Adaptive Order Flow Forecasting with Multiplicative Error Models

Wolfgang Karl Härdle Andrija Mihoci Christopher Hian-Ann Ting

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin Lee Kong Chian School of Business Singapore Management University http://lvb.wiwi.hu-berlin.de http://lvb.wiwi.hu-berlin.de http://business.smu.edu.sg

Figure 1: One-minute aggregated size of buyer-initiated and seller-initiated trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities Exchange on 20130305 • Volume (Description)

Adaptive Order Flow Forecasting

Figure 2: One-minute aggregated size of buyer-initiated and seller-initiated trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities Exchange on 20130305 with an estimation window length of 60

Adaptive Order Flow Forecasting

Figure 3: One-minute aggregated size of buyer-initiated and seller-initiated trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities Exchange on 20130305 with an estimation window length of 75

Figure 4: One-minute aggregated size of buyer-initiated and seller-initiated trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities Exchange on 20130305 with an estimation window length of 94

Adaptive Order Flow Forecasting

Figure 5: One-minute aggregated size of buyer-initiated and seller-initiated trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities Exchange on 20130305 with an estimation window length of 118

Adaptive Order Flow Forecasting

Figure 6: Order flow (difference between the buyer-initiated and the sellerinitiated volume) for the 'mini Nikkei 225 index futures' traded at the Osaka Securities Exchange on 20130305

A brokerage decides to trade contracts over a forecasted period (e.g., 5min.) a trading day. A position (buy/sell) is entered ahead the forecasted period and closed afterwards.

Trading Strategies

- Strategy (i) 'Buy if predicted order flow is positive and sell if negative'
- ⊡ Strategy (ii): 'Buy if predicted order flow is positive'
- □ Strategy (iii): 'Sell if predicted order flow is negative'

Short-Term Order Flow Forecasting

- Local adaptive Multiplicative Error Model (MEM)
- Balance between modelling bias and parameter variability
- Estimation windows with potentially varying lengths

🖸 Intra-Day Trading

- Buyer- and seller-initiated trades and order flow dynamics
- Calibration and evaluation of trading strategies

Statistics and Quantitative Finance

Statistics

- Modelling bias vs. parameter variability
- ☑ Flexible framework and predictive accuracy

Quantitative Finance Practice

- Trading strategies, threshold selection
- ☑ Performace evaluation, equity curves

Outline

- 1. Motivation \checkmark
- 2. Local Adaptive Multiplicative Error Model (MEM)
- 3. Order Flow Dynamics
- 4. Order Flow Forecasting
- 5. Intra-Day Trading
- 6. Conclusions

Local Adaptive Multiplicative Error Model (MEM) — Multiplicative Error Model (MEM)

□ Engle (2002), MEM(p, q), \mathcal{F}_i - information set up to *i*

$$y_{i} = \mu_{i}\varepsilon_{i}, \qquad \qquad \mathsf{E}\left[\varepsilon_{i} | \mathcal{F}_{i-1}\right] = 1$$
$$\mu_{i} = \omega + \sum_{j=1}^{p} \alpha_{j}y_{i-j} + \sum_{j=1}^{q} \beta_{j}\mu_{i-j}, \qquad \omega > 0, \alpha_{j}, \beta_{j} \ge 0$$

□ Hautsch (2012) - comprehensive MEM literature overview

- > y_i squared (de-meaned) log return: GARCH(p, q)
- > y_i volume, bid-ask spread, duration: ACD(p, q)

- 1. Exponential-ACD, Engle and Russel (1998) $\varepsilon_i \sim Exp(1), \ \theta_E = (\omega, \alpha, \beta)^\top, \ \alpha = (\alpha_1, \dots, \alpha_p), \ \beta = (\beta_1, \dots, \beta_q)$

Weibull, E. H. Waloddi on BBI:

- Consistent parameter estimation
- Data calibration with time-varying intervals
- oxdot Quasi maximum likelihood estimates (QMLEs) of $oldsymbol{ heta}_E$ and $oldsymbol{ heta}_W$

$$\widetilde{\boldsymbol{\theta}}_{l} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L_{l}(\boldsymbol{y}; \boldsymbol{\theta})$$
(1)

▶ $I = [i_0 - n, i_0]$ - interval of (n + 1) observations at i_0 ▶ $L_I(\cdot)$ - log likelihood, ♥ EACD and ♥ WACD

Local Adaptive Multiplicative Error Model (MEM) – Estimation Quality

- Mercurio and Spokoiny (2004), Spokoiny (2009)
- Quality of estimating *true* parameter vector θ^* by QMLE $\hat{\theta}_I$ in terms of Kullback-Leibler divergence; $\mathcal{R}_r(\theta^*)$ risk bound

$$\mathsf{E}_{{m{ heta}}^*} \left| L_l(\widetilde{{m{ heta}}}_l) - L_l({m{ heta}}^*)
ight|^r \leq \mathcal{R}_r({m{ heta}}^*) \quad lacksquare{} \mathsf{Gaussian Regression}$$

- Likelihood based confidence sets
- 'Modest' risk, r = 0.5 (shorter intervals of homogeneity)
- \odot 'Conservative' risk, r = 1 (longer intervals of homogeneity)

Kullback, Solomon and Leibler, Richard A. on BBI: 🌋

Local Parametric Approach (LPA)

LPA, Spokoiny (1998, 2009)

- Time series parameters can be locally approximated
- Finding the (longest) interval of homogeneity
- Balance between modelling bias and parameter variability

Time series literature

- GARCH(1,1) models Čížek et al. (2009)
- Realized volatility Chen et al. (2010)
- Multiplicative Error Models Härdle et al. (2014)

Local Adaptive Multiplicative Error Model (MEM) ————— Interval Selection

 \boxdot (K + 1) nested intervals with length $n_k = |I_k|$

Example: Trading volumes aggregated over 1-min periods Fix i_0 , $I_k = [i_0 - n_k, i_0]$, $n_k = [n_0 c^k]$, c > 1 $\{n_k\}_{k=0}^{14} = \{15 \text{ min.}, 19 \text{ min.}, \dots, 1 \text{ day}\}$, c = 1.25

Adaptive Order Flow Forecasting -

Local Adaptive Multiplicative Error Model (MEM) Local Change Point Detection **Example**

 \Box Fix i_0 , sequential test $(k = 1, \ldots, K)$

 H_0 : parameter homogeneity within I_k vs. H_1 : \exists change point within J_k

2-7

$$\begin{split} T_{k} &= \sup_{\tau \in J_{k}} \left\{ L_{A_{k,\tau}} \left(\widetilde{\theta}_{A_{k,\tau}} \right) + L_{B_{k,\tau}} \left(\widetilde{\theta}_{B_{k,\tau}} \right) - L_{I_{k+1}} \left(\widetilde{\theta}_{I_{k+1}} \right) \right\}, \\ \text{with } J_{k} &= I_{k} \setminus I_{k-1}, \ A_{k,\tau} = [i_{0} - n_{k+1}, \tau] \text{ and } B_{k,\tau} = (\tau, i_{0}] \end{split}$$

Adaptive Order Flow Forecasting

Local Adaptive Multiplicative Error Model (MEM) Critical Values, $\mathfrak{Z}_k \bullet \mathsf{Critical Values}$

Figure 7: Simulated critical values of an EACD(1,1) model and chosen parameter constellations according to Table 2. Volume series upper panel, order flow lower panel. Adaptive Order Flow Forecasting

- \boxdot Compare T_k at every step k with \mathfrak{z}_k
- \boxdot Data window index of the *interval of homogeneity* \widehat{k}
- 🖸 Adaptive estimate

$$\widehat{oldsymbol{ heta}} = \widetilde{oldsymbol{ heta}}_{\widehat{k}}, \quad \widehat{k} = \max_{k \leq K} \left\{ k : T_\ell \leq \mathfrak{z}_\ell, \ell \leq k
ight\}$$

■ Note: rejecting the null at k = 1, $\hat{\theta}$ equals QMLE at I₀ If the algorithm goes until K, $\hat{\theta}$ equals QMLE at I_K

Data

🖸 Osaka Securities Exchange

- Series: mini Nikkei 225 index futures
- NO12U 20120628-20120913, NO12Z 20120914-20121213, NO13H 20121214-20130307, NO13M 20130308-20130524
- ⊡ Span: 20120628 20130524
 - Data on 20130304 removed as trading stopped between 11:06-14:10
 - 218 trading days (78480 minutes), 09:01-15:00

 \boxdot One-minute cumulated volumes at day d and minute i

- Buyer-initiated $\breve{y}_{i,d}^{b}$, seller-initiated $\breve{y}_{i,d}^{s}$
- Order flow $\breve{y}_{i,d}^b \breve{y}_{i,d}^s$, relative order flow $\breve{y}_{i,d}^b / (\breve{y}_{i,d}^b + \breve{y}_{i,d}^s)$

• Seasonally adjusted volume • Periodicity component $s_{i,d-1}$

- Buyer-initiated volume, $y_{i,d}^b = \breve{y}_{i,d}^b / s_{i,d-1}^b$
- Seller-initiated volume, $y_{i,d}^s = \breve{y}_{i,d}^s / s_{i,d-1}^s$
- ▶ d = 31, ..., 218 (20120813 20130524), i = 1, ..., 360

Figure 8: Estimated intraday periodicity factors for the buyer-initiated and the seller-initiated trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities Exchange from 20120813-20130524

Adaptive Order Flow Forecasting

Figure 9: Estimated length of intervals of homogeneity (in minutes)
Adaptive Order Flow Forecasting

Order Flow Forecasting

Setup

- Forecasting period: 20120815 20130523 (186 days)
- Forecasts at each minute
 - Computed recursively
 - Multiplied by the seasonality component associated with the previous 30 days
- Predicted order flow: difference between predicted buyer and seller-initiated volume; predicted relative order flow

Intra-Day Trading — Intra-Day Trading

Transactions

- \boxdot Profit or loss from 'trading' one futures contract in Ξ
- New transaction end of the current minute at current transaction price
- Offset transaction after 5 min.

Results

- □ Calibration phase: 20120814-20121231
- ☑ Evaluation phase: 20130104-20130523

Intra-Day Trading **Trading Strategies**

Strategies

- (i) 'Buy if positive and sell if negative'
- (ii) 'Buy if positive'
- (iii) 'Sell if negative'

Strategies

- □ Compare: order flow with 0, relative order flow with 0.5
- 🖸 Threshold e.g., 95th percentile of the observed series

Intra-Day Trading — Trading Profit - Calibration Phase

Figure 10: Cumulative profit in thousands \cong per one contract between 20120814-20121231. Order flow (upper panel), relative order flow (lower panel), non-zero threshold in red.

Adaptive Order Flow Forecasting

Intra-Day Trading **Trading Profit - Evaluation Phase**

Figure 11: Cumulative profit in thousands Ξ per one contract between 20130104-20130523. Order flow (upper panel), relative order flow (lower panel), non-zero threshold in red.

Adaptive Order Flow Forecasting

Short-Term Order Flow Forecasting

- Order flow predicted successfully using the local adaptive MEMs
- ☑ Adaptive estimation requires up to 2 hours of data

Intra-Day Trading

- Best strategy: (ii) 'Buy if positive'
- Trading profit achieved, threshold selection

Adaptive Order Flow Forecasting with Multiplicative Error Models

Wolfgang Karl Härdle Andrija Mihoci Christopher Hian-Ann Ting

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin Lee Kong Chian School of Business Singapore Management University http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de http://business.smu.edu.sg

Chen, Y. and Härdle, W. and Pigorsch, U. Localized Realized Volatility Journal of the American Statistical Association **105**(492): 1376-1393, 2010

📔 Čížek, P., Härdle, W. and Spokoiny, V. Adaptive Pointwise Estimation in Time-Inhomogeneous Conditional Heteroscedasticity Models Econometrics Journal 12: 248-271, 2009

📕 Engle, R. F.

New Frontiers for ARCH Models Journal of Applied Econometrics 17: 425-446, 2002

 Engle, R. F. and Rangel, J. G. *The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes* Review of Financial Studies 21: 1187–1222, 2008
 Engle, R. F. and Russell, J. R. *Autometry Geneticing & Durations & New Model for*

Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data Econometrica **66**(5): 1127–1162, 1998

Gallant, A. R.

On the bias of flexible functional forms and an essentially unbiased form

Journal of Econometrics 15: 211-245, 1981

Härdle, W. K., Hautsch, N. and Mihoci, A. Local Adaptive Multiplicative Error Models for High-Frequency Forecasts Journal of Applied Econometrics, 2014

Hautsch, N.

Econometrics of Financial High-Frequency Data Springer, Berlin, 2012

Mercurio, D. and Spokoiny, V. Statistical inference for time-inhomogeneous volatility models The Annals of Statistics **32**(2): 577–602, 2004

🔋 Spokoiny, V.

Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice The Annals of Statistics **26**(4): 1356–1378, 1998

📄 Spokoiny, V.

Multiscale Local Change Point Detection with Applications to Value-at-Risk

The Annals of Statistics **37**(3): 1405–1436, 2009

Volume Description Trading Volume

Buyer-initiated volume at minute i

- Consider market orders only
- Number of contracts that have been bought during minute i (at the ask price)
- Seller-initiated volume at minute *i*
 - Consider market orders only
 - Number of contracts that have been sold during minute i (at the bid price)

Appendix Exponential-ACD (EACD)

) (▶ Parameter E

 \odot Engle and Russel (1998), $\varepsilon_i \sim Exp(1)$

Figure 12: Log likelihood - EACD(1,1), $\theta_{E}^{*} = (0.10, 0.20, 0.65)^{\top}$

Appendix Weibull-ACD (WACD)

▶ ACD]

▶ Parameter Estimation)

 \boxdot Engle and Russel (1998), $\varepsilon_i \sim \mathcal{G}(s, 1)$

Figure 13: Log likelihood - WACD(1,1), $\theta_{W}^{*} = (0.10, 0.20, 0.65, 0.85)^{\top}$

Adaptive Order Flow Forecasting

Appendix

Gaussian Regression • Estimation Quality

$$Y_{i} = f(X_{i}) + \varepsilon_{i}, i = 1, ..., n, \text{ weights } W = \{w_{i}\}_{i=1}^{n}$$
$$L(W, \theta) = \sum_{i=1}^{n} \ell\{Y_{i}, f_{\theta}(X_{i})\} w_{i}, \text{ log-density } \ell(\cdot), \tilde{\theta} = \arg \max_{\theta \in \Theta} L(W, \theta)$$

- 1. Local constant, $f(X_i) \approx \theta^*$, $\varepsilon_i \sim N(0, \sigma^2)$ $E_{\theta^*} \left| L(W, \widetilde{\theta}) - L(W, \theta^*) \right|^r \leq E |\xi|^{2r}, \quad \xi \sim N(0, 1)$
- 2. Local linear, $f(X_i) \approx \theta^{*\top} \Psi_i$, $\varepsilon_i \sim N(0, \sigma^2)$, basis functions $\Psi = \{\psi_1(X_1), \dots, \psi_p(X_p)\}$, multivariate ξ $\mathsf{E}_{\theta^*} \left| L(W, \widetilde{\theta}) - L(W, \theta^*) \right|^r \leq \mathsf{E} |\xi|^{2r}, \quad \xi \sim \mathsf{N}(0, \mathcal{I}_p)$

Local Change Point Detection ••••

Example: Trading volumes aggregated over 1-min periods

 \odot Scheme with (K + 1) = 14 intervals and fix i_0

 \odot Assume $I_0 = 60$ min. is homogeneous

 \bigcirc H_0 : parameter homogeneity within $I_1 = 75$ min.

- Define $J_1 = I_1 \setminus I_0$ observations from y_{i_0-75} up to y_{i_0-60}
- ▶ For each $\tau \in J_1$ fit log likelihoods over $A_{1,\tau}$, $B_{1,\tau}$ and I_2
- Find the largest likelihood ratio T_{l1,J1}

Appendix Critical Values, $\mathfrak{Z}_k \, \mathbf{\nabla}_{\mathsf{Critical Values}}$

Simulate 3k - homogeneity of the interval sequence l₀,..., lk
 'Propagation' condition (under H₀)

 $\mathsf{E}_{\theta^*} \left| L_{I_k}(\widetilde{\theta}_k) - L_{I_k}(\widehat{\theta}_k) \right|^r \le \rho_k \mathcal{R}_r(\theta^*), \quad k = 1, \dots, \mathcal{K} \quad (4)$

 $ho_k =
ho k/K$ for given significance level ho, $ho \, \widehat{\theta}_k$ - adaptive estimate

- Check \mathfrak{z}_k for (nine) different θ^* Parameter Dynamics Quartiles
 - EACD and WACD, $K \in \{8, 13\}$, $r \in \{0.5, 1\}$, $\rho \in \{0.25, 0.50\}$
 - Findings: 3_k are virtually invariable w.r.t. θ* given a scenario Largest differences at first two or three steps

Appendix Parameter Dynamics

Estimation	E	ACD(1, 1	L)	WACD(1,1)			
window	Q25	Q50	Q75	Q25	Q50	Q75	
1 week	0.85	0.89	0.93	0.82	0.88	0.92	
2 days	0.77	0.86	0.92	0.74	0.84	0.91	
1 day	0.68	0.82	0.90	0.63	0.79	0.89	
3 hours	0.54	0.75	0.88	0.50	0.72	0.87	
2 hours	0.45	0.70	0.86	0.42	0.67	0.85	
1 hour	0.33	0.58	0.80	0.31	0.57	0.80	

Table 1: Quartiles of estimated persistence levels $(\tilde{\alpha} + \tilde{\beta})$ for all five stocks at each minute from 20080222-20081231 (215 trading days). Calibration period: 20080102 - 20080221, Härdle et al. (2014)

Adaptive Order Flow Forecasting -

Parameter Dynamics • Critical Values

Model	Buyer-initiated			Seller-initiated			Order Flow		
	Low	Mid	High	Low	Mid	High	Low	Mid	High
$\widetilde{\omega}$	0.10	0.22	0.46	0.10	0.21	0.38	0.17	0.23	0.32
$\widetilde{\alpha}$	0.11	0.16	0.19	0.12	0.15	0.17	0.12	0.18	0.22
\widetilde{eta}	0.45	0.63	0.73	0.52	0.66	0.74	0.24	0.36	0.45
$\widetilde{\alpha} + \widetilde{\beta}$	0.56	0.79	0.92	0.64	0.81	0.91	0.36	0.54	0.67

Table 2: Quartiles of estimated MEM parameters based on an estimation window covering 360 observations from 14 August 2012 to 24 May 2013. We label the first quartile as 'low', the second quartile as 'mid' and the third quartile as 'high'.

Intra-day Periodicity Notation

- Flexible Fourier Series (FFS) approximation, Gallant (1981) Intraday periodicity components (s_{1,d-30},..., s_{360,d-1})[⊤]
- Estimation: 30-day rolling window with s_{i,d-1} = ... = s_{i,d-30}, Engle and Rangel (2008)

$$s_{i,d-1} = \delta \overline{\imath}_i + \sum_{m=1}^{M} \left\{ \delta_{c,m} \cos\left(\overline{\imath}_i \cdot 2\pi m\right) + \delta_{s,m} \sin\left(\overline{\imath}_i \cdot 2\pi m\right) \right\}$$

 $ar{\imath} = \left(ar{\imath}_1,\ldots,ar{\imath}_{360}
ight)^ op = \left(1/360,\ldots,360/360
ight)^ op$ - intraday time trend

Adaptive Order Flow Forecasting -