Change Point and Trend Analyses of Annual Expectile Curves of Tropical Storms

Petra Burdejová Wolfgang Karl Härdle Piotr Kokoszka Qian Xiong

Humboldt–Universität zu Berlin Colorado State University http://lvb.wiwi.hu-berlin.de http://www.stat.colostate.edu

Are we getting stronger extremes?

GEOGRAPHIC Daily News

me Animals Ancient Energy Environment Travel/Cultures Space/Tech Water Weind News Photos News Video News Blogs

Will U.S. Hurricane Forecasting Models Catch Up to Europe's?

A year after Hurricane Sandy, Europe's forecasting technology is still tops.

Forbes

INVESTING 4/03/2012 @ 3:50PM 3,127 views

Damaging Hurricanes Could Impact Energy, Insurance Industries In 2012

Comment Nov

by Alan Lammey, Joe Bastardi, Joe D'Aleo, Michael Barak

The 2012 Atlantic Hurricane Season is likely to see an overall decrease in tropical activity as compared to 2011, but with the focus of tropical development closer to the United States.

When evaluating the hurricane season as a whole, it is important to consider more data than just the number of storms that are named. Evaluating in multiple ways. The best way to determine total

seasonal activity is by collectively measuring the intensity and duration of named tropical cyclones (both tropical storms and hurricanes), also called the ACE index (Accumulated Cyclone Energy). While the National Hurricane Bloomberg

By Nosh Bubayar - Nov 11, 2013

Typhoon Worse for Philippines Economy Than Sandy for U.S.

This image shows Hurricane Bob opproaching New England on August 19 at 1266 UTC. This image was produced from data from NOAA-10, provided by NOAA (Dhenoment): Willowing)

Data

Hurricanes

- North Atlantic
- · Years 1851 2011

Typhoons

- ⊡ West Pacific
- · Years 1946 2010

Data: http://weather.unisys.com Figure: http://www.learnnc.org

Simple trend analysis

- frequency but not intensity
- only values per year
- impact for insurance (Alba & Andrade 2009)

Figure: Annual expectiles for $\tau = 0.25, 0.5, 0.75$ and trend

1 - 3

Complex trend analyses

2010

Figure: Typhoon data for 2010 with annual TEC for τ = 0.25, 0.5, 0.75

Challenges

- Reduce dimension
- Retain detail information
- ⊡ Tail Event Curves (TEC)
- Dynamic (Time-varying)
- Change point testing
- Trend detection

Outline

- 1. Motivation \checkmark
- 2. Quantiles and Expectiles
- 3. Change point and test trend
- 4. Conclusion for tropical storms

Quantiles and Expectiles

For r.v. Y obtain tail event measure:

$$q^{ au} = rg\min_{ heta} \mathsf{E}\left\{
ho_{ au} \left(Y - heta
ight)
ight\}$$

asymmetric loss function

$$\rho_{\tau}\left(u\right) = \left|u\right|^{\alpha} \left|\tau - \mathbf{I}_{\left\{u < 0\right\}}\right|$$

 $\alpha=1$ for quantiles, $\alpha=2$ for expectiles

Expectile as quantile

Quantiles and Expectiles

for au= 0.5 (dashed) and au= 0.9 (solid)

Expectile Curves

Generalized regression $\tau\text{-expectile}$

$$e^{\tau}(x) = \arg \min_{\theta} \mathsf{E} \left\{ \rho_{\tau} \left(Y - \theta \right) \mid X = x \right\}$$

Expectile $e^{\tau}(x)$ approximated by B-spline basis \bigcirc Definition of B-splines

Penalized splines:

$$\widehat{\alpha} = \arg \min_{\alpha} \sum_{i=1}^{n} \rho_{\tau} \left\{ y_{i} - \alpha^{\top} b(x_{i}) \right\} + \lambda \alpha^{\top} \Omega \alpha$$

with penalization matrix Ω and shrinkage λ

Penalization matrix

2 - 3

Estimation of Expectile Curves

Schnabel and Eilers (2009): iterative LAWS algorithm Schnabel (2011): expectile sheets for joint estimation of curves

2014-4-1

Figure: BAYER trading volume expectiles ($\lambda = 0.5$) on 2014-04-01

Expectiles Curves for Typhoons

Figure: Every year with expectile curves for $\tau = 0.1, 0.5$ and 0.9. Q data_load_hurricanes

Expectiles Curves for Hurricanes

Figure: Every year with expectile curves for $\tau = 0.1, 0.5$ and 0.9. Q data_load_hurricanes

Typhoon's curves differences

 $e_n^{\tau}(t) - \tau$ -expectile curve for year n

Normalized differences:

$$egin{aligned} P_{ au,k}(t) &= rac{k(N-k)}{N} \left\{ \hat{\mu}_k^{ au}(t) - ilde{\mu}_k^{ au}(t)
ight\} \ P_{ au,k} &= \int_0^T P_{ au,k}^2(t) dt \end{aligned}$$

Figure: The squared norms $P_{\tau,k}$ showing the magnitude of change in mean annual pattern for expectile curves of typhoons $\mathbf{Q} \mathbf{P}$ _beta_est

Change point test

Compute func.principal components v(t) and scores

$$\hat{\xi}_{I,n} = \int_0^T \left\{ X_n(t) - \bar{X}_N(t) \right\} \hat{v}_I(t) dt$$

Test for different τ

 H_0 : no change in the mean function

Test statistics:

$$\hat{S}_d = \frac{1}{N^2} \sum_{l=1}^d \frac{1}{\hat{\lambda}_l} \sum_{k=1}^N \left(\sum_{1 \le i \le k} \hat{\xi}_{l,i} - \frac{k}{N} \sum_{1 \le i \le k} \hat{\xi}_{l,i} \right)$$

take first d eigenvalues λ_l explaining large proportion of variance

Change point test

d	10	11	12
10%	2.2886	2.4966	2.6862
5%	2.5268	2.7444	2.9490
1%	3.0339	3.2680	3.4911

Table 1: Critical values of the distribution of \hat{S}_d

au	0.1	0.5	0.9
d	10 12	12	
Sd	3.352	3.656	4.508
	***	***	***

Table 2: Values of test statistics S_d for typhoone expectile curveTrend in DYTEC of tropical storms

Test of trend

$$e_n^{ au}(t) = lpha_{ au}(t) + neta_{ au}(t) + arepsilon_{ au}(t)$$

Test for different (fixed) τ

 $H_0:\beta(t)=0$

LS estimator

$$\hat{\beta}(t) = rac{6}{N(N+1)(N-1)} \sum_{k=1}^{N} (2k - N - 1) e_k^{\tau}(t).$$

4-1

Trend test

Residuals

$$\hat{\varepsilon}_n(t) = X_n(t) - \hat{\alpha}_n(t) - \hat{\beta}_n(t)n,$$

where

$$\hat{\alpha}(t) = \frac{2}{N(N-1)} \sum_{k=1}^{N} (2N+1-3k) X_k(t).$$

Denote $\hat{\lambda}_j$ the eigenvalues of the empirical covariance function

$$\hat{c}(t,s) = \frac{1}{N} \sum_{n=1}^{N} \hat{\varepsilon}_n(t) \hat{\varepsilon}_n(s)$$

Trend test I. (Monte Carlo)

Theorem

Under H₀,

$$\widehat{\Lambda}_{N} = \frac{N^{3}}{12} \int_{0}^{1} \left\{ \widehat{\beta}(t) \right\}^{2} dt \xrightarrow{\mathcal{L}} \Lambda_{\infty} \stackrel{\text{def}}{=} \sum_{j=1}^{\infty} \lambda_{j} Z_{j}^{2},$$

where $Z_j, j \ge 1$ are normal i.i.d. r.v.

Trend test II. (χ^2 -test)

Theorem

Suppose
$$\mathsf{E} \| \varepsilon \|^4 < \infty$$
 and $\lambda_1 > \lambda_2 > \ldots > \lambda_q > \lambda_{q+1} > 0$

Under H₀,

$$\widehat{T}_{N} = \frac{N^{3}}{12} \sum_{j=1}^{q} \widehat{\lambda}_{j}^{-1} \langle \widehat{\beta}, \widehat{v}_{j} \rangle^{2} \stackrel{\mathcal{L}}{\longrightarrow} \chi_{q}^{2}.$$

Data generating process for error function

$$B_n(t) = \sqrt{2} \sum_{j=1}^{\infty} Z_{nj} \frac{\sin(j\pi t)}{j\pi} \approx \sqrt{2} \sum_{j=1}^J Z_{nj} \frac{\sin(j\pi t)}{j\pi},$$

or

$$arepsilon(t; au) = \sum_{j=1}^q \sigma_j(au) Z_j \hat{v}_j(t; au), \quad Z_j \sim ext{ iid } (0,1),$$

with $\hat{v}_j(t;\tau)$ principal components of expectile curves and $\sigma_j(\tau)$ s.d. of scores

$$X_n(t) = \beta(t)n + \varepsilon_n(t).$$

 $\tau=$ 0.1, 0.5 and 0.9

BB	β_0	β_1	β 2	E1	β_0	β_1	β_2
N=30	0.055	0.175	0.136	N=30	0.060	0.082	0.078
N=60	0.056	0.967	1.000	N=60	0.045	0.438	0.440
N=120	0.064	1.000	1.000	N=120	0.042	1.000	1.000
E5	βo	β_1	β2	E9	βο	β	β2
E5 N=30	β ₀ 0.042	β ₁ 0.072	β ₂ 0.060	E9 N=30	β ο 0.069	β ₁ 0.081	β ₂ 0.091
E5 N=30 N=60	β ₀ 0.042 0.047	β ₁ 0.072 0.435	β ₂ 0.060 0.438	E9 N=30 N=60	β ₀ 0.069 0.058	β_1 0.081 0.435	β ₂ 0.091 0.404
E5 N=30 N=60 N=120	β ₀ 0.042 0.047 0.044	$egin{array}{c} \beta_{1} \\ 0.072 \\ 0.435 \\ 1.000 \end{array}$	β ₂ 0.060 0.438 1.000	E9 N=30 N=60 N=120	β ₀ 0.069 0.058 0.042	$egin{array}{c} \beta_{1} \\ 0.081 \\ 0.435 \\ 1.000 \end{array}$	β ₂ 0.091 0.404 1.000

Table 3: Rejection rates of the **Monte Carlo test**. Columns corresponding to β_0 report empirical size, those to β_1 and β_2 , empirical power.

BB	β_0	β_1	β_2		E1	β_0	β_1	β_2
N=30	0.064	0.344	0.053		N=30	0.053	0.071	0.089
N=60	0.058	0.995	0.085		N=60	0.058	0.215	0.220
N=120	0.069	1.000	0.238	0.238		0.056	0.975	0.971
E5	β_0	β_1	β_2		E9	β_0	β_1	β_2
N=30	0.047	0.065	0.044		N=30	0.051	0.075	0.085
N=60	0.064	0.249	0.193		N=60	0.065	0.216	0.234
N=120	0.049	0.982	0.898		N=120	0.058	0.929	0.967

Table 4: Rejection rates of the **Chi–square test**. Columns corresponding to β_0 report empirical size, those to β_1 and β_2 , empirical power.

Tropical storms results

τ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
typhoons P–value	0.365	0.537	0.545	0.495	0.438	0.381	0.329	0.316	0.269
hurricanes P–value	0.439	0.239	0.133	0.081	0.062	0.047	0.038	0.040	0.055

Table 5: P-values for the Monte Carlo trend test

τ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
q	10	11	12	12	12	12	12	12	12
typhoons P–value	0.534	0.705	0.722	0.688	0.587	0.466	0.382	0.371	0.453
q	5	5	5	6	6	6	7	7	7
hurricanes P-value	0.069	0.024	0.015	0.006	0.003	0.003	0.004	0.006	0.035

Table 6: P–values for the χ^2 trend test

Conclusions

⊡ Two tests of significance of the slope function provided

- Annual pattern of wind speeds for both hurricanes and typhoons cannot be treated as constant, no matter what expectile level is considered.
- Tests detect a trend in the upper wind speeds of Atlantic hurricanes

Change Point and Trend Analyses of Annual Expectile Curves of Tropical Storms

Petra Burdejová Wolfgang Karl Härdle Piotr Kokoszka Qian Xiong

Humboldt–Universität zu Berlin Colorado State University http://lvb.wiwi.hu-berlin.de http://www.stat.colostate.edu

References

🚺 Alba E., Andrade R.

Evaluating the Impact of the Increase in Hurricane Frequency Using an Internal Model. A Simulation Analysis INEGI, Mexico Conference paper

Burdejova P., Härdle W., Kokoszka P., Xiong Q.
 Change Point and Trend Analyses of Annual Expectile Curves of Tropical Storms
 Humboldt University, Discussion Papers 2015
 DOI: 10.1093/jjfinec/nbu004

Schnabel, S.K., Eilers, P. H. C. *Optimal expectile smoothing* Computational Statistics and Data Analysis **53**(12): 4168-4177, 2009, DOI: 10.1016/j.csda.2009.05.002

Expectile as quantile

 $e_{\tau}(Y)$ is the au-quantile of the cdf T, where

$$T(y) = \frac{G(y) - xF(y)}{2\{G(y) - yF(y)\} + \{y - \mu_Y\}},$$

$$G(y) = \int_{-\infty}^{y} u \, dF(u)$$
(1)

Back Quantiles and Expectiles

B-splines

Knot vector $t = (t_1, \ldots, t_M)$ as nondecreasing sequence in [0, 1] Control points P_0, \ldots, P_N

Define *i*-th B-spline basis function $N_{i,j}$ of order *j* as

$$N_{i,0}(t) = \begin{cases} 1 & \text{if } t_i < t < t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$
$$N_{i,j}(t) = \frac{t - t_i}{t_{i+j} - t_i} N_{i,j-1}(t) + \frac{t_{i+j+1} - t}{t_{i+j+1} - t_{i+1}} N_{i+1,j-1}(t)$$
$$= 1, \dots, N - M - 1$$

• Back to Estimation of Expectile Curves

Quantile Curves Penalty

$$\widehat{\alpha} = \arg \min_{\alpha} \sum_{i=1}^{n} \rho_{\tau} \left\{ y_{i} - \alpha^{\top} b(x_{i}) \right\} + \lambda \alpha^{\top} \Omega \alpha$$

where $b(x) = (b_1, \dots, b_K)^\top$ is vector of B-spline basis functions

Denote $\tilde{b}(x) = (\tilde{b}_1(x), \dots, \tilde{b}_K(x))^\top$ the vector of second derivatives of basis functions

and set

$$\Omega = \int \tilde{b}(x)\tilde{b}(x)^{\top} \, dx$$

Back to Estimation of Expectile Curves

LAWS estimation

Schnabel and Eilers (2009):

$$\min \sum_{i=1}^n w_i(\tau)(y_i - \mu_i)^2$$

where

$$w_i(\tau) = \begin{cases} \tau & \text{if } y_i > \mu_i \\ 1 - \tau & \text{if } y_i \leq \mu_i, \end{cases}$$

 μ_i expected value according to some model.

Iterations:

 \boxdot fixed weights, closed form solution of weighted regression

recalculate weights

until convergence criterion met.

Back to Expectiles Curves

Trend in DYTEC of tropical storms -

8-4

LAWS estimation

Example:

Classical linear regression model

 $Y = X\beta + \varepsilon$

where $\mathsf{E}(\varepsilon | X) = 0$ and $\mu = \mathsf{E}(Y | X) = X\beta$.

$$\widehat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} w_i (y_i - \mu_i)^2$$

Then:

$$\widehat{\beta} = (X^\top W X)^{-1} X W Y$$

with W diagonal matrix of fixed weights w_i .

Back to Expectile Curves

Functional principal components

X(t) stochastic process on compound interval Twith mean function $\mu(t) = E\{X(t)\}$ and covariance function k(s,t) = cov(X(s),X(t))

There exist orthogonal sequence of eigenfunctions ϕ_j and eigenvalues λ_i such that $k(s, t) = \sum_{j=1}^{\infty} \lambda_j \phi_j(s) \phi_j(t)$ We can rewrite process as

$$X(t)=\mu(t)+\sum_{j=1}^{\infty}\sqrt{\lambda_j}\kappa_j\phi_j(t)$$

where $\kappa_j = \frac{1}{\sqrt{\lambda_j}} \int X(t)\phi_j(s)ds$, $E(\kappa_j) = 0$ and $E(\kappa_j\kappa_K) = \delta_{jk}$.

• Back to Change point test

