Cross Country Evidence for the EPK Paradox

Maria Grith Wolfgang Karl Härdle Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

Motivation

\boxdot Pricing kernel (PK), $\mathcal K$

- Preference based models
 - Marginal rate of substitution (MRS)
- Arbitrage free models
 - Radon-Nikodym derivative of the physical measure w.r.t. the risk neutral measure

Empirical pricing kernel (EPK)

- $\widehat{\mathcal{K}}$ any estimate of the PK
- EPK paradox locally increasing EPK

PK Estimation

Indirect estimation, $\widehat{\mathcal{K}} = \frac{\widehat{q}}{\widehat{\rho}}$

- q risk neutral density; p physical density
- Aït-Sahalia and Lo (2000), Engle and Rosenberg (2002), Brown and Jackwerth (2004), Giacomini and Härdle (2008), Härdle et al. (2010), Grith et al. (2010)
- \boxdot Direct estimation, $\widehat{\mathcal{K}} = \mathcal{G}_{\widehat{\theta}}$
 - Parameter θ and given function G
 - Dittmar (2002), Schweri (2011)

EPK Paradox: Option Markets

Figure 1: EPK's across moneyness κ and maturity τ for DAX from 20010101 – 20011231, Giacomini and Härdle (2008) Cross Country Evidence for the EPK Paradox

EPK Paradox: Stock Markets

Figure 2: EPK for the US stock market. Data: returns of 20 industrysorted portfolios from 19630731 to 19951231 with human capital (lagged labor income), Dittmar (2002) Cross Country Evidence for the EPK Paradox

Objectives

Pricing Kernel (PK) estimation

- State-dependent utility
- Generalized Method of Moments (GMM)

EPK paradox across equity markets

- ► Time-varying EPK
- Statistical properties

Research Questions

- Does empirical evidence from equity data suggest a locally increasing EPK?
- ☑ Are the estimation results significant?
- How do PK estimates vary across countries and over time?

Outline

- 1. Motivation \checkmark
- 2. Pricing Kernel (PK)
- 3. Generalized Method of Moments (GMM)
- 4. Empirical Results
- 5. Conclusion

Preference Based Model

- \boxdot Representative agent with exogenous income ω_t
- 🖸 Budget constraints

$$c_t = \omega_t - q_t^\top S_t \tag{1}$$

$$c_{t+1} = \omega_{t+1} + q_t^\top S_{t+1} \tag{2}$$

with consumption c_t , k assets, prices $S_t = (S_{1,t}, \ldots, S_{k,t})^\top$, asset holdings $q_t = (q_{1,t}, \ldots, q_{k,t})^\top$ \therefore Returns $R_{t+1} = (S_{1,t+1}/S_{1,t}, \ldots, S_{k,t+1}/S_{k,t})^\top$

State-Independent Preferences

Utility maximization

 $\max_{c_{t+1}} \mathsf{E}_{t} \left[u \left(c_{t+1} \right) \right], \text{under constraints (1) and (2)}$

with utility function of the representative agent $u(\cdot)$, $\mathsf{E}_t[\cdot] = \mathsf{E}[\cdot | \mathcal{F}_t]$, \mathcal{F}_t - information set up to t

State-Independent Preferences

⊡ State-independent PK

$$\mathcal{K}_{t}\left(c_{t+1}\right) = \beta \frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)}$$

with discount factor β

State-Dependent Preferences

☑ Reference dependent utility function

 $u(c_{t+1},x) = u(c_{t+1}) I \{x \in [0,x_0]\} + bu(c_{t+1}) I \{x \in [x_0,\infty)\},\$

with state variable x, reference point x_0 and parameter b

Utility maximization

 $\max_{c_{t+1}} \mathsf{E}_{t} \left[u \left(c_{t+1}, x \right) \right], \text{ under constraints (1) and (2)}$

State-Dependent Preferences

⊡ State-dependent PK

$$\begin{aligned} \mathcal{K}_{t}\left(c_{t}, c_{t+1}\right) &= \beta_{1} \frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)} \mathsf{I}\left\{x \in [0, x_{0}\right)\right\} + \\ &+ \beta_{2} \frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)} \mathsf{I}\left\{x \in [x_{0}, \infty)\right\}\end{aligned}$$

$$\beta_1=\beta$$
, $\beta_2=\beta b$

Pricing Kernel

 Consumption growth is linear in the market portfolio gross return, Cochrane (2001)

Define
$$c_{t+1} \stackrel{\text{def}}{=} r_{m,t+1} = S_{m,t+1}/S_{m,t}$$

Pricing Kernel

Pricing Kernel

$$\mathcal{K}_{\theta,t}(r_{m,t+1}) = \beta_1 r_{m,t+1}^{-1} \mathsf{I} \{ r_{m,t+1} \in [0, x_0) \} + \beta_2 r_{m,t+1}^{-1} \mathsf{I} \{ r_{m,t+1} \in [x_0, \infty) \}$$

$$S_{t} = \mathsf{E}_{t} \left[\mathcal{K}_{\theta,t} \left(r_{m,t+1} \right) S_{t+1} \right]$$

$$1_{k} = \mathsf{E}_{t} \left[\mathcal{K}_{\theta,t} \left(r_{m,t+1} \right) R_{t+1} \right]$$

Generalized Method of Moments

□ Hansen (1982), expectation of k moment conditions $\mathsf{E}_t \left[\mathcal{K}_{\theta,t} \left(r_{m,t+1} \right) \mathcal{R}_{t+1} - \mathbf{1}_k \right] = \mathbf{0}_k$

GMM Estimation

1. Iterated GMM

Hansen and Singleton (1982), Ferson and Foerster (1994) $\widetilde{\theta}_n \stackrel{\text{def}}{=} \arg\min_{\theta} \left\{ g_n^{\top}(\theta) g_n(\theta) \right\}, \quad \widetilde{W}_n = n^{-1} \sum_{t=0}^{n-1} g(\widetilde{\theta}_n) g(\widetilde{\theta}_n)^{\top}$ $\widehat{\theta}_n \stackrel{\text{def}}{=} \arg\min_{\theta} \left\{ g_n^{\top}(\theta) \widetilde{W}_n^{-1} g_n(\theta) \right\}, \quad \widehat{W}_n = n^{-1} \sum_{t=0}^{n-1} g(\widehat{\theta}_n) g(\widehat{\theta}_n)^{\top}$

2. GMM with Hansen-Jagannathan (HJ) weighting matrix Jagannathan and Wang (1996), Hansen and Jagannathan (1997), $\widetilde{W}_n = n^{-1} \sum_{t=0}^{n-1} R_t R_t^{\top}$

GMM Hypothesis Testing

■ Newey and West (1987) - "D-test"

Test statistic

 $D = ng_n^{\top}(\widetilde{\theta}_n)\widetilde{W}_n^{-1}g_n(\widetilde{\theta}_n) - ng_n^{\top}(\check{\theta}_n)\check{W}_n^{-1}g_n(\check{\theta}_n) \xrightarrow{\mathcal{L}} \chi_j^2,$

with j parameter restrictions, two estimates $\tilde{\theta}_n$ and $\check{\theta}_n$ with weighting matrices \widetilde{W} and \check{W} , respectively

Data

- Markets: Australian Securities Exchange (AUS), Deutsche Börse (GER), Tokyo Stock Exchange (JPN), SIX Swiss Exchange (SUI), LSE (UK), NYSE (US)
- 🖸 Span: 1 January 1990 31 May 2012 (daily data)
- Series: stock market indices, prices of 20 largest blue chips per market
- ⊡ Windows: $n \in \{250 \ (1 \ year), 500 \ (2 \ years), 1250 \ (5 \ years)\}$

PK Estimation

Scenarios

Case 1. $\beta_1, \beta_2 > 0$ - state-dependent, unconstrained Case 2. $\beta_2 > \beta_1 > 0$ - state-dependent, constrained Case 3. $\beta_1 = \beta_2 = \beta > 0$ - state-independent

Parameter Dynamics

Figure 3: Time series of the estimated parameters β_1 and β_2 across six worldwide largest stock markets for case 2 ($\beta_2 > \beta_1 > 0$). We employ the iterated GMM estimation technique with n = 500 (2 years). Cross Country Evidence for the EPK Paradox

Reference Point Analysis

Figure 4: Kernel density plots (Gaussian kernel with optimal bandwidth) of optimal reference point x_0 for case 2 ($\beta_2 > \beta_1 > 0$). We employ the iterated GMM estimation technique with n = 500 (2 years). Cross Country Evidence for the EPK Paradox

Empirical Pricing Kernels

Figure 5: Empirical pricing kernels across six worldwide largest stock markets (for average parameter values): case 1, $\beta_1, \beta_2 > 0$ and case 2, $\beta_1 = \beta_2 = \beta$. Cross Country Evidence for the EPK Paradox

Hypothesis Testing

	Iterated GMM			GMM with HJ matrix		
	1 year	2 years	5 years	1 year	2 years	5 years
AUS	76.32	79.49	67.76	68.64	69.88	70.21
GER	89.94	88.99	81.76	81.55	84.27	86.30
JPN	84.22	83.02	83.15	83.60	84.67	76.93
SUI	92.06	88.47	87.14	85.21	79.77	80.62
UK	82.13	86.43	79.26	86.20	73.61	81.32
US	78.16	75.92	74.85	70.44	52.64	54.81

Table 1: Percentage of rejections of the null hypothesis of the *D*-test (H_0 : $\beta_1 = \beta_2 = \beta$) as indicator for the existence of the EPK paradox across the worldwide largest six stock markets.

Cross Country Evidence for the EPK Paradox

4-6

Germany: EPK Dynamics

Figure 6: EPK on the German stock market in 2005.

Conclusion

Pricing Kernel (PK) estimation

- State-dependent utility admits PK nonmonotonicity
- GMM successfully used for estimation and hypothesis testing

EPK paradox across equity markets

- Time-varying preferences
- Optimal reference point slightly above 1
- Statistically significant results

Future Research

- Distribution of reference points
- Cross-country estimation
- 🖸 Statistical arbitrage
- Option and equity data

Cross Country Evidence for the EPK Paradox

Maria Grith Wolfgang Karl Härdle Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

🛸 Cochrane, J.H.

Asset Pricing Princeton University Press, 2001

Dittmar, R.F.

Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from the Cross Section of Equity Returns Journal of Finance **62**(1): 369-403, 2002

Ferson, W.E. and Foerster, S.R.

Finite sample properties of the Generalized Method of Moments in tests of conditional asset pricing models Journal of Financial Economics 36: 29-55, 1994


```
Giacomini, E. and Härdle, W. K.
```

Dynamic Semiparametric Factor Models in Pricing Kernel Estimation

in Functional and Operational Statistics, Dabo-Niang, S. and Ferraty, F. (Eds), Contributions to Statistics, Springer Verlag ISBN 978-3-7908-2061-4. 181–187, 2008

Hansen, L.P.

Large sample properties of generalized method of moments estimators

Econometrica 50: 1029–1054, 1982


```
    Hansen, L.P. and Jagannathan, R.
    Assessing specification errors in stochastic discount factor
models
    Journal of Finance 52: 557–590, 1997
```

Hansen, L.P. and Singleton, K.J. Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models Econometrica 50: 1269–1286, 1982

Jagannathan, R. and Wang, Z. The Conditional CAPM and the Cross-Section of Expected Returns Journal of Finance 51(1): 3–53, 1996

Newey, W.K. and West, K.D.

Hypothesis Testing with Efficient Method of Moments Estimation International Economic Review 28(3): 777-787, 1987

Risk Neutral Valuation Motivation

 \Box Present value of the payoffs $\psi(S_T)$

$$P_0 = \mathsf{E}_Q\left[e^{-Tr}\psi(s_T)\right] = \int_0^\infty e^{-Tr}\psi(s_T) \, \mathcal{K}(s_T)p(s_T) \, ds_T$$

r risk free interest rate, $\{S_t\}_{t \in [0,T]}$ stock price process, *p* pdf of S_T , *Q* risk neutral measure, $\mathcal{K}(\cdot)$ pricing kernel 6-5

PK under the Black-Scholes Model Motivation

 \square Geometric Brownian motion for S_t

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t$$

 μ mean, σ volatility, W_t Wiener process

 \boxdot Physical density *p* is log-normal, au = T - t

$$p_t(S_T) = \frac{1}{S_T \sqrt{2\pi\sigma^2 \tau}} \exp\left[-\frac{1}{2} \left\{\frac{\log(S_T/S_t) - \left(\mu - \frac{\sigma^2}{2}\right)\tau}{\sigma\sqrt{\tau}}\right\}^2\right]$$

 \boxdot Risk neutral density q is log-normal: replace μ by r

PK under the Black-Scholes Model Motivation

 \square PK is a decreasing function in S_T for fixed S_t

$$\mathcal{K}(S_t, S_T) = \left(\frac{S_T}{S_t}\right)^{-\frac{\mu-r}{\sigma^2}} \exp\left\{\frac{(\mu-r)\left(\mu+r-\sigma^2\right)\tau}{2\sigma^2}\right\}$$
$$= b\left(\frac{S_T}{S_t}\right)^{-\delta}$$

 $b = \exp\left\{\frac{(\mu-r)(\mu+r-\sigma^2)\tau}{2\sigma^2}\right\}$ and $\delta = \frac{\mu-r}{\sigma^2} \ge 0$ constant relative risk aversion (CRRA) coefficient

