
DYTEC - Dynamic Tail Event Curves

Petra Burdejová
Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E. – Center for Applied Statistics
and Economics
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://case.hu-berlin.de

 
 
 
 
 
 
 

 

http://lvb.wiwi.hu-berlin.de
http://case.hu-berlin.de


Motivation 1-1

Importance of tail event (curves)

Dynamic Tail Event Curves



Motivation 1-2

Intra-day trading volume

� NASDAQ Market
- CISCO stocks

� daily 01-12/2008
� 250 trading days

10:00 - 16:00
� cumulated 1-min volume
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Motivation 1-3

Intra-day trading volume

Jain and Joh (1988)

� the day of the week and the hour have effect on trading volume

Darrat et al. (2003) and Spierdijk et al. (2003)

� lagged values of volatility and trading volume simultaneously

Bialkowski et al. (2008) and Brownlees et al. (2011)

� dynamic volume approach for VWAP

Dynamic Tail Event Curves



Motivation 1-4

VWAP trading strategy

� Buying/Selling fixed amount of shares at average price
pj I{pj>VWAP} that tracks the VWAP benchmark

VWAP =

∑J
j=1 vj · pj∑J

j=1 vj

with price pj and volume vj of the j-th transaction

� 50 % of trades are VWAP orders

� Implementation requires model for intraday evolution
of volume

Dynamic Tail Event Curves



Motivation 1-5

Intra-day trading volume

High frequency data

� Model curves
� High dimensions
� Focus on dynamics
� Comprising tail events
� Make forecasts
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Motivation 1-6

Intra-day trading volume

Figure: Expectiles for τ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, , . . .}
Dynamic Tail Event Curves



Motivation 1-7

Intra-day trading volume
CISCO 2/1/2008
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Figure: Cumulative returns of VWAP strategy with weights based
on τ -expectiles of volume, τ = 0.05, 0.5, 0.95.
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Motivation 1-8

Temperature data
Are we getting stronger extremes?

� Daily average
temperature

� Berlin, 1948 - 2013
� Model residuals

Model

� Usage: Pricing
weather derivatives
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Motivation 1-9

Hurricane predictions

Dynamic Tail Event Curves



Motivation 1-10

Hurricane predictions
Are we getting stronger extremes?

� Strength of wind in knots
� West Atlantic
� Years 1946 - 2011
� observe different

trend pattern
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Motivation 1-11

Dynamic demand models

� Electricity demand
I Quarter-hourly
I Jan.2010 - Dec.2012
I Amprion company

in west of Germany

� Water demand
� Gas demand

Dynamic Tail Event Curves



Motivation 1-12

Risk attitude via brain activity
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Motivation 1-13

Expected shortfall

� FTSE 100
� 01/09/1997 to

02/05/2005
� ES related to expectiles

Details

Dynamic Tail Event Curves



Motivation 1-14

Objectives & Challenges

� High frequency data
� Time-varying with intraday pattern
� Dependent

� Model curves
� Focus on dynamics and dependence
� Comprising tail events
� Make forecasts

Dynamic Tail Event Curves



Outline

1. Motivation X

2. Quantiles and Expectiles
3. Modeling Time-varying Curves
4. Outlook
5. Empirical Study
6. References

Dynamic Tail Event Curves



Quantiles and Expectiles 2-1

Quantiles and Expectiles

For r.v. Y obtain τ -quantile

qτ = argmin
θ

E {ρτ (Y − θ)}

with asymmetric loss function

ρτ (u) = |u|α
∣∣τ − I{u<0}

∣∣
where α = 1 for quantiles and α = 2 for expectiles

Dynamic Tail Event Curves



Quantiles and Expectiles 2-2

Quantiles and Expectiles
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Figure: Loss function of expectiles and quantiles
for τ = 0.5 (dashed) and τ = 0.9 (solid)

Dynamic Tail Event Curves
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Quantiles and Expectiles 2-3

Expectile Curves

Y associated with covariates X

Define generalized regression τ -expectile

eτ (x) = arg min
θ

E {ρτ (Y − θ) | X = x}

Use method of penalized splines to estimate vector of coefficients α

α̂ = arg min
α

n∑
i=1

ρτ

{
yi − α>b(xi )

}
+ λα>Ωα

with b basis vector (e.g. B-splines) Definition of B-splines

penalization matrix Ω and shrinkage parameter λ Penalization matrix

Dynamic Tail Event Curves



Quantiles and Expectiles 2-4

Estimation of Expectile Curves
Schnabel and Eilers (2009): iterative LAWS algorithm LAWS

Schnabel (2011): expectile sheets for joint estimation of curves
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Dynamic Tail Event Curves



Modelling Time-varying Curves 3-1

Dynamic tail event curves

Fix τ :

eτ (t) =
K∑

k=1

αkφk(t)

with basis Φ = (φ1, . . . , φK )> and t = 1, . . . ,T .

Variation in time, s = 1, . . . , S :

eτs (t) =
K∑

k=1

αskφk(t)

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-2

Independent curves

Guo et al. (2013)
� es(t) independent realizations of stationary process
� Following Karhunen-Loève expansion: Functional princ. components

es(t) = µ(t) +
K∑

k=1

αskφk(t) = µ(t) + α>s Φ(t)

� Method of penalized splines for mean function and FPC with
empirical loss function

S∑
s=1

T∑
t=1

ρτ

{
Yst − θ>µ b(t)− α>s ΘΦb(t)

}
+ pen.mtx

Details

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-3

Temporal (weak) dependent curves

Sequence {Xn} is m-dependent if for any k the σ-algebras F−k =σ
(. . . ,Xk−1,Xk) and F+

k+m =σ (Xk+m,Xk+m+1, . . .) are
independent.

Hörmann and Kokoszka (2010)
� Karhunen-Loève expansion applicable for m-dependent
� asymptotic properties of FPC estimates remain the same

� most of time series ARE NOT m-dependent
� fail if i.i.d. curves are too noisy
� fail if curves are sufficiently regular but dependency is too

strong

How to model stronger dependency?

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-4

Cramér-Karhunen-Loève representation

Panaretos and Tavakoli (2013)

� spectral decomposition of stationary functional time series

es(t) ≈
J∑

j=1

exp(iωjs)
K∑

k=1

αjkφj ,k(t)

−π = ω1 < . . . < ωJ+1 = π{
φj ,k
}

k≥1 eigenfunctions{
αj ,k

}
k≥1 corresponding coefficients Theoretical details

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-5

Cramér-Karhunen-Loève representation

Simplification: Assume φj ,k(t) = φk(t) for each j

Then:

es(t) ≈
J∑

j=1

exp(iωjs)
K∑

k=1

αjkφk(t)

≈ U(s)>AΦ(t)

with

U(s) = (exp (iω1s) , . . . , exp (iωJs))>

AJxK matrix of coefficients
Φ(t) = (φ1(t), . . . , φK (t))>

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-6

Empirical loss function

Method of penalized splines for φk(t) =
∑L

l=1 βklbl (t)
Then

Φ(t) = BKxLb(t)

Minimize loss function
S∑

s=1

T∑
t=1

ρτ

{
Ys,t − U(s)>Cb(t)

}
+ λ‖CJxL‖GJ

with CJxL = AJxKBKxL matrix of coefficients
and Group lasso penalization

‖CJxL‖GJ =
J∑

j=1

‖cGj‖2 =
J∑

j=1

√√√√ L∑
l=1

c2
jl

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-7

Empirical loss function

S∑
s=1

T∑
t=1

ρτ

{
Ys,t − U(s)>Cb(t)

}
︸ ︷︷ ︸

l(C)

+λ
J∑

j=1

‖cGj‖2

l(C ) continuously differentiable

K-K-T conditions for Ĉ to be a solution:

∇l(Ĉ )Gj + λ
CGj
‖CGj ‖2

= 0 if CGj 6= 0

‖∇l(Ĉ )Gj‖2 ≤ λ if CGj = 0

If τ = 0.5, closed form solution available

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-8

Block-Coordinate
Gradient Descent Algorithm (BCGD)

Tseng & Yun (2009)
Solve nonconvex nonsmooth optimization problem

min
x

f (x) + λP(x)

where λ > 0
P : Rn → ( −∞,∞ ] block-separable convex function
f smooth on an open subset containing domP

� combination of quadratic approximation
and coordinate descent algorithm

� global convergence Theoretical details

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-9

B-C-G-D Algorithm

Stepwise and blockwise minimize

Sλ(Ĉ (t)+d) = l(Ĉ (t))+d>∇l(Ĉ (t))+
1
2
d>H(t)d+λ

J∑
j=1

‖C (t)
Gj +d‖2

Details

Notation: min
dGj

Sλ(Ĉ (t) + d)

minimization, where d = (dG1 , . . . , dGJ ) with dGk = 0 for k 6= j

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-10

B-C-G-D Algorithm

repeat
t=t+1
for j = 1 to J do

if ‖∇l(Ĉ (t))Gj − h(t)
Gj

Ĉ (t)
Gj ‖2 ≤ λ then

d (t)
Gj = −Ĉ (t)

Gj
else

d (t)
Gj = min

dGj

Sλ(Ĉ (t) + d)

end if
end for

until convergence criterion met
update Ĉ (t+1) − Ĉ (t) − α(t)d (t) =0 Details

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-11

DYTEC Algorithm

Idea:
start with initial weights ws,t (obtained separately for each
s = 1, . . . , S) and iterate between following steps:

� compute Ĉ using BCGD algorithm
� update weights

ws,t =

{
τ if Ys,t > U(s)>Ĉb(t),

1− τ otherwise.

� stop if there is no change in weights ws,t .

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-12

Dynamic functional factor model

� generalization (capture nonstationarity)
� Hays et al.(2012) & Kokoszka et al.(2014)
� extend with the idea of two spaces of basis function

Model
es(t) =

K∑
k=1

Zskmk(t) = Z>s m(t)

with time-varying factor loadings Zk
and functional factors

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-13

Dynamic functional factor model

Time basis:

Zsk =
J∑

j=1

αkjuj(s)

Zs = AKxJ · U(s)

Space basis:

mk(t) =
L∑

l=1

βklbl (t)

m(t) = BKxLb(t)

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-14

Dynamic functional factor model

es(t) = Z>s m(t) = U(s)>Cb(t)

with CJxL = A>JxKBKxL matrix of coefficients,
space basis vector b(t) = {b1(t), . . . , bL(t)}>
and time basis vector U(s) = {u1(s), . . . , uJ(s)}>

Same loss function:
S∑

s=1

T∑
t=1

ρτ

{
Ys,t − U(s)>Cb(t)

}
+ λ‖CJxL‖GJ

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-15

Time basis

� capture periodic variation
� capture trend

� Proposal by Song et al. (2013):
I Legendre polynomial basis
I Fourier series
See Appendix
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Modelling Time-varying Curves 3-16

Space basis

� capture daily patterns
� capture specific structure

� Proposal by Song et al (2013):
I Data driven
I Based on combination of smoothing techniques and FPCA

� B-splines
Definition of B-splines

Dynamic Tail Event Curves



Empirical Study 4-1

Empirical Study

� NASDAQ Market
- CISCO stocks

� daily 01-12/2008
� 250 trading days

10:00 - 16:00
� cumulated 1-min volume
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Empirical Study 4-2

Trading volume - smoothing

B-splines with knots every 5 minutes (i.e. 76 splines)
Optimal λ = 164
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10
9.

95
11

0.
05

11
0.

15

lambda

G
C

V ●

●
●

●
●
●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●
●
●
●

●
●

●

●

●●

●

●

●

●

●●

●

●

●
●
●
●

2008−01−23

lo
g(

vo
lu

m
e)

10:00 12:00 14:00 16:00

9
10

11
12

13
14

15

Dynamic Tail Event Curves



Empirical Study 4-3

Trading volume - FPCA

Use 14 FPCs to explain 90% of variation
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Trading volume - FPCA
mean
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Empirical Study 4-5

Trading volume - FPCA

Fisher’s G-test: p-value=0.000
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Figure: Scores of 1FPC and periodogram
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Outlook 5-1

Outlook

� Algorithm - Code in R

� Simulation and Empirical studies
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Appendix 7-1

Model of Temperature data

Berlin temperature 1945/1978/2013
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Figure: Daily average temperature in Berlin in 1948, 1980, 2013
Back to Motivation - Temperature Data
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Appendix 7-2

Model of Temperature data

For days t = 1, . . . , 24090 (i.e. 66 years)

Xt = Tt − Λt

Λt = a + bt +
2∑

m=1

{
cm cos

(m · π · t
365

)
+ dm sin

(m · π · t
365

)}
Xt =

L∑
l=1

βlXt−l + εt

Back to Motivation - Temperature Data
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Appendix 7-3

Model of Temperature data

â = 5.617

b̂ = 2.3 ∗ 10−5

ĉ1 = −4.15 ∗ 10−2

ĉ2 = −7.14 ∗ 10−2

d̂1 = −7.932

d̂2 = −3.109

β̂1 = 0.786

β̂2 = −0.078
β̂3 = 0.024

β̂4 = 0.015

β̂5 = 0.011

β̂6 = 0.007

β̂7 = 0.001

β̂8 = 0.019
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Back to Motivation - Temperature Data
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Appendix 7-4

Relating Expectiles and Expected Shortfall

Newey and Powell (1987):

eτ = argmin
e

E
{
|τ − I{Y<e} |(Y − e)2}

1− 2τ
τ

E
{

(Y − eτ ) I{Y<eτ}
}

= eτ − E(Y )

Taylor (2008):

E (Y |Y < eτ ) = eτ +
τ {eτ − E(Y )}
(1− 2τ)F (eτ )

Back

Dynamic Tail Event Curves



Appendix 7-5

B-splines

Knot vector t = (t1, . . . , tM) as nondecreasing sequence in [0, 1]

Control points P0, . . . ,PN

Define i-th B-spline basis function Ni ,j of order j as

Ni ,0(t) =

{
1 if ti < t < ti+1

0 otherwise

Ni ,j(t) =
t − ti

ti+j − ti
Ni ,j−1(t) +

ti+j+1 − t
ti+j+1 − ti+1

Ni+1,j−1(t)

j = 1, . . . ,N −M − 1

Back to Estimation of Expectile Curves

Back to Space Basis
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Appendix 7-6

Estimation of Quantile Curves
Definition of Penalty matrix

α̂ = arg min
α

N∑
i=1

ρτ

{
yi − α>b(xi )

}
+ λα>Ωα

where b(x) = (b1, . . . , bq(x))> is vector of B-spline basis functions

Denote b̃(x) = (b̃1(x), . . . , b̃q(x))> the vector of second derivatives
of basis functions

and set
Ω =

∫
b̃(x)b̃(x)> dx

Back to Estimation of Expectile Curves
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Appendix 7-7

LAWS estimation
Schnabel and Eilers (2009):

min
n∑

i=1

wi (τ)(yi − µi )
2

where
wi (τ) =

{
τ if yi > µi

1− τ if yi ≤ µi ,

µi expected value according to some model.

Iterations:
� fixed weights, closed form solution of weighted regression
� recalculate weights

until convergence criterion met.
Back to Expectiles Curves
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Appendix 7-8

LAWS estimation
Example:
Classical linear regression model

Y = Xβ + ε

where E (ε |X ) = 0 and µ = E (Y |X ) = Xβ.

β̂ = argmin
β

n∑
i=1

wi (yi − µi )
2

Then:

β̂ = (X>WX )−1XWY

with W diagonal matrix of fixed weights wi .

Back to Expectile Curves
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Appendix 7-9

Functional principal components

X (t) stochastic process on compound interval T
with mean function µ(t) = E {X (t)}
and covariance function K (s, t) = cov(X (s),X (t))

There exist orthogonal sequence of eigenfunctions φj and
eigenvalues λi such that K (s, t) =

∑∞
j=1 λjφj(s)φj(t)

We can rewrite process as

X (t) = µ(t) +
∞∑
j=1

√
λjκjφj(t)

where κj = 1√
λj

∫
X (t)φj(s)ds , E(κj) = 0 and E(κjκK ) = δjk .

Back to Modelling of Time-varying Curves
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Appendix 7-10

Guo(2013) - Empirical loss function

S∗ = S + Mµ + MΦ

where

S =
D∑

d=1

T∑
t=1

ρτ

(
Ydt − b(t)>θµ − b(t)>ΘΦαd

)
Mµ = θ>µ

∫
b̃(x)b̃(x)> dxθµ = θ>µ Ωθµ

MΦ =
K∑

k=1

θφ,k

∫
b̃(x)b̃(x)> dx θφ,k

and b̃(x) vector of second derivatives
Back to Guo(2013) - Estimation of Quantile Curves
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Appendix 7-11

Cramér-Karhunen-Loève representation

Conditions (Panaretos and Tavakoli (2013))
Xt second order stationary time series in L2([0, 1],R)
with zero mean, E ‖X0‖22 <∞ and autocovariance kernel at lag t :

rt(u, v) = E (Xt(u)X0(v))

u, v ∈ [0, 1], t ∈ Z, inducing operator :

Rt : L2([0, 1],R)→ L2([0, 1],R)

Assume:
i)
∑

t∈Z ‖Rt‖1 <∞
ii) (u, v)→ rt(u, v) continuous t ∈ Z, and

∑
t∈Z ‖rt‖∞ <∞

Back to C-K-L representation
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Appendix 7-12

Cramér-Karhunen-Loève representation

Theorem (Panaretos and Tavakoli (2013))
Xt admits representation

Xt =

∫ π

−π
exp(iωj t)dZω a.s.

where for fixed ω, Zω is random element of L2([0, 1],C)
and process ω → Zω has orthogonal increments.
Integral can be understood as a Riemann-Stieltjes limit in sense

E ‖Xt −
J∑

j=1

exp(iωj t)(Zωj+1 − Zωj )‖
2
2 → 0 as J → 0

Back to C-K-L representation
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Appendix 7-13

Cramér-Karhunen-Loève representation

Remark (Panaretos and Tavakoli (2013))
With spectral density operator Fω = 1

2π
∑

t∈Z exp(−iωt)Rt
having eigenfunctions {φωn }t≥1

C-K-L representation can be interpreted as

Xt =

∫ π

−π
exp(i)

∞∑
n=1

〈φωn , dZω〉φωn

Back to C-K-L representation
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Appendix 7-14

Block-Coordinate
Gradient Descent Algorithm

Tseng & Yun (2009)

min
x

f (x) + λP(x)

Solve
min

d

{
d>∇f (x) +

1
2
d>Hd + λP(x + d)

}

� P is block-separable then H is block-diagonal
� solve subproblems

(for every j take d = (dG1 , . . . , dGJ ) with dGk = 0 for k 6= j)
Back to BCGD algorithm
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Appendix 7-15

Block-Coordinate
Gradient Descent Algorithm

d (t)
Gj = − 1

h(t)
Gj

∇l(Ĉ (t))Gj − λ
∇l(Ĉ (t))Gj − h(t)

Gj
Ĉ (t)
Gj

‖∇l(Ĉ (t))Gj − h(t)
Gj

Ĉ (t)
Gj ‖2



H(t) has submatrices H(t)
Gj = h(t)

Gj IGj for scalars h
(t)
Gj

α(t) set by Amijo rule (See Details: Tseng & Yun (2009))

Back to BCGD algorithm
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Appendix 7-16

Song et. al.(2013) - Time basis

Orthogonal Legendre polynomial basis
to capture the global trend in time
u1(d) = 1/C1, u2(d) = d/C2, u3(d) = (3t2 − 1)/C3, . . .
with generic constant Ci such that

∑D
d=1 ui (d)/C 2

i = 1

Fourier series
to capture periodic variations
u4 = sin(2πd/p)/C4, u5 = cos(2πd/p)/C5,
u6 = sin(2πd/(p/2))/C6, . . .
with given period p

Back to Song(2013) -Time Basis
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