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Modelling Trading Volumes 1-2

Trading Volumes

Forecasting Trading Volumes

and larger modelling bias.
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Figure 6: Estimated length of the interval of homogeneity nk̂ (in hours) for seasonally
adjusted trading volumes of selected companies in the case of modest (r = 0.5, blue) and
conservative modelling risk (r = 1, red), using an EACD(1, 1) model for data from NAS-
DAQ trading on 22 February 2008. We use the interval scheme with K = 13 estimation
windows.

We apply the LPA to seasonally adjusted 1-min aggregated trading volumes for all five

stocks at each minute from 22 February to 31 December 2008 (215 trading days, in total

77400 trading minutes). We use two specifications (EACD and WACD) with two risk

levels (modest, r = 0.5, and conservative, r = 1). Furthermore, schemes (a) with K = 8

and (b) with K = 13 are employed to set the estimation windows.

The empirical results can be summarised as follows:

(i) Interval of homogeneity - The distribution of all interval lengths is similar across all

five stocks, see Figure 7. The interval of homogeneity ranges between 60 minutes

and 6 hours for all cases. Intervals for AAPL and INTC are slightly larger than those

for other companies. In the course of a typical trading day, even after removing

the seasonal component, one observes slightly shorter intervals in the opening and

closing phase, see Figure 8. We attribute this to a higher variation of trading

volumes during the market opening and closure.

(ii) Risk level - the length of the intervals is shorter and more variable in the modest

risk case (r = 0.5) than in the conservative case (r = 1), see Figures 7 and 8.

Practically, if an investor aims for obtaining more precise estimates, it is advisable

to select longer estimation periods, such as 4-5 hours. By doing so, the investor
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Motivation 1-1

Trading Volume
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Figure 1: One-minute aggregated size of buyer-initiated and seller-initiated
trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities
Exchange on 20130305 Volume (Description)
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Motivation 1-2

Trading Volume
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Figure 2: One-minute aggregated size of buyer-initiated and seller-initiated
trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities
Exchange on 20130305 with an estimation window length of 60
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Motivation 1-3

Trading Volume
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Figure 3: One-minute aggregated size of buyer-initiated and seller-initiated
trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities
Exchange on 20130305 with an estimation window length of 75
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Motivation 1-4

Trading Volume
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Figure 4: One-minute aggregated size of buyer-initiated and seller-initiated
trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities
Exchange on 20130305 with an estimation window length of 94
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Motivation 1-5

Trading Volume
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Figure 5: One-minute aggregated size of buyer-initiated and seller-initiated
trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities
Exchange on 20130305 with an estimation window length of 118
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Motivation 1-6

Order Flow
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Figure 6: Order �ow (di�erence between the buyer-initiated and the seller-
initiated volume) for the 'mini Nikkei 225 index futures' traded at the
Osaka Securities Exchange on 20130305
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Motivation 1-7

Example

A brokerage decides to trade contracts over a forecasted period
(e.g., 5min.) a trading day. A position (buy/sell) is entered ahead
the forecasted period and closed afterwards.

Trading Strategies

� Strategy (i) 'Buy if predicted order �ow is positive and sell if
negative'

� Strategy (ii): 'Buy if predicted order �ow is positive'

� Strategy (iii): 'Sell if predicted order �ow is negative'
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Motivation 1-8

Objectives

� Short-Term Order Flow Forecasting
I Local adaptive Multiplicative Error Model (MEM)
I Balance between modelling bias and parameter variability
I Estimation windows with potentially varying lengths

� Intra-Day Trading
I Buyer- and seller-initiated trades and order �ow dynamics
I Calibration and evaluation of trading strategies
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Motivation 1-9

Statistics and Quantitative Finance

Statistics

� Modelling bias vs. parameter variability

� Flexible framework and predictive accuracy

Quantitative Finance Practice

� Trading strategies, threshold selection

� Performace evaluation, equity curves
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Outline

1. Motivation X

2. Local Adaptive Multiplicative Error Model (MEM)

3. Order Flow Dynamics

4. Order Flow Forecasting

5. Intra-Day Trading

6. Conclusions
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Local Adaptive Multiplicative Error Model (MEM) 2-1

Multiplicative Error Model (MEM)

� Engle (2002), MEM(p, q), Fi - information set up to i

yi = µiεi , E [εi |Fi−1 ] = 1

µi = ω +

p∑
j=1

αjyi−j +

q∑
j=1

βjµi−j , ω > 0, αj , βj ≥ 0

� Hautsch (2012) - comprehensive MEM literature overview
I yi - squared (de-meaned) log return: GARCH(p, q)
I yi - volume, bid-ask spread, duration: ACD(p, q)

Engle, Robert F. on BBI:
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Local Adaptive Multiplicative Error Model (MEM) 2-2

Autoregressive Conditional Duration (ACD)

1. Exponential-ACD, Engle and Russel (1998) EACD

εi ∼ Exp (1), θE = (ω,α,β)>, α = (α1, . . . , αp), β = (β1, . . . , βq)

2. Weibull-ACD, Engle and Russel (1998) WACD

εi ∼ G (s, 1), θW = (ω,α,β, s)>

Weibull, E. H. Waloddi on BBI:
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Local Adaptive Multiplicative Error Model (MEM) 2-3

Parameter Estimation

� Consistent parameter estimation

� Data calibration with time-varying intervals

� Quasi maximum likelihood estimates (QMLEs) of θE and θW

θ̃I = arg max
θ∈Θ

LI (y ;θ) (1)

I I = [i0 − n, i0] - interval of (n + 1) observations at i0
I LI (·) - log likelihood, EACD and WACD
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Local Adaptive Multiplicative Error Model (MEM) 2-4

Estimation Quality

� Mercurio and Spokoiny (2004), Spokoiny (2009)

� Quality of estimating true parameter vector θ∗ by QMLE θ̃I in
terms of Kullback-Leibler divergence; Rr (θ∗) - risk bound

Eθ∗

∣∣∣LI (θ̃I )− LI (θ
∗)
∣∣∣r ≤ Rr (θ∗) Gaussian Regression

� Likelihood based con�dence sets

� 'Modest' risk, r = 0.5 (shorter intervals of homogeneity)
� 'Conservative' risk, r = 1 (longer intervals of homogeneity)

Kullback, Solomon and Leibler, Richard A. on BBI:
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Local Adaptive Multiplicative Error Model (MEM) 2-5

Local Parametric Approach (LPA)

� LPA, Spokoiny (1998, 2009)
I Time series parameters can be locally approximated
I Finding the (longest) interval of homogeneity

I Balance between modelling bias and parameter variability

� Time series literature
I GARCH(1, 1) models - �íºek et al. (2009)
I Realized volatility - Chen et al. (2010)
I Multiplicative Error Models - Härdle et al. (2014)
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Local Adaptive Multiplicative Error Model (MEM) 2-6

Interval Selection

� (K + 1) nested intervals with length nk = |Ik |

I0 ⊂ I1 ⊂ · · · ⊂ Ik ⊂ · · · ⊂ IK
θ̃0 θ̃1 θ̃k θ̃K

Example: Trading volumes aggregated over 1-min periods

Fix i0, Ik = [i0 − nk , i0], nk =
[
n0c

k
]
, c > 1

{nk}14k=0
= {15 min., 19 min., . . . , 1 day}, c = 1.25
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Local Adaptive Multiplicative Error Model (MEM) 2-7

Local Change Point Detection Example

� Fix i0, sequential test (k = 1, . . . ,K )
H0 : parameter homogeneity within Ik vs. H1 : ∃ change point within Jk

Motivation 1-1
Motivation 1-1

i0 − nk+1 i0 − nk τ i0 − nk−1 i0

Jk+1 Jk Ik−1

Ik

Ik+1

Local Adaptive MEM

and larger modelling bias.
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Figure 6: Estimated length of the interval of homogeneity nk̂ (in hours) for seasonally
adjusted trading volumes of selected companies in the case of modest (r = 0.5, blue) and
conservative modelling risk (r = 1, red), using an EACD(1, 1) model for data from NAS-
DAQ trading on 22 February 2008. We use the interval scheme with K = 13 estimation
windows.

We apply the LPA to seasonally adjusted 1-min aggregated trading volumes for all five

stocks at each minute from 22 February to 31 December 2008 (215 trading days, in total

77400 trading minutes). We use two specifications (EACD and WACD) with two risk

levels (modest, r = 0.5, and conservative, r = 1). Furthermore, schemes (a) with K = 8

and (b) with K = 13 are employed to set the estimation windows.

The empirical results can be summarised as follows:

(i) Interval of homogeneity - The distribution of all interval lengths is similar across all

five stocks, see Figure 7. The interval of homogeneity ranges between 60 minutes

and 6 hours for all cases. Intervals for AAPL and INTC are slightly larger than those

for other companies. In the course of a typical trading day, even after removing

the seasonal component, one observes slightly shorter intervals in the opening and

closing phase, see Figure 8. We attribute this to a higher variation of trading

volumes during the market opening and closure.

(ii) Risk level - the length of the intervals is shorter and more variable in the modest

risk case (r = 0.5) than in the conservative case (r = 1), see Figures 7 and 8.

Practically, if an investor aims for obtaining more precise estimates, it is advisable

to select longer estimation periods, such as 4-5 hours. By doing so, the investor

19
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Figure 6: Estimated length of the interval of homogeneity nk̂ (in hours) for seasonally
adjusted trading volumes of selected companies in the case of modest (r = 0.5, blue) and
conservative modelling risk (r = 1, red), using an EACD(1, 1) model for data from NAS-
DAQ trading on 22 February 2008. We use the interval scheme with K = 13 estimation
windows.

We apply the LPA to seasonally adjusted 1-min aggregated trading volumes for all five

stocks at each minute from 22 February to 31 December 2008 (215 trading days, in total

77400 trading minutes). We use two specifications (EACD and WACD) with two risk

levels (modest, r = 0.5, and conservative, r = 1). Furthermore, schemes (a) with K = 8

and (b) with K = 13 are employed to set the estimation windows.

The empirical results can be summarised as follows:

(i) Interval of homogeneity - The distribution of all interval lengths is similar across all

five stocks, see Figure 7. The interval of homogeneity ranges between 60 minutes

and 6 hours for all cases. Intervals for AAPL and INTC are slightly larger than those

for other companies. In the course of a typical trading day, even after removing

the seasonal component, one observes slightly shorter intervals in the opening and

closing phase, see Figure 8. We attribute this to a higher variation of trading

volumes during the market opening and closure.

(ii) Risk level - the length of the intervals is shorter and more variable in the modest

risk case (r = 0.5) than in the conservative case (r = 1), see Figures 7 and 8.

Practically, if an investor aims for obtaining more precise estimates, it is advisable

to select longer estimation periods, such as 4-5 hours. By doing so, the investor
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with Jk = Ik \ Ik−1, Ak,τ = [i0 − nk+1, τ ] and Bk,τ = (τ, i0]
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Local Adaptive Multiplicative Error Model (MEM) 2-8
Critical Values, zk Critical Values
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Figure 7: Simulated critical values of an EACD(1, 1) model and chosen
parameter constellations according to Table 2. Volume series upper panel,
order �ow lower panel.
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Local Adaptive Multiplicative Error Model (MEM) 2-9

Adaptive Estimation

� Compare Tk at every step k with zk

� Data window index of the interval of homogeneity - k̂

� Adaptive estimate

θ̂ = θ̃
k̂
, k̂ = max

k≤K
{k : T` ≤ z`, ` ≤ k}

� Note: rejecting the null at k = 1, θ̂ equals QMLE at I0
If the algorithm goes until K , θ̂ equals QMLE at IK
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Order Flow Dynamics 3-1

Data

� Osaka Securities Exchange
I Series: mini Nikkei 225 index futures
I NO12U 20120628-20120913, NO12Z 20120914-20121213,

NO13H 20121214-20130307, NO13M 20130308-20130524

� Span: 20120628 - 20130524
I Data on 20130304 removed as trading stopped between

11:06-14:10
I 218 trading days (78480 minutes), 09:01-15:00
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20130201-20130228 and 20130301-20130329 using the strategy (i). The
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intervals (08:01, 08:06, . . .).
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Order Flow Dynamics 3-2

Notation

� One-minute cumulated volumes at day d and minute i
I Buyer-initiated y̆b

i,d , seller-initiated y̆ s

i,d

I Order �ow y̆b

i,d − y̆ s

i,d , relative order �ow y̆b

i,d/(y̆b

i,d + y̆ s

i,d)

� Seasonally adjusted volume Periodicity component s
i,d−1

I Buyer-initiated volume, yb

i,d = y̆b

i,d/s
b

i,d−1

I Seller-initiated volume, y s

i,d = y̆ s

i,d/s
s

i,d−1

I d = 31, . . . , 218 (20120813− 20130524), i = 1, . . . , 360
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Order Flow Dynamics 3-3

Intraday Periodicity

Figure 8: Estimated intraday periodicity factors for the buyer-initiated and
the seller-initiated trades for the 'mini Nikkei 225 index futures' traded at
the Osaka Securities Exchange from 20120813-20130524
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Order Flow Dynamics 3-4

Adaptive Estimation
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Figure 9: Estimated length of intervals of homogeneity (in minutes)
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Order Flow Forecasting 4-1

Order Flow Forecasting

Setup

� Forecasting period: 20120815 - 20130523 (186 days)
� Forecasts at each minute
I Computed recursively
I Multiplied by the seasonality component associated with the

previous 30 days

� Predicted order �ow: di�erence between predicted buyer and
seller-initiated volume; predicted relative order �ow
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Intra-Day Trading 5-1

Intra-Day Trading

Transactions

� Pro�t or loss from 'trading' one futures contract in U

� New transaction - end of the current minute at current
transaction price

� O�set transaction - after 5 min.

Results

� Calibration phase: 20120814-20121231

� Evaluation phase: 20130104-20130523
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Intra-Day Trading 5-2

Trading Strategies

Strategies

(i) 'Buy if positive and sell if negative'

(ii) 'Buy if positive'

(iii) 'Sell if negative'

Strategies

� Compare: order �ow with 0, relative order �ow with 0.5

� Threshold - e.g., 95th percentile of the observed series
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Intra-Day Trading 5-3

Trading Pro�t - Calibration Phase
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Figure 10: Cumulative pro�t in thousands U per one contract between
20120814-20121231. Order �ow (upper panel), relative order �ow (lower
panel), non-zero threshold in red.
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Intra-Day Trading 5-4

Trading Pro�t - Evaluation Phase
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Figure 11: Cumulative pro�t in thousands U per one contract between
20130104-20130523. Order �ow (upper panel), relative order �ow (lower
panel), non-zero threshold in red.
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Conclusions 6-1

Conclusions

Short-Term Order Flow Forecasting

� Order �ow predicted successfully using the local adaptive
MEMs

� Adaptive estimation requires up to 2 hours of data

Intra-Day Trading

� Best strategy: (ii) 'Buy if positive'

� Trading pro�t achieved, threshold selection
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Figure 6: Estimated length of the interval of homogeneity nk̂ (in hours) for seasonally
adjusted trading volumes of selected companies in the case of modest (r = 0.5, blue) and
conservative modelling risk (r = 1, red), using an EACD(1, 1) model for data from NAS-
DAQ trading on 22 February 2008. We use the interval scheme with K = 13 estimation
windows.

We apply the LPA to seasonally adjusted 1-min aggregated trading volumes for all five

stocks at each minute from 22 February to 31 December 2008 (215 trading days, in total

77400 trading minutes). We use two specifications (EACD and WACD) with two risk

levels (modest, r = 0.5, and conservative, r = 1). Furthermore, schemes (a) with K = 8

and (b) with K = 13 are employed to set the estimation windows.

The empirical results can be summarised as follows:

(i) Interval of homogeneity - The distribution of all interval lengths is similar across all

five stocks, see Figure 7. The interval of homogeneity ranges between 60 minutes

and 6 hours for all cases. Intervals for AAPL and INTC are slightly larger than those

for other companies. In the course of a typical trading day, even after removing

the seasonal component, one observes slightly shorter intervals in the opening and

closing phase, see Figure 8. We attribute this to a higher variation of trading

volumes during the market opening and closure.

(ii) Risk level - the length of the intervals is shorter and more variable in the modest

risk case (r = 0.5) than in the conservative case (r = 1), see Figures 7 and 8.

Practically, if an investor aims for obtaining more precise estimates, it is advisable

to select longer estimation periods, such as 4-5 hours. By doing so, the investor
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Appendix 8-1

Volume Description Trading Volume

� Buyer-initiated volume at minute i
I Consider market orders only
I Number of contracts that have been bought during minute i

(at the ask price)

� Seller-initiated volume at minute i
I Consider market orders only
I Number of contracts that have been sold during minute i (at

the bid price)
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Appendix 8-2
Exponential-ACD (EACD)

ACD Parameter Estimation

� Engle and Russel (1998), εi ∼ Exp (1)

LI (y ;θE ) =
n∑

i=max(p,q)+1

(
− logµi −

yi

µi

)
I {i ∈ I} (2)
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Figure 12: Log likelihood - EACD(1,1), θ∗
E

= (0.10, 0.20, 0.65)>
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Appendix 8-3
Weibull-ACD (WACD)

ACD Parameter Estimation

� Engle and Russel (1998), εi ∼ G (s, 1)

LI (y ;θW ) =
∑
i∈I

[
log

s

yi
+ s log

Γ (1 + 1/s) yi
µi

−
{

Γ (1 + 1/s) yi
µi

}s]
I {i ∈ I}

(3)
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Figure 13: Log likelihood - WACD(1,1), θ∗
W

= (0.10, 0.20, 0.65, 0.85)>
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Appendix 8-4

Gaussian Regression Estimation Quality

Yi = f (Xi ) + εi , i = 1, . . . , n, weights W = {wi}ni=1

L (W , θ) =
n∑
i=1

` {Yi , fθ (Xi )}wi , log-density ` (·), θ̃ = arg max
θ∈Θ

L (W , θ)

1. Local constant, f (Xi ) ≈ θ∗, εi ∼ N
(
0, σ2

)
Eθ∗

∣∣∣L(W , θ̃)− L(W , θ∗)
∣∣∣r ≤ E |ξ|2r , ξ ∼ N (0, 1)

2. Local linear, f (Xi ) ≈ θ∗>Ψi , εi ∼ N
(
0, σ2

)
, basis functions

Ψ = {ψ1 (X1) , . . . , ψp (Xp)}, multivariate ξ

Eθ∗
∣∣∣L(W , θ̃)− L(W , θ∗)

∣∣∣r ≤ E |ξ|2r , ξ ∼ N (0, Ip)
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Appendix 8-5

Local Change Point Detection LCP

Example: Trading volumes aggregated over 1-min periods

� Scheme with (K + 1) = 14 intervals and �x i0
� Assume I0 = 60min. is homogeneous

� H0 : parameter homogeneity within I1 = 75min.
I De�ne J1 = I1 \ I0 - observations from yi0−75 up to yi0−60
I For each τ ∈ J1 �t log likelihoods over A1,τ , B1,τ and I2
I Find the largest likelihood ratio - TI1,J1
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Appendix 8-6

Critical Values, zk Critical Values

� Simulate zk - homogeneity of the interval sequence I0, . . . , Ik
� 'Propagation' condition (under H0)

Eθ∗
∣∣∣LIk (θ̃k)− LIk (θ̂k)

∣∣∣r ≤ ρkRr (θ∗) , k = 1, . . . ,K (4)

ρk = ρk/K for given signi�cance level ρ, θ̂
k
- adaptive estimate

� Check zk for (nine) di�erent θ∗ Parameter Dynamics - Quartiles

I EACD and WACD, K ∈ {8, 13}, r ∈ {0.5, 1}, ρ ∈ {0.25, 0.50}
I Findings: zk are virtually invariable w.r.t. θ∗ given a scenario

Largest di�erences at �rst two or three steps
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Appendix 8-7

Parameter Dynamics

Estimation EACD(1, 1) WACD(1, 1)
window Q25 Q50 Q75 Q25 Q50 Q75

1 week 0.85 0.89 0.93 0.82 0.88 0.92
2 days 0.77 0.86 0.92 0.74 0.84 0.91
1 day 0.68 0.82 0.90 0.63 0.79 0.89
3 hours 0.54 0.75 0.88 0.50 0.72 0.87
2 hours 0.45 0.70 0.86 0.42 0.67 0.85
1 hour 0.33 0.58 0.80 0.31 0.57 0.80

Table 1: Quartiles of estimated persistence levels
(
α̃ + β̃

)
for all �ve stocks

at each minute from 20080222-20081231 (215 trading days). Calibration
period: 20080102 - 20080221, Härdle et al. (2014)

Adaptive Order Flow Forecasting

High-Frequency Trading 5-4

Trading Pro�t

1 Feb 15 Feb
−100

0

100
Februar

Day

P
ro

fit

1 Mar 15 Mar
−100

0

100
March

Day
Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Appendix 8-8

Parameter Dynamics Critical Values

Model
Buyer-initiated Seller-initiated Order Flow

Low Mid High Low Mid High Low Mid High

ω̃ 0.10 0.22 0.46 0.10 0.21 0.38 0.17 0.23 0.32
α̃ 0.11 0.16 0.19 0.12 0.15 0.17 0.12 0.18 0.22

β̃ 0.45 0.63 0.73 0.52 0.66 0.74 0.24 0.36 0.45

α̃ + β̃ 0.56 0.79 0.92 0.64 0.81 0.91 0.36 0.54 0.67

Table 2: Quartiles of estimated MEM parameters based on an estimation
window covering 360 observations from 14 August 2012 to 24 May 2013.
We label the �rst quartile as 'low', the second quartile as 'mid' and the
third quartile as 'high'.
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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Appendix 8-9

Intra-day Periodicity Notation

� Flexible Fourier Series (FFS) approximation, Gallant (1981)

Intraday periodicity components
(
s1,d−30, . . . , s360,d−1

)>
� Estimation: 30-day rolling window with si ,d−1 = . . . = si ,d−30,

Engle and Rangel (2008)

si ,d−1 = δı̄i +
M∑

m=1

{δc,m cos (̄ıi · 2πm) + δs,m sin (̄ıi · 2πm)}

ı̄ = (̄ı1, . . . , ı̄360)> = (1/360, . . . , 360/360)> - intraday time trend
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Figure 13: Equity curves in thousands of JPY per one contract from
20130201-20130228 and 20130301-20130329 using the strategy (i). The
pro�ts are calculated based on trades at transaction prices at 5 minute
intervals (08:01, 08:06, . . .).
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