Local Adaptive Multiplicative Error Models for High-Frequency Forecasts

Wolfgang Karl Härdle Nikolaus Hautsch Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics Chair of Econometrics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www2.hu-berlin.de/oekonometrie/ http://case.hu-berlin.de

Statistical Challenges

Understanding high-frequency dynamics

- Time-varying parameters
 Parameter Dynamics
- Regime shifts
- Modelling using Procrustean assumptions
 - Time-invariant parameters
 - Transition form, number of regimes, transition variable type

1 - 1

Objectives

(i) Localising Multiplicative Error Models (MEM)

- Local parametric approach (LPA)
- Balance between modelling bias and parameter variability
- Estimation windows with potentially varying lengths

(ii) Short-term forecasting

- Case study: trading volume
- Evaluation against standard approach fixed estimation length on an ad hoc basis

Figure 1: One-minute cumulated trading volume for Intel Corporation (INTC) on 20080902

Figure 2: One-minute cumulated trading volume for Intel Corporation (INTC) on 20080902 with an EACD(1, 1) estimation window length of 60 with volume forecasts up to the next one hour (dashed)

Figure 3: One-minute cumulated trading volume for Intel Corporation (INTC) on 20080902 with an EACD(1, 1) estimation window length of 75 with volume forecasts up to the next one hour (dashed)

Figure 4: One-minute cumulated trading volume for Intel Corporation (INTC) on 20080902 with an EACD(1, 1) estimation window length of 95 with volume forecasts up to the next one hour (dashed)

Volume Weighted Average Price (VWAP)

VWAP - average price per share paid during a given time period (e.g., hourly, daily or weekly VWAP)

Example: A fund decides to sell 1% of their stock holdings over the next 1 week. A brokerage offers the fund manager to split such a large order at the hourly VWAP minus 1 cent.

Volume and VWAP prediction: The brokerage earns 1 cent per share if the shares are sold at the VWAP. Larger profit is achieved while trading at better prices. Important step: volume forecasts

Research Questions

- □ How strong is the variation of MEM parameters over time?
- What are typical interval lengths of parameter homogeneity?
- ☑ How good are LPA short-term forecasts?

Outline

- 1. Motivation \checkmark
- 2. Multiplicative Error Models (MEM)
- 3. Local Parametric Approach (LPA)
- 4. Forecasting Trading Volumes
- 5. Conclusions

Multiplicative Error Models (MEM)

Engle (2002), MEM(p, q), \mathcal{F}_i - information set up to *i*

$$y_{i} = \mu_{i}\varepsilon_{i}, \qquad \qquad \mathsf{E}\left[\varepsilon_{i} | \mathcal{F}_{i-1}\right] = 1$$
$$\mu_{i} = \omega + \sum_{j=1}^{p} \alpha_{j}y_{i-j} + \sum_{j=1}^{q} \beta_{j}\mu_{i-j}, \qquad \omega > 0, \alpha_{j}, \beta_{j} \ge 0$$

Autoregressive Conditional Duration (ACD)

- 1. Exponential-ACD, Engle and Russel (1998) $\varepsilon_i \sim Exp(1), \ \theta_E = (\omega, \alpha, \beta)^\top, \ \alpha = (\alpha_1, \dots, \alpha_p), \ \beta = (\beta_1, \dots, \beta_q)$
- 2. Weibull-ACD, Engle and Russel (1998) •••••CD $\varepsilon_i \sim \mathcal{G}(s, 1), \ \boldsymbol{\theta}_W = (\omega, \boldsymbol{\alpha}, \boldsymbol{\beta}, s)^\top$

Weibull, E. H. Waloddi on BBI:

Parameter Estimation

- Consistent parameter estimation
- Data calibration with time-varying intervals
- oxdot Quasi maximum likelihood estimates (QMLEs) of $oldsymbol{ heta}_E$ and $oldsymbol{ heta}_W$

$$\widetilde{\boldsymbol{\theta}}_{l} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L_{l}(\boldsymbol{y}; \boldsymbol{\theta})$$
(1)

▶ $I = [i_0 - n, i_0]$ - interval of (n + 1) observations at i_0 ▶ $L_I(\cdot)$ - log likelihood, ♥ EACD and ♥ WACD

Data

- NASDAQ Market in 2008, 250 trading days, 10:00-16:00
- 5 stocks: AAPL, CSCO, INTC, MSFT and ORCL
- \bigcirc $\breve{y}_{i,d}$ one-minute cumulated trading volume (minute *i*, day *d*)
- y_{i,d} seasonally adjusted trading volume (assuming a multiplicative impact of intra-day periodicity effects)

 $y_{i,d} = \breve{y}_{i,d}/s_{i,d-1}$

• $s_{i,d-1}$ - intraday periodicity component • Details $d = 31, \dots, 250 \ (20080214 - 20081231), i = 1, \dots, 360$

Intraday Periodicity

Figure 5: Estimated intraday periodicity components for AAPL, order M = 6 selected by BIC

Local Adaptive MEM -----

Parameter Dynamics

Statistical Challenges

Figure 6: Estimated weekly (n = 1800) and daily (n = 360) persistence $\widetilde{\alpha}_i + \widetilde{\beta}_i$ for seasonally adjusted trading volume using an EACD(1,1) at each minute in 2008

Estimation Quality

- ☑ Mercurio and Spokoiny (2004), Spokoiny (2009)
- □ Quality of estimating *true* parameter vector θ^* by QMLE $\hat{\theta}_I$ in terms of Kullback-Leibler divergence; $\mathcal{R}_r(\theta^*)$ risk bound

$$\mathsf{E}_{\boldsymbol{\theta}^*} \left| L_l(\widetilde{\boldsymbol{\theta}}_l) - L_l(\boldsymbol{\theta}^*) \right|^r \leq \mathcal{R}_r(\boldsymbol{\theta}^*) \quad \bullet \mathsf{Gaussian Regress}$$

Likelihood based confidence sets

- 'Modest' risk, r = 0.5 (shorter intervals of homogeneity)
- \odot 'Conservative' risk, r = 1 (longer intervals of homogeneity)

Kullback, Solomon and Leibler, Richard A. on BBI:

Local Parametric Approach (LPA)

□ LPA, Spokoiny (1998, 2009)

- Time series parameters can be locally approximated
- Finding the (longest) interval of homogeneity
- Balance between modelling bias and parameter variability

🖸 Time series literature

- Volatility modelling Mercurio and Spokoiny (2004)
- GARCH(1,1) models Čížek et al. (2009)
- Realized volatility Chen et al. (2010)

Interval Selection

 $\begin{array}{c} \hline & (K+1) \text{ nested intervals with length } n_k = |I_k| \\ \\ & l_0 \quad \subset \quad l_1 \quad \subset \cdots \subset \quad l_k \quad \subset \cdots \subset \quad l_K \\ & \widetilde{\theta}_0 \quad \quad \widetilde{\theta}_1 \quad \qquad \widetilde{\theta}_k \quad \qquad \widetilde{\theta}_k \end{array}$

Example: Trading volumes aggregated over 1-min periods

Fix
$$i_0$$
, $I_k = [i_0 - n_k, i_0]$, $n_k = [n_0 c^k]$, $c > 1$
 $\{n_k\}_{k=0}^{13} = \{60 \text{ min.}, 75 \text{ min.}, \dots, 1 \text{ week}\}, c = 1.25$

Local Adaptive MEM -----

- 3-2

Local Change Point Detection **Example**

⊡ Fix i_0 , sequential test (k = 1, ..., K) H_0 : parameter homogeneity within I_k vs. H_1 : \exists change point within J_k

$$T_{k} = \sup_{\tau \in J_{k}} \left\{ L_{A_{k,\tau}} \left(\widetilde{\theta}_{A_{k,\tau}} \right) + L_{B_{k,\tau}} \left(\widetilde{\theta}_{B_{k,\tau}} \right) - L_{I_{k+1}} \left(\widetilde{\theta}_{I_{k+1}} \right) \right\},$$
with $J_{k} = I_{k} \setminus I_{k-1}, A_{k,\tau} = [i_{0} - n_{k+1}, \tau] \text{ and } B_{k,\tau} = (\tau, i_{0}]$
Local Adaptive MEM

Critical Values, $\mathfrak{Z}_k \bullet Critical Values$

Figure 7: Critical values for low ($\tilde{\alpha} + \tilde{\beta} = 0.84$) and high ($\tilde{\alpha} + \tilde{\beta} = 0.93$) weekly persistence and 'modest' risk (r = 0.5) with $\rho = 0.25$

Adaptive Estimation

- Compare T_k at every step k with 3_k
 Data window index of the *interval of homogeneity* k
- Adaptive estimate

$$\widehat{\boldsymbol{\theta}} = \widetilde{\boldsymbol{\theta}}_{\widehat{k}}, \quad \widehat{k} = \max_{k \leq K} \left\{ k : T_{\ell} \leq \mathfrak{z}_{\ell}, \ell \leq k \right\}$$

■ Note: rejecting the null at k = 1, $\hat{\theta}$ equals QMLE at l₀ If the algorithm goes until K, $\hat{\theta}$ equals QMLE at l_K

Adaptive Estimation - Results

Figure 8: Estimated length $n_{\hat{k}}$ of *intervals of homogeneity* given the modest (r = 0.5) and the conservative (r = 1) risk case on 20080222 using the EACD(1,1) model with $\rho = 0.25$

Adaptive Estimation - Results

Figure 9: Relative frequency of the estimated interval length $n_{\hat{k}}$ (discrete variable, in hours) given the modest (r = 0.5) and conservative (r = 1) risk case from 20080222 to 20081231 using the EACD(1,1) model with $\rho = 0.25$

Forecasting Trading Volumes

Setup

- ⊡ 5 stocks, forecasting period: 20080222 20081222 (210 days)
- \boxdot Forecasts at each minute, horizon $h = 1, \dots, 60$ min.
- □ EACD(1, 1) and WACD(1, 1), $r \in \{0.5, 1\}, \rho \in \{0.25, 0.5\}$

Strategies

- □ LPA technique prediction \hat{y}_{i+h} , error $\hat{\varepsilon}_{i+h} = \breve{y}_{i+h} \hat{y}_{i+h}$
- ∴ 'Standard' method: 360 (1 day) or 1800 observations (1 week) - prediction \tilde{y}_{i+h} , error $\tilde{\varepsilon}_{i+h} = \tilde{y}_{i+h} - \tilde{y}_{i+h}$

Forecasting Measures

Diebold and Mariano (1995) tests, loss differential
 d_h = {d_{i+h}}ⁿ_{i=1} = $\tilde{\varepsilon}^2_{i+h} - \hat{\varepsilon}^2_{i+h}$

☑ Ratio of root mean squared errors

$$\sqrt{n^{-1}\sum_{i=1}^{n}\widehat{\varepsilon}_{i+h}^{2}}/\sqrt{n^{-1}\sum_{i=1}^{n}\widehat{\varepsilon}_{i+h}^{2}}$$
(3)

(2)

Forecasting Measures

Qualitative test • EACD • WACD

$$T_{ST,h} = \left\{ \sum_{i=1}^{n} \mathsf{I}(d_{i+h} > 0) - 0.5n \right\} / \sqrt{0.25n} \xrightarrow{\mathcal{L}} \mathsf{N}(0,1)$$
(4)

 \Box Quantitative test, $H_0 : \mathsf{E}[d_h] = 0$

$$T_{DM,h} = \overline{d}_{h} / \sqrt{2\pi \widehat{f}_{d_{h}}(0) / n} \stackrel{\mathcal{L}}{\to} \mathsf{N}(0,1)$$
(5)

 $ar{d}_h = n^{-1} \sum_{i=1}^n d_{i+h}, \ \widehat{f}_{d_h}\left(0
ight)$ - spectral density estimate at frequency zero

Local Adaptive MEM ------

- 4-3

Forecasting Superiority

4-4

Figure 10: Test statistic $T_{DM,h}$ across all 60 forecasting horizons from 20080222 to 20081222 (210 trading days): LPA against a fixed-window scheme using 360 and 1800 observations using the EACD(1,1) model, r = 0.5 and $\rho = 0.25$

Figure 11: Test statistic $T_{DM,h}$ across all 60 forecasting horizons from 20080222 to 20081222 (210 trading days): LPA against a fixed-window scheme using 360 and 1800 observations using the EACD(1,1) model, r = 0.5 and $\rho = 0.25$

Forecasting Superiority

4-6

Figure 13: Ratio between the RMSPEs (averaged over all forecasting horizons) of the LPA and of a fixed-window approach (6 trading hours) over the sample from 20080222 to 20081222 (210 trading days) using an EACD(1,1) model, r = 0.5 and $\rho = 0.25$

4-7

Forecasting Superiority

4-8

Figure 14: Ratio between the RMSPEs of the LPA and of a fixed-window approach (6 trading hours) across horizon from 20080222 to 20081222 (210 trading days) using an EACD(1,1) model, r = 0.5 and $\rho = 0.25$

Local Adaptive MEM

Forecasting Superiority

Figure 15: Ratio between the RMSPEs of the LPA and of a fixed-window approach (6 trading hours) across horizon from 20080222 to 20081222 (210 trading days) using an EACD(1,1) model, r = 0.5 and $\rho = 0.25$

4-9

Conclusions

(i) Localising MEM

- Time-varying parameters and estimation quality
- NASDAQ blue chips: AAPL, CSCO, INTC, MSFT and ORCL
- : 'Conservative' adaptive estimation (r = 1) requires 4-5 hours of data, modest risk approach (r = 0.5) requires 2-3 hours

(ii) Forecasting Trading Volumes

- □ LPA outperforms the 'standard' method
- Overall performance, horizon, trading day, tuning parameters

Local Adaptive Multiplicative Error Models for High-Frequency Forecasts

Wolfgang Karl Härdle Nikolaus Hautsch Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics Chair of Econometrics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www2.hu-berlin.de/oekonometrie/ http://case.hu-berlin.de

- Chen, Y. and Härdle, W. and Pigorsch, U.
 Localized Realized Volatility
 Journal of the American Statistical Association 105(492):
 1376–1393, 2010
- Čížek, P., Härdle, W. and Spokoiny, V. Adaptive Pointwise Estimation in Time-Inhomogeneous Conditional Heteroscedasticity Models Econometrics Journal 12: 248–271, 2009
- Diebold, F. and Mariano, R. S. Comparing Predictive Accuracy Journal of Business and Economic Statistics 13(3): 253–263, 1995

Local Adaptive MEM

Engle, R. F. New Frontiers for ARCH Models Journal of Applied Econometrics 17: 425-446, 2002 Engle, R. F. and Rangel, J. G. The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes Review of Financial Studies 21: 1187-1222, 2008 📔 Engle, R. F. and Russell, J. R. Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data

Econometrica 66(5): 1127-1162, 1998

Local Adaptive MEM

Gallant, A. R.

On the bias of flexible functional forms and an essentially unbiased form

Journal of Econometrics 15: 211-245, 1981

Hautsch, N.

Econometrics of Financial High-Frequency Data Springer, Berlin, 2012

 Mercurio, D. and Spokoiny, V.
 Statistical inference for time-inhomogeneous volatility models The Annals of Statistics 32(2): 577-602, 2004

Spokoiny, V.

Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice The Annals of Statistics **26**(4): 1356–1378, 1998

📄 Spokoiny, V.

Multiscale Local Change Point Detection with Applications to Value-at-Risk

The Annals of Statistics **37**(3): 1405–1436, 2009

Intra-day periodicity 🚥

- Intraday periodicity components (s_{1,d-30},..., s_{360,d-1})[⊤]
- Estimation: 30-day rolling window with s_{i,d-1} = ... = s_{i,d-30}, Engle and Rangel (2008)

$$s_{i,d-1} = \delta \overline{\imath}_i + \sum_{m=1}^M \left\{ \delta_{c,m} \cos\left(\overline{\imath}_i \cdot 2\pi m\right) + \delta_{s,m} \sin\left(\overline{\imath}_i \cdot 2\pi m\right) \right\}$$

 $ar{\imath} = \left(ar{\imath}_1, \dots, ar{\imath}_{360}
ight)^ op = \left(1/360, \dots, 360/360
ight)^ op$ - intraday time trend

Local Adaptive MEM -

Gaussian Regression • Estimation Quality

$$Y_{i} = f(X_{i}) + \varepsilon_{i}, i = 1, ..., n, \text{ weights } W = \{w_{i}\}_{i=1}^{n}$$
$$L(W, \theta) = \sum_{i=1}^{n} \ell\{Y_{i}, f_{\theta}(X_{i})\} w_{i}, \text{ log-density } \ell(\cdot), \tilde{\theta} = \arg \max_{\theta \in \Theta} L(W, \theta)$$

- 1. Local constant, $f(X_i) \approx \theta^*$, $\varepsilon_i \sim N(\theta^*, \sigma^2)$ $\mathsf{E}_{\theta^*} \left| L(W, \widetilde{\theta}) - L(W, \theta^*) \right|^r \leq \mathsf{E} |\xi|^{2r}, \quad \xi \sim \mathsf{N}(0, 1)$
- 2. Local linear, $f(X_i) \approx \theta^{*\top} \Psi_i$, $\varepsilon_i \sim N(0, \sigma^2)$, basis functions $\Psi = \{ \psi_1(X_1), \dots, \psi_p(X_p) \}$ $E_{\theta^*} \left| L(W, \widetilde{\theta}) - L(W, \theta^*) \right|^r \leq E |\xi|^{2r}, \quad \xi \sim N(0, \mathcal{I}_p)$

Exponential-ACD (EACD)

Parameter Estimation

Engle and Russel (1998), $\varepsilon_i \sim Exp(1)$ \cdot $L_{I}(y; \boldsymbol{\theta}_{E}) = \sum_{i=\max(p,q)+1}^{n} \left(-\log \mu_{i} - \frac{y_{i}}{\mu_{i}}\right) |\{i \in I\}$ (6)-1000 θ J -2000 -3000 0.2 0.7 0.6 0.1 0.5 Intensity, α Persistency, β Figure 16: Log likelihood - EACD(1,1), $\theta_{F}^{*} = (0.10, 0.20, 0.65)$ Local Adaptive MEM

Weibull-ACD (WACD)

Parameter Estimation

 \Box Engle and Russel (1998), $\varepsilon_i \sim \mathcal{G}(s, 1)$ $L_{I}(y; \boldsymbol{\theta}_{W}) = \sum_{i \in I} \left[\log \frac{s}{y_{i}} + s \log \frac{\Gamma(1+1/s)y_{i}}{\mu_{i}} - \left\{ \frac{\Gamma(1+1/s)y_{i}}{\mu_{i}} \right\}^{s} \right] \mathbf{I}\left\{ i \in I \right\}$ (7)⊕ **−1000**1 -7 -2000 -3000 0.2 0.7 0.6 0.1 0.5 Intensity. α Persistency, β Figure 17: Log likelihood - WACD(1,1), $\theta_{IV}^* = (0.10, 0.20, 0.65, 0.85)^\top$

Local Adaptive MEM

Parameter Dynamics

Estimation	EACD(1, 1)			WACD(1, 1)		
window	Q25	Q50	Q75	Q25	Q50	Q75
1 week	0.85	0.89	0.93	0.82	0.88	0.92
2 days	0.77	0.86	0.92	0.74	0.84	0.91
1 day	0.68	0.82	0.90	0.63	0.79	0.89
3 hours	0.54	0.75	0.88	0.50	0.72	0.87
2 hours	0.45	0.70	0.86	0.42	0.67	0.85
1 hour	0.33	0.58	0.80	0.31	0.57	0.80

Table 1: Quartiles of estimated persistence levels $(\tilde{\alpha} + \tilde{\beta})$ for all five stocks at each minute from 20080222-20081231 (215 trading days). Calibration period: 20080102 - 20080221

Parameter Dynamics Critical Values

Model	Low Persistence			Moderate Persistence			High Persistence		
	Q25	Q50	Q75	Q25	Q50	Q75	Q25	Q50	Q75
EACD, $\tilde{\alpha}$	0.28	0.22	0.18	0.30	0.23	0.19	0.31	0.24	0.20
EACD, \widetilde{eta}	0.56	0.62	0.67	0.59	0.66	0.71	0.62	0.68	0.73
WACD, $\tilde{\alpha}$	0.28	0.21	0.17	0.30	0.23	0.18	0.32	0.24	0.19
WACD, $\tilde{\beta}$	0.54	0.60	0.65	0.58	0.65	0.70	0.60	0.68	0.74

Table 2: Quartiles of 774,000 estimated ratios $\tilde{\beta}/(\tilde{\alpha}+\tilde{\beta})$ (estimation windows covering 1800 observations) from 20080222-20081231 conditional on the persistence level: low {EACD (0.85), WACD (0.82)}, moderate {EACD (0.89), WACD (0.88)} or high {EACD (0.93), WACD (0.92)}. 774,000 ratios = 215 days × 360 minutes/day × 5 stocks × 2 models.

Local Adaptive MEM -

Parameter Dynamics - Summary

- MEM parameters, their variability and distribution properties change over time
- Longer local estimation windows increase estimation precision and the misspecification risk
- □ Tradeoff between estimation (in)efficiency and local flexibility

Critical Values, $\mathfrak{Z}_k \bullet Critical Values$

Simulate 3k - homogeneity of the interval sequence I0,..., Ik
 'Propagation' condition (under H0)

$$\mathsf{E}_{\theta^*} \left| \mathsf{L}_{I_k}(\widetilde{\theta}_k) - \mathsf{L}_{I_k}(\widehat{\theta}_k) \right|^r \le \rho_k \mathcal{R}_r(\theta^*), \quad k = 1, \dots, \mathcal{K}$$
 (8)

 $\rho_k = \rho k/K$ for given significance level ρ , $\frown \hat{\theta}_k$ - adaptive estimate

- \Box Check \mathfrak{z}_k for (nine) different θ^* \bullet Parameter Dynamics Quartiles
 - EACD and WACD, $K \in \{8, 13\}$, $r \in \{0.5, 1\}$, $\rho \in \{0.25, 0.50\}$
 - Findings: 3k are virtually invariable w.r.t. θ* given a scenario Largest differences at first two or three steps

Local Change Point Detection ••••

Example: Trading volumes aggregated over 1-min periods

7_9

- \odot Scheme with (K + 1) = 14 intervals and fix i_0
- Assume $I_0 = 60$ min. is homogeneous

 \boxdot H_0 : parameter homogeneity within $I_1 = 75$ min.

- ▶ Define $J_1 = I_1 \setminus I_0$ observations from y_{i_0-75} up to y_{i_0-60}
- ▶ For each $au \in J_1$ fit log likelihoods over $A_{1, au}$, $B_{1, au}$ and I_2
- Find the largest likelihood ratio T_{l1,J1}

Forecasting Measures • Forecasting Measures

	EACD(1,1)					
	AAPL	CSCO	INTC	MSFT	ORCL	
1 week						
$r = 0.5, \ ho = 0.25$	-38.9	-28.6	-24.1	-33.8	-31.4	
$r = 0.5, \ ho = 0.50$	-38.7	-28.7	-24.2	-33.8	-31.4	
$r = 1.0, \ ho = 0.25$	-40.5	-31.4	-23.3	-39.1	-32.8	
$r = 1.0, \ \rho = 0.50$	-40.4	-31.3	-23.3	-39.0	-32.9	
1 day						
$r = 0.5, \ ho = 0.25$	-10.8	-6.0	-13.1	-5.7	-15.1	
$r = 0.5, \ ho = 0.50$	-10.6	-6.0	-12.8	-5.5	-15.0	
$r = 1.0, \ \rho = 0.25$	-6.9	-8.6	-8.7	-4.4	-12.9	
$r = 1.0, \ \rho = 0.50$	-7.1	-8.6	-8.8	-4.4	-13.0	

Table 3: Largest (in absolute terms) test statistic $T_{ST,h}$ across all 60 forecasting horizons from 20080222-20081222 (210 trading days). LPA against a fixed-window scheme using 360 and 1800 observations

=

Forecasting Measures • Forecasting Measures

	WACD(1,1)						
	AAPL	CSCO	INTC	MSFT	ORCL		
1 week							
$r = 0.5, \ ho = 0.25$	-22.6	-25.7	-20.2	-26.7	-26.6		
$r = 0.5, \ ho = 0.50$	-22.7	-25.5	-20.3	-26.7	-26.6		
$r = 1.0, \ ho = 0.25$	-27.9	-30.8	-21.5	-31.3	-29.8		
$r = 1.0, \ ho = 0.50$	-28.1	-30.8	-21.5	-31.5	-29.7		
1 day							
$r = 0.5, \ ho = 0.25$	-6.4	-3.5	-6.1	-4.9	-12.6		
$r = 0.5, \ ho = 0.50$	-6.3	-3.2	-6.2	-4.8	-12.7		
$r = 1.0, \ ho = 0.25$	-4.1	-5.1	-6.5	-4.2	-11.5		
$r = 1.0, \ ho = 0.50$	-3.9	-5.2	-6.5	-4.1	-11.4		

Table 4: Largest (in absolute terms) test statistic $T_{ST,h}$ across all 60 forecasting horizons from 20080222-20081222 (210 trading days). LPA against a fixed-window scheme using 360 and 1800 observations

Local Adaptive MEM

