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Motivation 1-1

Motivation

� Electricity load forecasting for chemical products
� Optimizing production schedules based on forecasting
� Better forecasts for day-ahead market reduce costs in

short-term balancing demand and supply in spot market
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Motivation 1-2

Electricity Load
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Figure 1: Electricity load curve with 15 min frequency in 2017, scaled into
range [0, 1] by transformation

� Electricity load curve for chemical products
� Load curve with jumps
� No periodic phenomenon exists
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Motivation 1-3

Production Schedules
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Figure 2: Totally 72 Production schedules variables can be treated as 3
independent groups
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Motivation 1-4

Distribution of Load

Figure 3: Epanechnikov Kernel Estimation of Load Distribution

� Estimated by Gaussian Mixture Model (GMM)
� Plugging GMM into forecasting model
� Analysis under probabilistic subspace
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Motivation 1-5

Analysis Framework
� Distribution of load can be expressed as linear combination of

K normal distribution

f (y) =
K∑

k=1

αkϕ
(
µk , σ

2
k

)
(1)

Where µk , σ2
k are mean and variance of kth normal

distribution, y is load,
∑K

k=1 αk = 1
� In general, a forecasting model can be expressed as

ỹt = g (yt−i ,Xt−j) , i = 1, · · · , p; j = 0, · · · , q (2)
Where Xt−j is the lagged j periods exogenous variables, ỹt is
the forecast load value as time t

� kth probabilistic subspace ϕ
(
µk , σ

2
k

)
for forecast load value ỹt

k = argmax
k∈K

αkϕ
(
ỹt |µk , σ2

k

)
∑K

k=1 αkϕ
(
ỹt |µk , σ2

k

) (3)
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Motivation 1-6

EM on GMM

Figure 4: Solving GMM by EM

� Specify the number of distributions
� Maximize the Likelihood function for complete data
� Estimate the µ, σ and ω for each distribution
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Motivation 1-7

Load and Production Schedules
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Figure 5: Time series with electricity load and exogenous variables in 3
groups, aggregated in terms of week of the year

� Fluctuation of electricity load mainly affected by group 1 and
group 3
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Motivation 1-8

ACF - Long Memory Effect of Load Curve
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Figure 6: ACF plot of load curve. Upper plot with max lags = 35040,
lower plot with max lags = 1000

� Under 95% confidence, the long memory effect lasts about 10
days
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Outline

1. Motivation
2. Forecasting models
3. Forcasting Evaluation
4. Outlook
5. Appendix
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Forecasting Models 2-1

Recurrent Neural Networks (RNN)

Figure 7: RNN is an architecture which has loops in it that allows the
information persist
� Unfolding the RNN, it is constructed by multiple copied of the

same neural network
� RNN is structured to handle sequences-related problems, for

example, time-series forecasting
� However, RNN suffers from the famous "Gradient Exploding"

and "Gradient Vanishing" problems
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Forecasting Models 2-2

LSTM model

� Input layer
it = σ (ωiht−1 + µf xt + bi ) (4)

� Update layers

ft = σ (ωf ht−1 + µf xt + bf ) (5)

S̃t = tanh (ωsht−1 + µf xt + bs) (6)
ot = σ (ωoht−1 + µoxt + bo) (7)

� Output layer

St = ft × St−1 + it × S̃t (8)
ht = tanh(St)× ot (9)
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Forecasting Models 2-3

LSTM on Load Prediction

� Forecast the next 96 quarterly hour (and 1 day) load
� LSTM model memorizes the states along one training step
� Parameters are adjusted by Backpropagation Algorithm
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Forecasting Models 2-4

FASTEC construction
� Data: {Xi}ni=1 ∈ Rp, {Yi}ni=1 ∈ Rm i.i.d.
� Linear model for τ -expectile curve of Yj ,

j = 1, ...,m, 0 < τ < 1:

Yj = ej(τ |Xi) + uij,τ = X>i Γ∗j(τ) + uij,τ , (10)

where coefficients for j response: Γ∗j(τ) ∈ Rp

� Sparse factorisation: f τk (Xi) = ϕ>k (τ)Xi factors

ej(τ |Xi) =
r∑

k=1

ψj,k(τ)f τk (Xi), (11)

where r : number of factors;
Γ∗j(τ) = (

∑r
k=1 ψj,k(τ)ϕk,1(τ), ...,

∑r
k=1 ψj,k(τ)ϕk,p(τ))

FASTEC_with_Expectiles
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Forecasting Models 2-5

MER formulation: penalised loss

Γ̂λ(τ) = arg min
Γ∈Rp×m



(mn)−1

n∑

i=1

m∑

j=1

ρτ

(
Yij − X>i Γ∗j

)
+ λ‖Γ‖∗



 ,

‖Γ‖∗ =
∑min(p,m)

j=1 σj(Γ) nuclear norm of Γ
Xi : B-splines
Yi :
Γ : factor matrix
λ : penalisation parameter (optimality via CV)

Chao et al. (2015), Härdle et al (2016)
FISTA algorithm
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Forecasting Models 2-6

Conditional moment based procedure

1 Aggregate exogenous variables: 3 groups X1,X2,X3
2 Estimate conditional moments: certain expectiles as cluster

centers
3 Determine affiliation based on t-statistic
4 Perform FASTEC (training)
4.1 Select periods at conditional moments with 96 observations Yτ

4.2 Bootstrap to get larger sample Y ∗τ
4.3 Perform FASTEC on each conditional moment sample
4.4 Predict conditional moments Ŷ ∗τ

5 Find optimal weights vector γ for Ŷ ∗τ ,X1,X2,X3 s.t. MAE is
minimised

6 Forecast based on γ̂, Ŷ ∗τ ,X1,X2 and X3
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Forecast evaluation 3-1

Accuracy measures

nrRMSE =
1√

T{max(y)−min(y)}

√√√√
T∑

t=1

(ŷt − yt)2

nmRMSE =
1

ȳ
√
T

√√√√
T∑

t=1

(ŷt − yt)2

niqrRMSE =
1√

T{q(y , 0.75)− q(y , 0.25)}

√√√√
T∑

t=1

(ŷt − yt)2
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Forecast evaluation 3-2

Accuracy measures

MAE =
1
T

T∑

t=1

|yt − ŷt |

qt =
yt − ŷt

1
T−1

∑T
s=2 |ys − ys−1|

MASE =
1
T

T∑

t=1

|qt |
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Forecast evaluation 3-3

Forecast evaluation: daily aggregate

Measure VARX ARX LSTM
nrRMSE 0.264 0.102 0.084
nmRMSE 0.282 0.109 0.110
niqrRMSE 2.044 0.789 0.557
MAE 0.136 0.056 0.051
MASE 1.294 0.536 0.475
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Forecast evaluation 3-4

Forecast evaluation: quarter hourly data

Measure MS FAST VARX SCAD ARX LSTM NN(3,6)
nrRMSE 0.086 0.199 0.199 0.164 0.142 0.202
nmRMSE 0.107 0.247 0.247 0.203 0.197 0.250
niqrRMSE 0.791 1.804 1.803 1.497 1.168 1.830
MAE 0.045 0.096 0.091 0.081 0.079 0.093
MASE 0.339 0.715 0.677 0.604 0.599 0.700

Table 1: 1 day ahead forecast.

MS FASTEC VARX VARX & SCAD ARX LSTM NN
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Forecast evaluation 3-5

Clustering on Forecast results

Figure 8: Actual load, µ of forecast value distribution, LSTM forecast load
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Outlook 4-1

Outlook

� Model refinements and sensitivity test
I Test more advanced machine learning models
I Forecasts up to 3 hours and 12 hours ahead
� Information augmentation
I what type of variable could enhance forecast?
I which could be measured by the company?
� Electricity consumption optimization
I Adjust production schedules by stablizing load curve
I Reduce electricity cost by trading on energy market
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Appendix 5-1

FISTA algorithm

1 Initialise: Γ0 = 0,Ω1 = 0, step size δ1 = 1
2 For t = 1, 2, . . . ,T

I Γt = arg minΓ

[
g(Γ)
L5g

+ 1
2

∥∥∥Γ−
{

Ωt − 1
L5g
5 g(Ωt)

}∥∥∥
2
]

I when penalising nuclear norm Γt = P
(
R− λ

L5g
Ip×m

)
Q>, and

Ωt − 1
L5g
5 g(Ωt) = PRQ> with ALS-SVD (Hastie et al. (2014))

I δt+1 =
1+
√

1+4δ2
t

2
I Ωt+1 = Γt + δt−1

t+1 (Γt − Γt−1)

3 Γ̂ = ΓT

Return
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Appendix 5-2

ALS-SVD algorithm
1 Initialise A = UD, Um×r is randomly chosen matrix with

orthonormal columns and D = Ir
2 Given A, solve for B
I minB ‖X − AB>‖>F + λ‖B‖2F
I B̃> = (D2 + λI )−1DU>X
3 Compute SVD B̃D = Ṽ D̃2R̃>, let V ← Ṽ ,D ← D̃,B = VD
4 Given B , solve for A
I minA ‖X − AB>‖>F + λ‖A‖2F
I Ã> = XVD(D2 + λI )−1

5 Compute SVD ÃD = ŨD̃2R̃>, let U ← Ũ,D ← D̃,A = UD
6 Repeat (2)-(5) until convergence of AB>

7 Compute M = XV , its SVD M = UDσR
>, output:

U,V ← VR,Sλ(Dσ) = diag{(σ1 − λ)+, . . . , (σr − λ)}
Return
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Appendix 5-3

Results: MS FASTEC VARX
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Figure 9: True curve and forecasts at local τ -expectile level.
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Appendix 5-4

Results: VARX, SCAD
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Figure 10: True curve and forecasts for SCAD 96, SCAD 1 and VARX 96:
1 day, 1 quarter hour and 1 day ahead.
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Appendix 5-5

Results: ARX
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Figure 11: True curve and 1 day ahead forecast.

Return

Ökotec
2017.6 2017.7 2017.8 2017.9 2018.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MS−based FASTEC



Appendix 5-6

Results: LSTM

Figure 12: True curve and quarterly-hour 1-day ahead forecast.
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Appendix 5-7

Results: LSTM

Figure 13: True curve and 1-day aggregated ahead forecast.
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Appendix 5-8

Results: NN
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Figure 14: True curve and 1 day ahead forecast.
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Appendix 5-9

Neuron

� M-P neuron model, McCulloch and Pitts(1943)
� "Artificial Neural Networks" (Kohonen, T. ,1988):

Interconnected networks of simple-adaptive elements with
hierarchical interactions
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Appendix 5-10

Perceptron

Figure 15: A perceptron is formed with 2 layers of neural networks, only
output layer uses activation function, so one perceptron has only one func-
tional layer
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Appendix 5-11

Activation Function

sgn(x) =

{
1,x > 0
0,x < 0

sigmoid(x) =
1

1 + e−x
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Appendix 5-12

Activation Function

tanh(x) =
ex − e−x

ex + e−x

ReLU(x) = max{0, x}
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Appendix 5-13

Backpropagation Algorithm
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Appendix 5-14

Backpropagation Algorithm

Ökotec
2017.6 2017.7 2017.8 2017.9 2018.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MS−based FASTEC



Appendix 5-15

Backpropagation Algorithm
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Appendix 5-16

Backpropagation Algorithm
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Appendix 5-17

Long Short-Term Memory networks (LSTM)

Figure 16: LSTM networks, Hochreiter & Schmidhuber (1997)
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Appendix 5-18

LSTM Inside Structure

Figure 17: Ref: Cheng G, et al. (2017)
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Appendix 5-19

Sparse VAR model

1. Stage: partial spectral coherence (PSC):
neg. scaled inverse of spectral density

PSCij(ω) = −
gY
ij (ω)

√
gY
ii (ω)gY

jj (ω)
, ω ∈ (−π, π]

Sij = sup
ω
|PSCij(ω)|

gY (ω) = f Y (ω)−1: inverse density
Si ,j : conditional correlation of turbine i with j
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Appendix 5-20

Sparse VAR modelIEEE TRANSACTIONS ON SMART GRID, ACCEPTED 5

Training Window Length [days]
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Fig. 2: Variation of root mean squared error (RMSE) of AR,
VAR and sVAR models with training window length.

be forecasts to track changes in the time series dynamics (as
discussed in Section III-C); this choice is somewhat arbitrary
but provides a satisfactory trade-off between accuracy and
computational expense. Results of the window length selection
procedure are illustrated in Figure 2. The optimal window
length is L = 60 days for the AR model and L = 150 days for
the sVAR. As already mentioned, the conventional VAR model
is extremely data-hungry and computationally expensive to fit
and as a result a VAR model cannot be fit with more than
L = 270 days of training data on the computer being used
(64-bit operating system, 8GB of RAM, Intel Core i7-2600
3.4GHz processor). Each VAR model is therefore trained on
the maximum L = 270 days of data.

The optimal window length is directly related to the number
of parameters being estimated in each of the three models. The
AR has pM parameters so only requires a modest amount of
training data, whereas the VAR has pM2 parameters and as
a result requires much more training data to produce reliable
parameter estimates. The sVAR offers a compromise: increase
the number of parameters to take advantage of spatial infor-
mation, but only include those parameters deemed significant.

The basic forgetting factor for both exponential smoothing
schemes is chosen such that the effective memory is 2000
samples (λ = 0.9995). The parameters of the dynamic
forgetting factor exponential smoothing scheme are chosen by
expert judgement such that the forgetting factor does not drop
bellow 0.5 (b = 0.4995), such that the forgetting factor is
reduced when the squared residuals exceed 0.1 (a = 0.1), and
such that the gradient of the logit function is sharp (c = 50).

C. Results

The proposed technique is implemented on the test dataset
in the manor determined by the cross-validation exercise
described above.

The 2-stage method for fitting an sVAR model results in
the inclusion of 5%–10% of the possible pM2 parameters.
The number of lags is typically p̃ = 3. A superposition of the
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Fig. 3: Superposition of January 2013 sVAR coefficient matri-
ces taking absolute values and displaying 1 s.f. Blank entries
correspond to coefficients not included in the sparse model
and are therefore equal to zero at all lags. Boxed regions
correspond to those in Figure 1.

VAR coefficient matrices, taking the absolute value of each
element, from one sVAR model is illustrated in Figure 3. There
is a strong diagonal structure with off-diagonal coefficients
appearing in blocks corresponding to groups sites that are close
to one another geographically, precisely the sites one would
expect to display spatio-temporal dependence.

The 10 minute-ahead sVAR forecasts made over a 24 hour
period, and the behaviour of the variable forgetting factor
are presented in Figure 4. Prediction intervals from 10%–
90% are illustrated by shading. The variable forgetting factor
behaves as intended, decreasing to allow fast learning when
the behaviour switches, and then returning to normal. The
width of the prediction intervals behave accordingly and widen
quickly during volatile periods, and narrowing during periods
of relative calm.

Both point and probabilistic forecast scores are used to
quantify the skill of the proposed and benchmark methods.
Point forecasts are assessed using the familiar root mean

squared error, RMSE =
√

1
T

∑T
t=1(xt − x̂t)2, and mean

absolute error, MAE = 1
T

∑T
t=1 |xt−x̂t|, where x̂t = γ−1(µ̂t)

is the predicted value of xt.
The skill of the distributional forecasts is quantified by the

continuous rank probability score (CRPS) and log score [26].
The CRPS is given by

CRPS =
1

T

T∑

t=1

∫ 1

0

{F (x|µ̂t, σ̂t) − 1(x ≥ xt)}2dx (16)

2. Stage: variable selection by ranking according to t-stat
Dowell & Pinsen (2016)
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FASTEC-VAR(p) model

Ψk(τ) =

p∑

i=1

ΘiΨk−i (τ) + ηk

Ψk(τ): vector of loadings at τ -level, Ψ(365×r)

Θi : matrix of VAR coefficients
ηk : white noise error term
τ = {1%, . . . , 50%, . . . , 99%}

López Cabrera & Schulz (2016)
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ARX(p) 6-1

ARX(p)

Yk =

p∑

i=1

ΘiZk−i (τ) +

p∑

i=1

ΞiXk−i (τ) + ηk

Yk : 1× T vector of power load
Zk : p × T matrix of p power load lags
Θi : 1× p vector of AR coefficients
Xk : Mp × T matrix of exogenous variables
Ξi : 1×Mp vector of coefficients
ηk : white noise error term
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VARX(p) 7-1

VAR(p)

Assuming all intra-day observations being "variables" of each day

Yk =

p∑

i=1

ΘiZk−i (τ) +

p∑

i=1

ΞiXk−i (τ) + ηk

Yk : K × T vector of power load
Zk : Kp × T matrix of p power load lags
Θi : K × Kp vector of AR coefficients
Xk : Mp × T matrix of exogenous variables
Ξi : M ×Mp vector of coefficients
ηk : white noise error term
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SCAD VAR(p)

SCAD objective

argmin
1
2

(Y −ΘZ)>(Y −ΘZ) + T ∗
K ·P∑

j=1

pλ(|θ|j).

pλ(|θ|) =





λ|θ| if|θ| ≤ λ
− |θ|2−2αλ|θ|+λ2

2(α−1) ifλ ≤ |θ| ≤ αλ
(α+1)λ2

2 if |θ| ≥ αλ,
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