_{\hat{\theta}_{t}^{2}} \left(F_{CAT(t,\tau_{1}^{2},\tau_{2}^{2})} - \int_{\tau_{1}^{2}}^{\tau_{2}^{2}} \hat{\Lambda}_{u} du - \hat{\mathbf{a}}_{t,\tau_{1}^{2},\tau_{2}^{2}} \hat{\mathbf{X}}_{t} - \int_{t}^{\tau_{1}^{1}} \hat{\theta}_{t}^{1} \hat{\sigma}_{u} \hat{\mathbf{a}}_{t,\tau_{1}^{2},\tau_{2}^{2}} \mathbf{e}_{p} du - \\ & \int_{\tau_{1}^{2}}^{\tau_{2}^{2}} \hat{\theta}_{t}^{2} \hat{\sigma}_{u} \mathbf{e}_{1}^{\top} A^{-1} \left[\exp \left\{ A(\tau_{2}^{2}-u) \right\} - l_{p} \right] \mathbf{e}_{p} du \right)^{2} \\ 3. & \arg\min_{\hat{\theta}_{t}^{3}} \left(F_{CAT(t,\tau_{1}^{3},\tau_{2}^{3})} - \int_{\tau_{1}^{3}}^{\tau_{2}^{3}} \hat{\Lambda}_{u} du - \hat{\mathbf{a}}_{t,\tau_{1}^{3},\tau_{2}^{3}} \hat{\mathbf{X}}_{t} - \int_{t}^{\tau_{1}^{1}} \hat{\theta}_{t}^{1} \hat{\sigma}_{u} \hat{\mathbf{a}}_{t,\tau_{1}^{3},\tau_{2}^{3}} \mathbf{e}_{p} du - \\ & \int_{\tau_{1}^{2}}^{\tau_{1}^{3}} \hat{\theta}_{t}^{2} \hat{\sigma}_{u} \hat{\mathbf{a}}_{t,\tau_{1}^{3},\tau_{2}^{3}} \mathbf{e}_{p} du - \int_{\tau_{1}^{3}}^{\tau_{2}^{3}} \hat{\theta}_{t}^{3} \hat{\sigma}_{u} \mathbf{e}_{1}^{\top} A^{-1} \left[\exp \left\{ A(\tau_{2}^{3}-u) \right\} - l_{p} \right] \mathbf{e}_{p} du \right)^{2} \dots \end{aligned}$$

The implied market price of weather risk ------

48

49

Figure 19: MPR of Berlin CAT prices for 5 lags (20060522 to 20060530) (red crosses) and smoothed MPR of Berlin CAT prices for 5 lags (blue line)

Berlin CAT Future

Figure 20: Right Side: Berlin CAT Future Prices from Bloomberg (black line) and estimated with constant MPR $\hat{\theta}_t^i$ (red line), MPR=0 (cyan line), constant MPR $\hat{\theta}_t$ (yellow line), 2 constant MPR $\hat{\theta}_t^1, \hat{\theta}_t^2$ (magenta line), Spline MPR (green line). Left Side: CAT Future Prices estimates using smoothed MPR's

Berlin HDD Future

Figure 21: Right Side: Berlin HDD Future Prices from Bloomberg (black line) and estimated with constant MPR per contract per day (red line), MPR=0 (cyan line), constant MPR $\hat{\theta}_t$ (yellow line), 2 constant $\hat{\theta}_t^1, \hat{\theta}_t^2$ (magenta line), Spline MPR (green line). Left Side: HDD Future Prices estimates using smoothed MPR's

Seasonal Variation vs. MPR

Figure 22: Left: Constant MPR $\hat{\theta}_t^i$ (blue)/smooth MPR $\hat{\theta}_t$ (red). Right: Seasonal Variation $\hat{\sigma}_{t+\Delta}^2$ (black) and $\hat{\sigma}_t^2$ (magenta) (right side) for Berlin CAT Future Prices, measurement period May 2006 (Contract K6)

Seasonal Variation $\sigma_{t+\Delta}^2$ vs. MPR $\hat{\theta}_t$

Figure 23: Seasonal Variation $\hat{\sigma}_{t+\Delta}^2$ and smoothed MPR $\hat{\theta}_t$ for Berlin CAT Future with measurement period May 2006 (Contract K6) The implied market price of weather risk

Seasonal Variation $\sigma_{t+\Delta}^2$ vs. MPR $\hat{\theta}_t^2$

Figure 24: Seasonal Variation $\hat{\sigma}_{t+\Delta}^2$ and constant MPR $\hat{\theta}_t^2$ for Berlin CAT Future Prices, measurement period May 2006 (Contract K6) The implied market price of weather risk

Risk Premium (RP)

Observed

$$RP = \hat{F}_{CAT(t,\tau_1^i,\tau_2^i)} - F^P_{CAT(t,\tau_1^i,\tau_2^i)}$$
(13)

Implied:

$$IRP = \hat{F}_{CAT(t,\tau_1^i,\tau_2^i)} - \hat{F}_{CAT(t,\tau_1^i,\tau_2^i,\theta_t)}$$
(14)

Figure 25: MPRs and RP of Berlin CAT future prices for contracts (K6, N6, H7) traded on 20060501 - 20060530: Bloomberg (black solid line), constant MPR per contract per day (: line), constant per contract day (- line), MPR=0 (-. line), two constant MPR (-* line), Bootstrap MPR (-+ line), Spline MPR (-o line). The implied market price of weather risk

56

Solution to the Human Capital problem..

Derivative Type	Call Option	
Index	CAT	
r	5%	
t	16 December 2005	
Measurement Period	24 - 28 July 2006	
Strike	150°C	
Tick Value	$1^{\circ}C=15 \text{ f}$	
F _{CAT} (20051216,20060724,20070728)	203.78	
<i>C_{CAT}</i> (20051216,20051216,20060724,20070728)	53.78	
C _{CAT} (20051216,20060723,20060724,20070728)	0	

Table 2: CAT call

Outlook

 \odot Weather Forecast: \mathcal{F}_t

- \odot Volatility $\hat{\sigma}_{t+\Delta}^2$ vs. MPR $\hat{\theta}_t$
- ☑ sign of MPRs RP: risk attitude

Hedging

References

F.E. Benth (2004)

Option Theory with Stochastic Analysis: An Introduction to Mathematical Finance Berlin: Springer.

- F.E Benth and J.S. Benth and S. Koekebakker (2007) Putting a price on temperature Scandinavian Journal of Statistics
- F.E. Benth and J.S. Benth (2005) Stochastic Modelling of temperature variations with a view towards weather derivatives Appl.Math. Finance.

K. Burnecki (2004) Weather derivatives

Warsaw.

M. Cao, A. Li, J. Wei (2003)

Weather Derivatives: A new class of Financial Instruments Working Paper, Schulich School of Business, York University, Canada, 2003

S. Campbell, F. Diebold (2005) Weather Forecasting for weather derivatives J.American Stat. Assoc.

🍆 J.C. Hull (2006)

Option, Futures and other Derivatives 6th ed. New Jersey: Prentice Hall International

S. Jewson, A. Brix (2005)

Weather Derivatives Valuation: The Meteorological, Statistical, Financial and Mathematical Foundations Cambridge: Cambridge University Press, 2005.

- M. Odening (2004) Analysis of Rainfall Derivatives using Daily precipitation models: opportunities and pitfalls
 - C. Turvey (1999)

The Essentials of Rainfall Derivatives and Insurance Working Paper WP99/06, Department of Agricultural Economics and Business, University of Guelph, Ontario. 61

Residuals with and without seasonal volatility:

Lag	Qstat _{res}	QSIG _{res}	Qstat _{res1}	QSIG _{res1}
1	0.03	0.85	0.67	0.41
2	0.05	0.97	0.74	0.69
3	3.16	0.36	4.88	0.18
4	4.70	0.32	6.26	0.18
5	4.76	0.44	6.67	0.24
6	5.40	0.49	7.17	0.30
7	6.54	0.47	7.51	0.37
8	10.30	0.24	10.34	0.24
9	14.44	0.10	14.65	0.10
10	21.58	0.01	21.95	0.10

Table 3: Q test using Ljung-Box's for residuals with (res) and without seasonality in the variance (res1)

Proof $CAR(3) \approx AR(3)$: Let

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\alpha_3 & -\alpha_2 & -\alpha_1 \end{pmatrix}$$

- Use $B_{t+1} B_t = \varepsilon_t$
- Substitute iteratively in X_1 dynamics:

$$\begin{aligned} X_{1(t+1)} - X_{1(t)} &= X_{1(t)}dt + \sigma_t \varepsilon_t \\ X_{2(t+1)} - X_{2(t)} &= X_{3(t)}dt + \sigma_t \varepsilon_t \\ X_{3(t+1)} - X_{3(t)} &= -\alpha_3 X_{1(t)}dt - \alpha_2 X_{2(t)}dt - \alpha_1 X_{3(t)}dt + \sigma_t \varepsilon_t \\ X_{1(t+2)} - X_{1(t+1)} &= X_{1(t+1)}dt + \sigma_{t+1}\varepsilon_{t+1} \\ X_{2(t+2)} - X_{2(t+1)} &= X_{3(t+1)}dt + \sigma_{t+1}\varepsilon_{t+1} \\ X_{3(t+2)} - X_{3(t+1)} &= \\ -\alpha_3 X_{1(t+1)}dt - \alpha_2 X_{2(t+1)}dt - \alpha_1 X_{3(t+1)}dt + \sigma_{t+1}\varepsilon_{t+1} \\ X_{1(t+3)} - X_{1(t+2)} &= X_{1(t+2)}dt + \sigma_{t+2}\varepsilon_{t+2} \\ X_{2(t+3)} - X_{2(t+2)} &= X_{3(t+2)}dt + \sigma_{t+2}\varepsilon_{t+2} \\ X_{3(t+3)} - X_{3(t+2)} &= \\ -\alpha_3 X_{1(t+2)}dt - \alpha_2 X_{2(t+2)}dt - \alpha_1 X_{3(t+2)}dt + \sigma_{t+2}\varepsilon_{t+2} \end{aligned}$$

Consider 2 prob. measures P & Q. Assume that $\frac{dQ}{dP}|_{\mathcal{F}_t} = Z_t > 0$ is a positive Martingale. By *Ito's* Lemma, then:

$$Z_t = \exp \{\log(Z_t)\} \\ = \exp \left\{ \int_0^t (Z_s)^{-1} dZ_s - \frac{1}{2} \int_0^t (Z_s)^{-2} d < Z, Z >_s \right\} (15)$$

Let $dZ_s = Z_s \cdot \theta_s \cdot dB_s$, then:

$$Z_t = \exp\left(\int_0^t \theta_s dB_s - \frac{1}{2}\int_0^t \theta_s^2 ds\right)$$
(16)

Let B_t , Z_t be Martingales under P, then by Girsanov theorem:

$$B_{t}^{\theta} = B_{t} - \int_{0}^{t} (Z_{s})^{-1} d < Z, B >_{s}$$

= $B_{t} - \int_{0}^{t} (Z_{s})^{-1} d < \int_{0}^{s} \theta_{u} Z_{u} dB_{u}, B_{s} >$
= $B_{t} - \int_{0}^{t} (Z_{s})^{-1} \theta_{s} Z_{s} d < B_{s}, B_{s} >$
= $B_{t} - \int_{0}^{t} \theta_{s} ds$ (17)

is a Martingale unter Q.

Black-Scholes Model

Asset price follows:

$$dS_t = \mu S_t dt + \sigma_t S_t dB_t$$

Note that S_t is not a Martingale unter P, but it is under Q! Explicit dynamics:

$$S_{t} = S_{0} + \int_{0}^{t} \mu S_{s} ds + \int_{0}^{t} \sigma_{s} S_{s} dB_{s}$$

$$= S_{0} + \int_{0}^{t} \mu S_{s} ds + \int_{0}^{t} \sigma_{s} S_{s} dB_{s}^{\theta} + \int_{0}^{t} \theta_{s} \sigma_{s} S_{s} ds$$

$$= S_{0} + \int_{0}^{t} S_{s} (\mu + \theta_{s} \sigma_{s}) ds + \int_{0}^{t} \sigma_{s} S_{s} dB_{s}^{\theta}$$
(18)

Market price of Risk and Risk Premium

By the no arbitrage condition, the risk free interest rate r should be equal to the drift $\mu + \theta_s \sigma_s$, so that:

$$\theta_s = \frac{r - \mu}{\sigma_s} \tag{19}$$

In practice:

 $B_t^{\theta} = B_t - \int_0^t \left(\frac{\mu - r}{\sigma_s}\right) ds$ is a Martingale under Q and then $e^{-rt}S_t$ is also a Martingale.

Under risk taking, the risk premium is defined as:

 $r + \Delta$