Adaptive Modelling of Price Duration and Flash Equity Dynamics

Wolfgang Karl Härdle Andrija Mihoci Chyng Wen Tee

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin Lee Kong Chian School of Business Singapore Management University http://lvb.wiwi.hu-berlin.de http://case.hu-berlin.de http://business.smu.edu.sg

Figure 1: Stock prices of International Business Machines (IBM) and Excelon (EXC) during the flash crash on 20100506 at the NASDAQ stock market

Price Duration Dynamics

- Local adaptive Multiplicative Error Model (MEM)
- Balance between modelling bias and parameter variability
- Forecasting Flash Equity Dynamics
 - Estimation windows with potentially varying lengths
 - ▶ (Extreme) price movements, execution strategies

Statistics and Quantitative Finance

Statistics

- Modelling bias vs. parameter variability
- ☑ Flexible framework and predictive accuracy

Quantitative Finance Practice

- Irregularly spaced data
- Execution strategies

Price Duration

A fund manager is trading a large number of shares of a company.

How long does it take (in seconds) that the price goes down/up by some fixed amount, say by 1%?

Price Reversion

A fund manager observes that the price (suddenly) goes down/up.

Is a price reversion predicted? If yes, how long does the predicted recovery last (in seconds)?

Outline

- 1. Motivation \checkmark
- 2. Multiplicative Error Model (MEM)
- 3. Local Parametric Approach (LPA)
- 4. Price Duration and Flash Equity Dynamics
- 5. Conclusions

Multiplicative Error Model (MEM) Multiplicative Error Model (MEM)

Engle (2002), MEM(p, q), \mathcal{F}_i - information set up to *i*

$$y_{i} = \mu_{i}\varepsilon_{i}, \qquad \qquad \mathsf{E}\left[\varepsilon_{i} | \mathcal{F}_{i-1}\right] = 1$$
$$\mu_{i} = \omega + \sum_{j=1}^{p} \alpha_{j}y_{i-j} + \sum_{j=1}^{q} \beta_{j}\mu_{i-j}, \qquad \omega > 0, \alpha_{j}, \beta_{j} \ge 0$$

□ Hautsch (2012) - comprehensive MEM literature overview

- > y_i squared (de-meaned) log return: GARCH(p, q)
- > y_i volume, bid-ask spread, duration: ACD(p, q)

Adaptive Modelling of Price Duration and Flash Equity Dynamics -

Autoregressive Conditional Duration (ACD)

- 1. Exponential-ACD, Engle and Russel (1998) $\varepsilon_i \sim Exp(1), \ \theta_E = (\omega, \alpha, \beta)^\top, \ \alpha = (\alpha_1, \dots, \alpha_p), \ \beta = (\beta_1, \dots, \beta_q)$
- 2. Weibull-ACD, Engle and Russel (1998) $\varepsilon_i \sim \mathcal{G}(s, 1), \ \boldsymbol{\theta}_W = (\omega, \alpha, \beta, s)^\top$

Weibull, E. H. Waloddi on BBI:

Adaptive Modelling of Price Duration and Flash Equity Dynamics —

Parameter Estimation

Consistent parameter estimation

- 🖸 Data calibration with time-varying intervals
- oxdot Quasi maximum likelihood estimates (QMLEs) of $oldsymbol{ heta}_E$ and $oldsymbol{ heta}_W$

$$\widetilde{\boldsymbol{\theta}}_{l} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L_{l}(\boldsymbol{y}; \boldsymbol{\theta})$$
(1)

▶ $I = [i_0 - m, i_0]$ - interval of (m + 1) observations at i_0 ▶ $L_I(\cdot)$ - log likelihood, ▶ EACD and ▶ WACD

Estimation Quality

- Mercurio and Spokoiny (2004), Spokoiny (2009)
- Quality of estimating *true* parameter vector θ^* by QMLE $\tilde{\theta}_I$ in terms of Kullback-Leibler divergence; $\mathcal{R}_r(\theta^*)$ risk bound

$$\mathsf{E}_{{\boldsymbol{ heta}}^*} \left| L_I(\widetilde{{\boldsymbol{ heta}}}_I) - L_I({\boldsymbol{ heta}}^*)
ight|^r \leq \mathcal{R}_r({\boldsymbol{ heta}}^*) \quad oldsymbol{\mathsf{Gaussian Regression}}$$

'Modest' risk, r = 0.5 (shorter intervals of homogeneity)
 'Conservative' risk, r = 1 (longer intervals of homogeneity)

Kullback, Solomon and Leibler, Richard A. on BBI:

Adaptive Modelling of Price Duration and Flash Equity Dynamics -

Local Parametric Approach (LPA)

LPA, Spokoiny (1998, 2009)

- Time series parameters can be locally approximated
- Finding the (longest) interval of homogeneity
- Balance between modelling bias and parameter variability

Time series literature

- GARCH(1,1) models Čížek et al. (2009)
- Realized volatility Chen et al. (2010)
- Multiplicative Error Models Härdle et al. (2014)

Local Parametric Approach (LPA) — Interval Selection

 \bigcirc (K + 1) nested intervals with length $n_k = |I_k|$

$$egin{array}{rcl} l_0 & \subset & l_1 & \subset \cdots \subset & l_k & \subset \cdots \subset & l_K \ \widetilde{oldsymbol{ heta}}_0 & & \widetilde{oldsymbol{ heta}}_1 & & \widetilde{oldsymbol{ heta}}_k & & \widetilde{oldsymbol{ heta}}_K \end{array}$$

Example: Price durations

Fix
$$i_0$$
, $I_k = [i_0 - n_k, i_0]$, $n_k = [n_0 c^k]$, $c > 1$
 $\{n_k\}_{k=0}^{14} = \{60 \text{ obs.}, 75 \text{ obs.}, \dots, 360 \text{ obs.}\}$, $c = 1.25$

Local Parametric Approach (LPA) Local Change Point Detection **• Example**

 \Box Fix i_0 , sequential test $(k = 1, \ldots, K)$

 H_0 : parameter homogeneity within I_k vs. H_1 : \exists change point within J_k

$$\begin{split} T_{k} &= \sup_{\tau \in J_{k}} \left\{ L_{A_{k,\tau}} \left(\widetilde{\theta}_{A_{k,\tau}} \right) + L_{B_{k,\tau}} \left(\widetilde{\theta}_{B_{k,\tau}} \right) - L_{I_{k+1}} \left(\widetilde{\theta}_{I_{k+1}} \right) \right\},\\ \text{with } J_{k} &= I_{k} \setminus I_{k-1}, \ A_{k,\tau} = [i_{0} - n_{k+1}, \tau] \text{ and } B_{k,\tau} = (\tau, i_{0}] \end{split}$$

Adaptive Modelling of Price Duration and Flash Equity Dynamics -

Figure 2: Critical values for low ($\tilde{\alpha} + \tilde{\beta} = 0.84$) and high ($\tilde{\alpha} + \tilde{\beta} = 0.93$) weekly persistence and 'modest' risk (r = 0.5) with $\rho = 0.25$, Härdle et al. (2014)

Adaptive Modelling of Price Duration and Flash Equity Dynamics -

- \boxdot Compare T_k at every step k with \mathfrak{z}_k
- \boxdot Data window index of the *interval of homogeneity* \widehat{k}
- 🖸 Adaptive estimate

$$\widehat{oldsymbol{ heta}} = \widetilde{oldsymbol{ heta}}_{\widehat{k}}, \quad \widehat{k} = \max_{k \leq K} \left\{ k : T_\ell \leq \mathfrak{z}_\ell, \ell \leq k
ight\}$$

■ Note: rejecting the null at k = 1, $\hat{\theta}$ equals QMLE at l₀ If the algorithm goes until K, $\hat{\theta}$ equals QMLE at I_K

Data

NASDAQ Stock Market

- Trading days: 20100503, 20100506 (Flash crash), 20100510
- Transactions at every 25 miliseconds
- Daily trading period: 09:30-16:00
- Duration series: price moves up or down (0.95 quantile of the series)

Data

🖸 Companies

- Stocks without crash Goldman Sachs (GS), Zions Bancorporation (ZION)
- Normal crash International Business Machines (IBM), Procter&Gamble (PG)
- Penny stocks Accenture (ACN), Excelon (EXC)

Figure 3: Price duration of GS on 20100503 (left), 20100506 (middle) and 20100510 (right). Price movement: down or up

Adaptive Modelling of Price Duration and Flash Equity Dynamics -

Figure 4: Price duration of ZION on 20100503 (left), 20100506 (middle) and 20100510 (right). Price movement: down or up

Figure 5: Price duration of IBM on 20100503 (left), 20100506 (middle) and 20100510 (right). Price movement: down or up

Figure 6: Price duration of PG on 20100503 (left), 20100506 (middle) and 20100510 (right). Price movement: down or up

Adaptive Modelling of Price Duration and Flash Equity Dynamics -

Figure 7: Price duration of ACN on 20100503 (left), 20100506 (middle) and 20100510 (right). Price movement: down or up

Adaptive Modelling of Price Duration and Flash Equity Dynamics -

Figure 8: Price duration of EXC on 20100503 (left), 20100506 (middle) and 20100510 (right). Price movement: down or up

Adaptive Modelling of Price Duration and Flash Equity Dynamics -

Price Duration Dynamics

- ☑ Different price duration dynamics across stocks
- Stocks without crash share stable dynamics

Forecasting Flash Equity Dynamics

- Stocks affected by the flash crash exhibit three different regimes
- Evidence for price reversion

Adaptive Modelling of Price Duration and Flash Equity Dynamics

Wolfgang Karl Härdle Andrija Mihoci Chyng Wen Tee

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin Lee Kong Chian School of Business Singapore Management University http://lvb.wiwi.hu-berlin.de http://case.hu-berlin.de http://business.smu.edu.sg

Chen, Y. and Härdle, W. and Pigorsch, U.
 Localized Realized Volatility
 Journal of the American Statistical Association 105(492):
 1376–1393, 2010

 Čížek, P., Härdle, W. and Spokoiny, V.
 Adaptive Pointwise Estimation in Time-Inhomogeneous Conditional Heteroscedasticity Models
 Econometrics Journal 12: 248–271, 2009

Engle, R. F.

New Frontiers for ARCH Models Journal of Applied Econometrics **17**: 425–446, 2002

 Engle, R. F. and Rangel, J. G. The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes Review of Financial Studies 21: 1187–1222, 2008
 Farde, R. F. and Bussell, J. P.

Engle, R. F. and Russell, J. R. Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data Econometrica 66(5): 1127–1162, 1998

Gallant, A. R.

On the bias of flexible functional forms and an essentially unbiased form

Journal of Econometrics 15: 211-245, 1981

Härdle, W. K., Hautsch, N. and Mihoci, A. Local Adaptive Multiplicative Error Models for High-Frequency Forecasts Journal of Applied Econometrics, 2014

Hautsch, N.

Econometrics of Financial High-Frequency Data Springer, Berlin, 2012

Mercurio, D. and Spokoiny, V. Statistical inference for time-inhomogeneous volatility models The Annals of Statistics **32**(2): 577–602, 2004

🔋 Spokoiny, V.

Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice The Annals of Statistics **26**(4): 1356–1378, 1998

Spokoiny, V.

Multiscale Local Change Point Detection with Applications to Value-at-Risk

The Annals of Statistics **37**(3): 1405–1436, 2009

Appendix Exponential-ACD (EACD)

▶ Parameter Estimation

 \odot Engle and Russel (1998), $\varepsilon_i \sim Exp(1)$

Figure 9: Log likelihood - EACD(1,1), $\boldsymbol{ heta_{F}^{*}}=\left(0.10,0.20,0.65
ight)^{ op}$

Adaptive Modelling of Price Duration and Flash Equity Dynamics

Weibull-ACD (WACD)

▶ ACD]

▶ Parameter Estimation

 \boxdot Engle and Russel (1998), $\varepsilon_i \sim \mathcal{G}(s, 1)$

Figure 10: Log likelihood - WACD(1,1), $\theta_{W}^{*} = (0.10, 0.20, 0.65, 0.85)^{+}$

Adaptive Modelling of Price Duration and Flash Equity Dynamics -

V

Appendix

Gaussian Regression • Estimation Quality

$$Y_{i} = f(X_{i}) + \varepsilon_{i}, i = 1, ..., n, \text{ weights } W = \{w_{i}\}_{i=1}^{n}$$
$$L(W, \theta) = \sum_{i=1}^{n} \ell\{Y_{i}, f_{\theta}(X_{i})\} w_{i}, \text{ log-density } \ell(\cdot), \tilde{\theta} = \arg \max_{\theta \in \Theta} L(W, \theta)$$

- 1. Local constant, $f(X_i) \approx \theta^*$, $\varepsilon_i \sim N(0, \sigma^2)$ $E_{\theta^*} \left| L(W, \widetilde{\theta}) - L(W, \theta^*) \right|^r \leq E |\xi|^{2r}, \quad \xi \sim N(0, 1)$
- 2. Local linear, $f(X_i) \approx \theta^{*\top} \Psi_i$, $\varepsilon_i \sim N(0, \sigma^2)$, basis functions $\Psi = \{\psi_1(X_1), \dots, \psi_p(X_p)\}$, multivariate ξ $\mathsf{E}_{\theta^*} \left| L(W, \widetilde{\theta}) - L(W, \theta^*) \right|^r \leq \mathsf{E} |\xi|^{2r}, \quad \xi \sim \mathsf{N}(0, \mathcal{I}_p)$

Local Change Point Detection ••••

Example: Price duration

 \odot Scheme with (K + 1) = 14 intervals and fix i_0

 \odot Assume $I_0 = 60$ obs. is homogeneous

- \square H_0 : parameter homogeneity within $I_1 = 75$ min.
 - Define $J_1 = I_1 \setminus I_0$ observations from y_{i_0-75} up to y_{i_0-60}
 - ▶ For each $\tau \in J_1$ fit log likelihoods over $A_{1,\tau}$, $B_{1,\tau}$ and I_2
 - Find the largest likelihood ratio T_{l1,J1}

Appendix **Critical Values**, \mathfrak{Z}_k • Critical Values

Simulate 3k - homogeneity of the interval sequence l₀,..., lk
 'Propagation' condition (under H₀)

 $\mathsf{E}_{\theta^*} \left| L_{I_k}(\widetilde{\theta}_k) - L_{I_k}(\widehat{\theta}_k) \right|^r \le \rho_k \mathcal{R}_r(\theta^*), \quad k = 1, \dots, \mathcal{K} \quad (4)$

 $ho_k =
ho k/K$ for given significance level ho, $ho \hat{\theta}_k$ - adaptive estimate

- \Box Check \mathfrak{z}_k for (nine) different θ^* \bullet Parameter Dynamics Quartiles
 - EACD and WACD, $K \in \{8, 13\}$, $r \in \{0.5, 1\}$, $\rho \in \{0.25, 0.50\}$
 - Findings: 3_k are virtually invariable w.r.t. θ* given a scenario Largest differences at first two or three steps

Parameter Dynamics

Estimation	E	ACD(1, 1)	WACD(1, 1)			
window	Q25	Q50	Q75	Q25	Q50	Q75	
1 week	0.85	0.89	0.93	0.82	0.88	0.92	
2 days	0.77	0.86	0.92	0.74	0.84	0.91	
1 day	0.68	0.82	0.90	0.63	0.79	0.89	
3 hours	0.54	0.75	0.88	0.50	0.72	0.87	
2 hours	0.45	0.70	0.86	0.42	0.67	0.85	
1 hour	0.33	0.58	0.80	0.31	0.57	0.80	

Table 1: Quartiles of estimated persistence levels $(\widetilde{\alpha} + \widetilde{\beta})$, Härdle et al. (2014)

Appendix

Parameter Dynamics • Critical Values

Model	Low Persistence			Moderate Persistence			High Persistence		
	Q25	Q50	Q75	Q25	Q50	Q75	Q25	Q50	Q75
EACD, $\tilde{\alpha}$	0.28	0.22	0.18	0.30	0.23	0.19	0.31	0.24	0.20
EACD, \widetilde{eta}	0.56	0.62	0.67	0.59	0.66	0.71	0.62	0.68	0.73
WACD, $\tilde{\alpha}$	0.28	0.21	0.17	0.30	0.23	0.18	0.32	0.24	0.19
WACD, $\widetilde{\beta}$	0.54	0.60	0.65	0.58	0.65	0.70	0.60	0.68	0.74

Table 2: Quartiles of estimated ratios $\tilde{\beta}/(\tilde{\alpha}+\tilde{\beta})$ (estimation windows covering 1800 observations) conditional on the persistence level: low { EACD (0.85), WACD (0.82) }, moderate { EACD (0.89), WACD (0.88) } or high { EACD (0.93), WACD (0.92) }, Härdle et al. (2014)

