Local Adaptive Multiplicative Error Models for High-Frequency Forecasts

Wolfgang Karl Härdle Nikolaus Hautsch Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics Chair of Econometrics
C.A.S.E. – Center for Applied Statistics and Economics
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www2.hu-berlin.de/oekonometrie/
http://case.hu-berlin.de

Statistical Challenges

- Understanding high-frequency dynamics

 - Regime shifts
- Modelling using procrustrean assumptions
 - Time-invariant parameters
 - ► Transition form, number of regimes, transition variable type

- (i) Localising Multiplicative Error Models (MEM)
 - Local parametric approach (LPA)
 - ▶ Balance between modelling bias and parameter variability
 - Estimation windows with potentially varying lengths
- (ii) Short-term forecasting
 - Case study: trading volume
 - Evaluation against standard approach fixed estimation length on an ad hoc basis

Example

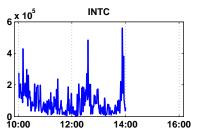


Figure 1: One-minute cumulated trading volume for Intel Corporation (INTC) on 20080902

Example

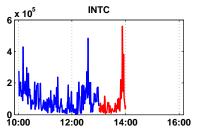


Figure 2: One-minute cumulated trading volume for Intel Corporation (INTC) on 20080902 with an estimation window length of 60

Example

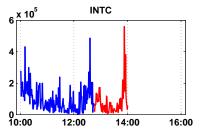


Figure 3: One-minute cumulated trading volume for Intel Corporation (INTC) on 20080902 with an estimation window length of 75

₩<u>₩</u>

Example

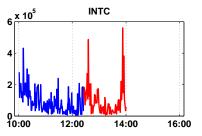


Figure 4: One-minute cumulated trading volume for Intel Corporation (INTC) on 20080902 with an estimation window length of 95

Example

Example: Short-term forecasting

Forecasting strategies up to the next one hour:

- (i) 'Standard' method fixed estimation window (one day/week)
- (ii) LPA technique with adaptively selected interval of homogeneity

Outline

- 1 Motivation ✓
- 2. Multiplicative Error Models (MEM)
- 3. Local Parametric Approach
- 4. Empirical Results
- 5. Conclusions

Multiplicative Error Models (MEM)

 \square Engle (2002), MEM(p,q), \mathcal{F}_i - information set up to i

$$y_i = \mu_i \varepsilon_i,$$
 $\mathbb{E}\left[\varepsilon_i \mid \mathcal{F}_{i-1}\right] = 1$
 $\mu_i = \omega + \sum_{j=1}^p \alpha_j y_{i-j} + \sum_{j=1}^q \beta_j \mu_{i-j},$ $\omega > 0, \alpha_j, \beta_j \ge 0$

- y_i squared (de-meaned) log return: GARCH(p,q)
- y_i volume, bid-ask spread, duration: ACD(p,q)

Engle, Robert F. on BBI:

Parametric Modelling

- 1. Exponential-ACD, Engle and Russel (1998) FACD $\varepsilon_i \sim Exp(1), \ \theta_E = (\omega, \alpha, \beta)^\top, \ \alpha = (\alpha_1, \dots, \alpha_p)^\top, \ \beta = (\beta_1, \dots, \beta_q)^\top$
- 2. Weibull-ACD, Engle and Russel (1998) $\epsilon_i \sim \mathcal{G}(s,1), \ \theta_W = (\omega, \alpha, \beta, s)^{\top}$
- oxdot Quasi maximum likelihood estimates (QMLEs) of $oldsymbol{ heta}_{E}$ and $oldsymbol{ heta}_{W}$

$$\widetilde{\boldsymbol{\theta}}_{l} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L_{l}(\boldsymbol{y}; \boldsymbol{\theta}) \tag{1}$$

- ▶ Data interval (fix i_0 , length n) $I = [i_0 n, i_0]$
- ▶ Quasi log likelihood $L_I(\cdot)$, see (2) and (3)

Weibull, E. H. Waloddi on BBI:

Parameter Dynamics

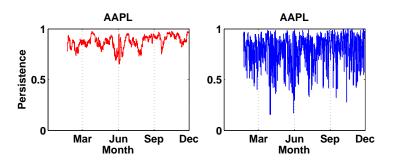


Figure 5: Estimated weekly (n=1800) and daily (n=360) persistence $\widetilde{\alpha}_i + \widetilde{\beta}_i$ for seasonally adjusted trading volume using an EACD(1,1) at each minute in 2008

Local Adaptive MEM

Estimation Quality

Quality of estimating θ^* by QMLE $\widetilde{\theta}_I$ in terms of Kullback-Leibler divergence; $\mathcal{R}_r(\theta^*)$ - risk bound

$$\mathsf{E}_{\boldsymbol{\theta}^*} \left| L_I(\widetilde{\boldsymbol{\theta}}_I) - L_I(\boldsymbol{\theta}^*) \right|^r \leq \mathcal{R}_r(\boldsymbol{\theta}^*)$$

'Modest' risk, r = 0.5 (shorter intervals of homogeneity)

'Conservative' risk, r=1 (longer intervals of homogeneity)

Kullback, Solomon and Leibler, Richard A. on BBI:

Local Parametric Approach (LPA)

- GARCH(1,1) models Čížek et al. (2009)
- □ Realized volatility Chen et al. (2010)
- LPA: time series parameters can be locally approximated
- Balance between modelling bias and parameter variability

Statistical Framework

- LPA: Spokoiny (1998, 2009)
- □ Small modelling bias (SMB) 'Oracle' interval
- □ Local change point detection test Interval of homogeneity
- oxdot Adaptive estimate $\widehat{ heta}$ QMLE at the interval of homogeneity

Interval Selection

 \Box (K+1) nested intervals with length $n_k = |I_k|$

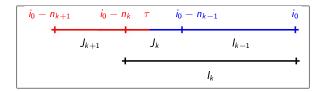
Example: Trading volumes aggregated over 1-min periods

Fix
$$i_0$$
, $I_k = [i_0 - n_k, i_0]$, $n_k = [n_0 c^k]$, $c > 1$

$$\{n_k\}_{k=0}^{13} = \{60 \text{ min.}, 75 \text{ min.}, \dots, 1 \text{ week}\}, c = 1.25$$

Local Change Point Detection **Example**

 H_0 : parameter homogeneity within I_k vs. H_1 : change point within I_k



$$\begin{split} T_k &= \sup_{\tau \in J_k} \left\{ L_{A_{k,\tau}} \left(\widetilde{\theta}_{A_{k,\tau}} \right) + L_{B_{k,\tau}} \left(\widetilde{\theta}_{B_{k,\tau}} \right) - L_{I_{k+1}} \left(\widetilde{\theta}_{I_{k+1}} \right) \right\}, \\ \text{with } J_k &= I_k \setminus I_{k-1}, \ A_{k,\tau} = [i_0 - n_{k+1}, \tau] \text{ and } B_{k,\tau} = (\tau, i_0] \end{split}$$

⊸′~

Critical Values, 3k

- \odot Simulate \mathfrak{z}_k under the null of the homogeneity of the interval sequence l_0, \ldots, l_k
- \Box Check \mathfrak{z}_k for different θ^*
 - Nine different parameters θ^* for each model (EACD and WACD) and risk level (r=0.5 and r=1)
 - Findings: \mathfrak{z}_k are virtually invariable w.r.t. θ^* given a scenario Largest differences at first two or three steps

Critical Values, 3k

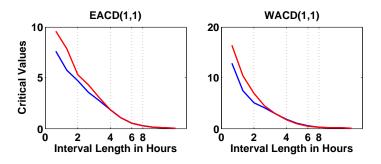


Figure 6: Critical values for low $(\widetilde{\alpha} + \widetilde{\beta} = 0.84)$ and high $(\widetilde{\alpha} + \widetilde{\beta} = 0.93)$ weekly persistence and 'modest' risk (r = 0.5)

Adaptive Estimation

- oxdot Compare ${\mathcal T}_k$ at every step k with ${\mathfrak z}_k$
- oxdot Data window index of the *interval of homogeneity* \widehat{k}
- Adaptive estimate

$$\widehat{\boldsymbol{\theta}} = \widetilde{\boldsymbol{\theta}}_{\widehat{k}}, \quad \widehat{k} = \max_{k \leq K} \{k : T_{\ell} \leq \mathfrak{z}_{\ell}, \ell \leq k\}$$

oxdot Note: rejecting the null at k=1, $\widehat{ heta}$ equals QMLE at I_0 If the algorithm goes until K, $\widehat{ heta}$ equals QMLE at I_K

Data

- NASDAQ Stock Market in 2008, 250 trading days
 - 5 stocks: AAPL, CSCO, INTC, MSFT and ORCL
 - \check{y}_i one-minute cumulated trading volume from 10:00-16:00
 - \triangleright y_i seasonally adjusted trading volume
- □ Periodicity effect FFS approximation, Gallant (1981)
 - ➤ 30-days rolling windows, Engle and Rangel (2008)
 - ▶ Order M = 1, ..., 6 selected by BIC, $\bar{\imath} \in [0, 1]$

$$y_i = \breve{y}_i / [\delta \cdot \overline{\imath} + \sum_{m=1}^{M} \left\{ \delta_{c,m} \cos \left(\overline{\imath} \cdot 2\pi m \right) + \delta_{s,m} \sin \left(\overline{\imath} \cdot 2\pi m \right) \right\}]$$

Intraday Periodicity

Figure 7: Estimated intraday periodicity components for AAPL, M=6

Adaptive Estimation

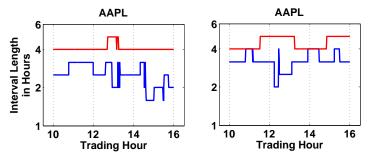


Figure 8: Estimated interval length $n_{\hat{k}}$ for the conservative (r=1) and modest (r=0.5) risk case on 20080902 (left, lowest volume) and 20081030 (right, highest volume) using the EACD model

Adaptive Estimation

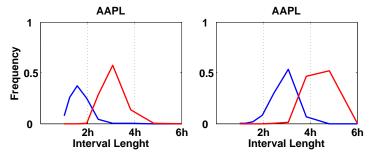


Figure 9: Estimated interval length $n_{\hat{k}}$ for the conservative (r=1) and modest (r=0.5) risk case in 2008 using the EACD (left) and WACD (right) models

Forecasting

Strategies

- LPA technique with adaptively selected interval of homogeneity

Setup

- □ Forecasting period: 20080222 20081222 (210 trading days)
- oxdot Forecasts at each minute (horizon $h=1,\ldots,60$ min.)
- (a) Sign test, (b) Diebold-Mariano test, (c) Forecasting regressions

Forecasting Accuracy

- 1. Overall performance LPA qualitatively outperforms 'standard' methods, quantitatively equal to 1-day 'standard' method
- 2. Forecasting horizon performance best at approx. 3-4 minutes
- 3. Course of a typical trading day best results after 14:00
- 4. *Model specifications and tuning parameters* WACD slightly better, insensitivity

Forecasting Accuracy

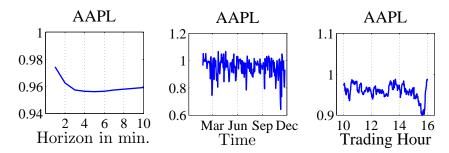


Figure 10: Ratio between the RMSPE of the LPA method and the RMSPE of the standard approach using an EACD(1,1) model for Apple Inc. (AAPL) from 20100222 to 20101222 (210 trading days)

Forecasting Accuracy

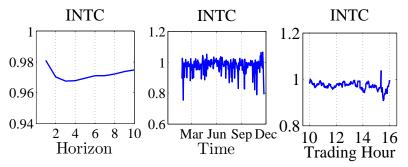


Figure 11: Ratio between the RMSPE of the LPA method and the RMSPE of the standard approach using an EACD(1,1) model for Intel Corporation (INTC) from 20100222 to 20101222 (210 trading days)

Conclusions — 5-1

Conclusions

Localising MEM

- Time-varying parameters and estimation quality
- \Box Precise adaptive estimation (r = 1) requires 4-5 hours of data, modest risk approach (r = 0.5) requires 2-3 hours

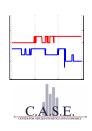
Forecasting Trading Volume

- LPA outperforms the 'standard' method
- Overall performance, horizon, trading day, tuning parameters

Local Adaptive Multiplicative Error Models for High-Frequency Forecasts

Wolfgang Karl Härdle Nikolaus Hautsch Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics Chair of Econometrics
C.A.S.E. – Center for Applied Statistics and Economics
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www2.hu-berlin.de/oekonometrie/
http://case.hu-berlin.de



References

References

Čížek, P., Härdle, W. and Spokoiny, V. Adaptive Pointwise Estimation in Time-Inhomogeneous Conditional Heteroscedasticity Models Econometrics Journal 12: 248-271, 2009

Engle, R. F.

New Frontiers for ARCH Models Journal of Applied Econometrics 17: 425-446, 2002

📑 Engle, R. F. and Russell, J. R.

Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data

Econometrica 66(5): 1127-1162, 1998

References

References

Gallant, A. R.

On the bias of flexible functional forms and an essentially unbiased form

Journal of Econometrics 15: 211-245, 1981

Spokoiny, V.

Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice The Annals of Statistics 26(4): 1356-1378, 1998

Spokoiny, V.

Multiscale Local Change Point Detection with Applications to Value-at-Risk

The Annals of Statistics **37**(3): 1405–1436, 2009

Economic Benefits Objectives

Flexible statistical framework

- MEM parameter dynamics: strength and frequency
- Typical interval lengths of parameter homogeneity
- Short-term forecasting

Appendix — 7-2

Exponential-ACD (EACD) Parametric Modelling

□ Engle and Russel (1998), $\varepsilon_t \sim Exp(1)$

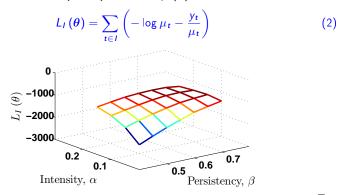


Figure 12: Quasi log likelihood - EACD(1,1), $\boldsymbol{\theta}^* = (0.10, 0.20, 0.65)^{\top}$

Local Adaptive MEM

Appendix — 7-3

Weibull-ACD (WACD) Parametric Modelling

oxdot Engle and Russel (1998), $arepsilon_t \sim ext{standardised } \mathcal{G}\left(s,1
ight)$

$$L_{I}(\boldsymbol{\theta}) = \sum_{t \in I} \left[\log \frac{s}{y_{t}} + s \log \frac{\Gamma(1+1/s)y_{t}}{\mu_{t}} - \left\{ \frac{\Gamma(1+1/s)y_{t}}{\mu_{t}} \right\}^{s} \right]$$
(3)

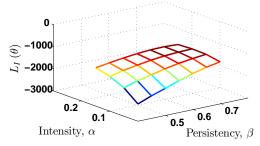


Figure 13: Quasi log likelihood - WACD(1,1),
$$\boldsymbol{\theta}^* = \begin{pmatrix} 0.10, 0.20, 0.65, 0.85 \end{pmatrix}^\top$$

Appendix — 7-4

Local Change Point Detection ••••

Example: Trading volumes aggregated over 1-min periods

- \odot Scheme with (K+1)=14 intervals and fix i_0
- oxdot Assume $I_0=60$ min. is homogeneous
- - lacksquare Define $J_1=I_1\setminus I_0$ observations from y_{i_0-75} up to y_{i_0-60}
 - ▶ For each $\tau \in J_1$ fit log likelihoods over $A_{1,\tau}$, $B_{1,\tau}$ and I_2
 - Find the largest likelihood ratio T_{I_1,J_1}

