Local Adaptive Multiplicative Error Models for High-Frequency Forecasts

Wolfgang Karl Härdle Nikolaus Hautsch Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics Chair of Econometrics
C.A.S.E. – Center for Applied Statistics and Economics
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www2.hu-berlin.de/oekonometrie/
http://case.hu-berlin.de

Statistical Challenges

- Understanding high-frequency dynamics
 - ► Time-varying parameters
 - Regime shifts
- Modelling using Procrustean assumptions
 - ► Time-invariant parameters
 - Transition form, number of regimes, transition variable type

Objectives

- (i) Localising Multiplicative Error Models (MEM)
 - Local parametric approach (LPA)
 - Balance between modelling bias and parameter variability
 - Estimation windows with potentially varying lengths
- (ii) Short-term forecasting
 - Case study: trading volume
 - Evaluation against standard approach fixed estimation length on an ad hoc basis

Example

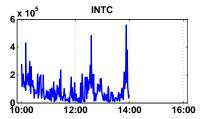


Figure 1: One-minute cumulated trading volume for Intel Corporation (INTC) on 20080902

Example

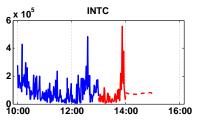


Figure 2: One-minute cumulated trading volume for Intel Corporation (INTC) on 20080902 with an EACD(1,1) estimation window length of 60 with volume forecasts up to the next one hour (dashed)

Example

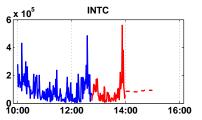


Figure 3: One-minute cumulated trading volume for Intel Corporation (INTC) on 20080902 with an EACD(1,1) estimation window length of 75 with volume forecasts up to the next one hour (dashed)

Example

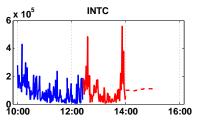


Figure 4: One-minute cumulated trading volume for Intel Corporation (INTC) on 20080902 with an EACD(1,1) estimation window length of 95 with volume forecasts up to the next one hour (dashed)

<u>~</u>~~~

Volume Weighted Average Price (VWAP)

VWAP - average price per share paid during a given time period (e.g., hourly, daily or weekly VWAP)

Example: A fund decides to sell 1% of their stock holdings over the next 1 week. A brokerage offers the fund manager to split such a large order at the hourly VWAP minus 1 cent.

Volume and VWAP prediction: The brokerage earns 1 cent per share if the shares are sold at the VWAP. Larger profit is achieved while trading at better prices. Important step: volume forecasts

Research Questions

- What are typical interval lengths of parameter homogeneity?

Outline

- 1 Motivation ✓
- 2. Multiplicative Error Models (MEM)
- 3. Local Parametric Approach (LPA)
- 4. Forecasting Trading Volumes
- 5. Conclusions

Multiplicative Error Models (MEM)

 \square Engle (2002), MEM(p, q), \mathcal{F}_i - information set up to i

$$y_{i} = \mu_{i}\varepsilon_{i}, \qquad \qquad \mathsf{E}\left[\varepsilon_{i} \mid \mathcal{F}_{i-1}\right] = 1$$

$$\mu_{i} = \omega + \sum_{j=1}^{p} \alpha_{j}y_{i-j} + \sum_{j=1}^{q} \beta_{j}\mu_{i-j}, \qquad \omega > 0, \alpha_{j}, \beta_{j} \geq 0$$

- □ Hautsch (2012) comprehensive MEM literature overview
 - y_i squared (de-meaned) log return: GARCH(p, q)
 - \triangleright y_i volume, bid-ask spread, duration: ACD(p,q)

Engle, Robert F. on BBI:

Autoregressive Conditional Duration (ACD)

- 1. Exponential-ACD, Engle and Russel (1998) ▶ EACD $\varepsilon_i \sim \mathsf{Exp}(1), \ \theta_{\mathsf{E}} = (\omega, \alpha, \beta)^{\top}, \ \alpha = (\alpha_1, \dots, \alpha_p), \ \beta = (\beta_1, \dots, \beta_q)$
- 2. Weibull-ACD, Engle and Russel (1998) → WACD $\varepsilon_i \sim \mathcal{G}(s,1), \ \boldsymbol{\theta}_W = (\omega, \boldsymbol{\alpha}, \boldsymbol{\beta}, s)^{\top}$

Weibull, E. H. Waloddi on BBI:

Parameter Estimation

- Consistent parameter estimation
- Data calibration with time-varying intervals
- oxdot Quasi maximum likelihood estimates (QMLEs) of $oldsymbol{ heta}_{ extsf{ extsf{E}}}$ and $oldsymbol{ heta}_{W}$

$$\widetilde{\boldsymbol{\theta}}_{I} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L_{I}(\boldsymbol{y}; \boldsymbol{\theta}) \tag{1}$$

- $I = [i_0 n, i_0]$ interval of (n + 1) observations at i_0
- $ightharpoonup L_I(\cdot)$ log likelihood, ightharpoonup and ightharpoonup wacd

Data

- NASDAQ Market in 2008, 250 trading days, 10:00-16:00
- 5 stocks: AAPL, CSCO, INTC, MSFT and ORCL
- $y_{i,d}$ seasonally adjusted trading volume (assuming a multiplicative impact of intra-day periodicity effects)

$$y_{i,d} = \breve{y}_{i,d}/s_{i,d-1}$$

 $s_{i,d-1}$ - intraday periodicity component condot $d=31,\ldots,250$ (20080214 d=20081231), $i=1,\ldots,360$

Intraday Periodicity

Figure 5: Estimated intraday periodicity components for AAPL, order M=6 selected by BIC

Parameter Dynamics

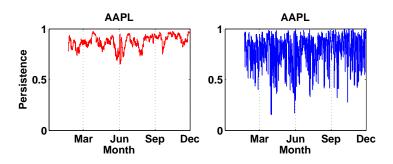


Figure 6: Estimated weekly (n=1800) and daily (n=360) persistence $\widetilde{\alpha}_i + \widetilde{\beta}_i$ for seasonally adjusted trading volume using an EACD(1,1) at each minute in 2008

Local Adaptive MEM

Estimation Quality

- Mercurio and Spokoiny (2004), Spokoiny (2009)
- \square Quality of estimating true parameter vector θ^* by QMLE $\hat{\theta}_I$ in terms of Kullback-Leibler divergence; $\mathcal{R}_r(\theta^*)$ - risk bound

$$\mathbb{E}_{m{ heta}^*} \left| L_I(\widetilde{m{ heta}}_I) - L_I(m{ heta}^*)
ight|^r \leq \mathcal{R}_r(m{ heta}^*)$$
 • Gaussian Regression

- Likelihood based confidence sets
- \square 'Modest' risk, r = 0.5 (shorter intervals of homogeneity)
- \Box 'Conservative' risk, r=1 (longer intervals of homogeneity)

Kullback, Solomon and Leibler, Richard A. on BBI:

Local Parametric Approach (LPA)

- LPA, Spokoiny (1998, 2009)
 - Time series parameters can be locally approximated
 - ► Finding the (longest) interval of homogeneity
 - Balance between modelling bias and parameter variability
- - Volatility modelling Mercurio and Spokoiny (2004)
 - ► GARCH(1,1) models Čížek et al. (2009)
 - Realized volatility Chen et al. (2010)

Interval Selection

 \Box (K+1) nested intervals with length $n_k = |I_k|$

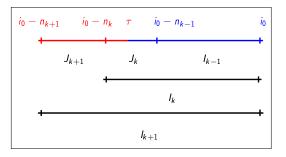
Example: Trading volumes aggregated over 1-min periods

Fix
$$i_0$$
, $I_k = [i_0 - n_k, i_0]$, $n_k = [n_0 c^k]$, $c > 1$

$$\{n_k\}_{k=0}^{13} = \{60 \text{ min.}, 75 \text{ min.}, \dots, 1 \text{ week}\}, c = 1.25$$

Local Change Point Detection **Example**

Fix i_0 , sequential test (k = 1, ..., K) H_0 : parameter homogeneity within I_k vs. H_1 : ∃ change point within J_k



$$\begin{split} T_k &= \sup_{\tau \in J_k} \left\{ L_{\mathbf{A}_{k,\tau}} \left(\widetilde{\boldsymbol{\theta}}_{\mathbf{A}_{k,\tau}} \right) + L_{\mathbf{B}_{k,\tau}} \left(\widetilde{\boldsymbol{\theta}}_{\mathbf{B}_{k,\tau}} \right) - L_{I_{k+1}} \left(\widetilde{\boldsymbol{\theta}}_{I_{k+1}} \right) \right\}, \\ \text{with } J_k &= I_k \setminus I_{k-1}, \ A_{k,\tau} = [i_0 - n_{k+1}, \tau] \text{ and } B_{k,\tau} = (\tau, i_0] \end{split}$$

Local Adaptive MEM

Critical Values, 3k Critical Values

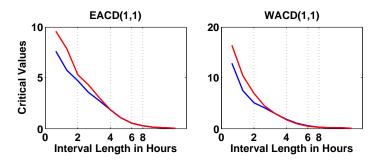


Figure 7: Critical values for low $(\widetilde{\alpha} + \widetilde{\beta} = 0.84)$ and high $(\widetilde{\alpha} + \widetilde{\beta} = 0.93)$ weekly persistence and 'modest' risk (r = 0.5) with $\rho = 0.25$

Adaptive Estimation

- oxdot Compare ${\mathcal T}_k$ at every step k with ${\mathfrak z}_k$
- oxdot Data window index of the *interval of homogeneity* \widehat{k}
- Adaptive estimate

$$\widehat{\boldsymbol{\theta}} = \widetilde{\boldsymbol{\theta}}_{\widehat{k}}, \quad \widehat{k} = \max_{k \le K} \left\{ k : T_{\ell} \le \mathfrak{z}_{\ell}, \ell \le k \right\}$$

oxdot Note: rejecting the null at k=1, $\widehat{ heta}$ equals QMLE at I_0 If the algorithm goes until K, $\widehat{ heta}$ equals QMLE at I_K

Adaptive Estimation - Results

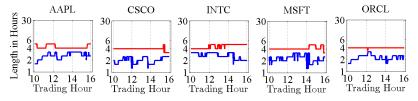


Figure 8: Estimated length $n_{\hat{k}}$ of intervals of homogeneity given the modest (r=0.5) and the conservative (r=1) risk case on 20080222 using the EACD(1,1) model with $\rho=0.25$

Adaptive Estimation - Results

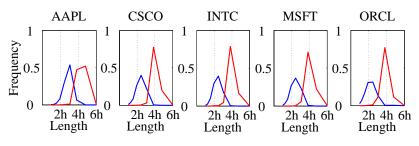


Figure 9: Relative frequency of the estimated interval length $n_{\hat{k}}$ (discrete variable, in hours) given the modest (r=0.5) and conservative (r=1) risk case from 20080222 to 20081231 using the EACD(1,1) model with $\rho=0.25$

Forecasting Trading Volumes

Setup

- 5 stocks, forecasting period: 20080222 20081222 (210 days)
- oxdot Forecasts at each minute, horizon $h = 1, \dots, 60$ min.
- □ EACD(1, 1) and WACD(1, 1), $r ∈ \{0.5, 1\}$, $ρ ∈ \{0.25, 0.5\}$

Strategies

- □ LPA technique prediction \hat{y}_{i+h} , error $\hat{\varepsilon}_{i+h} = \breve{y}_{i+h} \hat{y}_{i+h}$
- ∴ 'Standard' method: 360 (1 day) or 1800 observations (1 week) prediction \widetilde{y}_{i+h} , error $\widetilde{\varepsilon}_{i+h} = \widecheck{y}_{i+h} \widetilde{y}_{i+h}$

Forecasting Measures

Diebold and Mariano (1995) tests, loss differential

$$d_h = \{d_{i+h}\}_{i=1}^n = \widetilde{\varepsilon}_{i+h}^2 - \widehat{\varepsilon}_{i+h}^2$$
 (2)

□ Ratio of root mean squared errors

$$\sqrt{n^{-1}\sum_{i=1}^{n}\widehat{\varepsilon}_{i+h}^{2}}/\sqrt{n^{-1}\sum_{i=1}^{n}\widetilde{\varepsilon}_{i+h}^{2}}$$
 (3)

Forecasting Measures

■ Qualitative test ► EACD ► WACD

$$T_{ST,h} = \left\{ \sum_{i=1}^{n} \mathsf{I} \left(d_{i+h} > 0 \right) - 0.5 \, n \right\} / \sqrt{0.25 \, n} \stackrel{\mathcal{L}}{\to} \mathsf{N}(0,1) \tag{4}$$

 $oxed{\Box}$ Quantitative test, $H_0: E[d_h] = 0$

$$T_{DM,h} = \bar{d}_h / \sqrt{2\pi \hat{f}_{d_h}(0) / n} \stackrel{\mathcal{L}}{\to} \mathsf{N}(0,1)$$
 (5)

 $ar{d}_h = n^{-1} \sum_{i=1}^n d_{i+h}, \ \widehat{f}_{d_h} \left(0
ight)$ - spectral density estimate at frequency zero

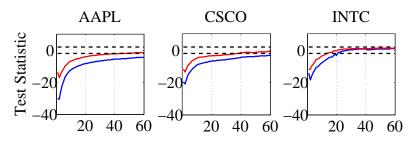


Figure 10: Test statistic $T_{DM,h}$ across all 60 forecasting horizons from 20080222 to 20081222 (210 trading days): LPA against a fixed-window scheme using 360 and 1800 observations using the EACD(1,1) model, r=0.5 and $\rho=0.25$

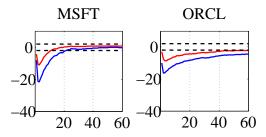


Figure 11: Test statistic $T_{DM,h}$ across all 60 forecasting horizons from 20080222 to 20081222 (210 trading days): LPA against a fixed-window scheme using 360 and 1800 observations using the EACD(1,1) model, r=0.5 and $\rho=0.25$

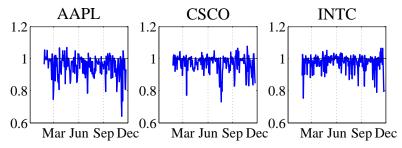


Figure 12: Ratio between the RMSPEs (averaged over all forecasting horizons) of the LPA and of a fixed-window approach (6 trading hours) over the sample from 20080222 to 20081222 (210 trading days) using an EACD(1,1) model, r=0.5 and $\rho=0.25$

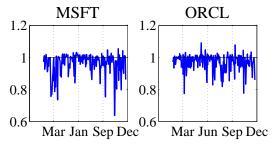


Figure 13: Ratio between the RMSPEs (averaged over all forecasting horizons) of the LPA and of a fixed-window approach (6 trading hours) over the sample from 20080222 to 20081222 (210 trading days) using an EACD(1,1) model, r=0.5 and $\rho=0.25$

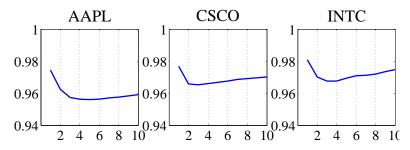


Figure 14: Ratio between the RMSPEs of the LPA and of a fixed-window approach (6 trading hours) across horizon from 20080222 to 20081222 (210 trading days) using an EACD(1,1) model, r=0.5 and $\rho=0.25$

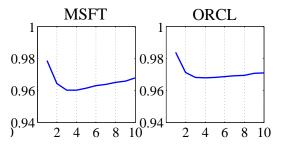


Figure 15: Ratio between the RMSPEs of the LPA and of a fixed-window approach (6 trading hours) across horizon from 20080222 to 20081222 (210 trading days) using an EACD(1,1) model, r=0.5 and $\rho=0.25$

Conclusions — 5-1

Conclusions

(i) Localising MEM

- Time-varying parameters and estimation quality
- NASDAQ blue chips: AAPL, CSCO, INTC, MSFT and ORCL
- $\$ 'Conservative' adaptive estimation (r=1) requires 4-5 hours of data, modest risk approach (r=0.5) requires 2-3 hours

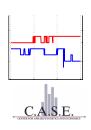
(ii) Forecasting Trading Volumes

- LPA outperforms the 'standard' method
- Overall performance, horizon, trading day, tuning parameters

Local Adaptive Multiplicative Error Models for High-Frequency Forecasts

Wolfgang Karl Härdle Nikolaus Hautsch Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics Chair of Econometrics
C.A.S.E. – Center for Applied Statistics and Economics
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www2.hu-berlin.de/oekonometrie/
http://case.hu-berlin.de



References

References

Chen, Y. and Härdle, W. and Pigorsch, U. Localized Realized Volatility Journal of the American Statistical Association 105(492): 1376-1393, 2010

Čížek, P., Härdle, W. and Spokoiny, V. Adaptive Pointwise Estimation in Time-Inhomogeneous Conditional Heteroscedasticity Models Econometrics Journal 12: 248–271, 2009

Diebold, F. and Mariano, R. S. Comparing Predictive Accuracy Journal of Business and Economic Statistics 13(3): 253–263, 1995

Local Adaptive MEM

References — 6-2

References

Engle, R. F.

New Frontiers for ARCH Models

Journal of Applied Econometrics 17: 425–446, 2002

Engle, R. F. and Rangel, J. G.

The Spline-GARCH Model for Low-Frequency Volatility and Its
Global Macroeconomic Causes

Review of Financial Studies 21: 1187-1222, 2008

Engle, R. F. and Russell, J. R. Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data

Econometrica **66**(5): 1127–1162, 1998

References — 6-3

References

Gallant, A. R.

On the bias of flexible functional forms and an essentially unbiased form

Journal of Econometrics 15: 211-245, 1981

Hautsch, N.

Econometrics of Financial High-Frequency Data Springer, Berlin, 2012

Mercurio, D. and Spokoiny, V.

Statistical inference for time-inhomogeneous volatility models The Annals of Statistics **32**(2): 577–602, 2004

References

References

Spokoiny, V.

Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice The Annals of Statistics 26(4): 1356-1378, 1998

Spokoiny, V.

Multiscale Local Change Point Detection with Applications to Value-at-Risk

The Annals of Statistics **37**(3): 1405–1436, 2009

Intra-day periodicity • Data

- ☐ Flexible Fourier Series (FFS) approximation, Gallant (1981) Intraday periodicity components $(s_{1,d-30}, \ldots, s_{360,d-1})^{\top}$
- Estimation: 30-day rolling window with $s_{i,d-1} = ... = s_{i,d-30}$, Engle and Rangel (2008)

$$s_{i,d-1} = \delta \overline{\imath}_i + \sum_{m=1}^{M} \left\{ \delta_{c,m} \cos \left(\overline{\imath}_i \cdot 2\pi m \right) + \delta_{s,m} \sin \left(\overline{\imath}_i \cdot 2\pi m \right) \right\}$$

$$\bar{\imath}=(\bar{\imath}_1,\ldots,\bar{\imath}_{360})^{ op}=(1/360,\ldots,360/360)^{ op}$$
 - intraday time trend

Gaussian Regression • Estimation Quality

$$Y_{i} = f\left(X_{i}\right) + \varepsilon_{i}, i = 1, \dots, n, \text{ weights } W = \left\{w_{i}\right\}_{i=1}^{n}$$

$$L(W, \theta) = \sum_{i=1}^{n} \ell\left\{Y_{i}, f_{\theta}\left(X_{i}\right)\right\} w_{i}, \text{ log-density } \ell\left(\cdot\right), \ \widetilde{\theta} = \arg\max_{\theta \in \Theta} L\left(W, \theta\right)$$

1. Local constant, $f(X_i) \approx \theta^*$, $\varepsilon_i \sim N(\theta^*, \sigma^2)$ $\mathsf{E}_{\theta^*} \left| L(W, \widetilde{\theta}) - L(W, \theta^*) \right|^r \le \mathsf{E} |\xi|^{2r}, \quad \xi \sim \mathsf{N}(0, 1)$

2. Local linear,
$$f(X_i) \approx \theta^{*\top} \Psi_i$$
, $\varepsilon_i \sim \mathbb{N}\left(0, \sigma^2\right)$, basis functions $\Psi = \{\psi_1(X_1), \dots, \psi_p(X_p)\}$

$$\mathbb{E}_{\theta^*} \left| L(W, \widetilde{\theta}) - L(W, \theta^*) \right|^r \leq \mathbb{E} |\xi|^{2r}, \quad \xi \sim \mathbb{N}\left(0, \mathcal{I}_p\right)$$

Exponential-ACD (EACD)

► ACD ► Parameter Estimation

oxdot Engle and Russel (1998), $arepsilon_i \sim {\it Exp}\,(1)$

$$L_{I}(y; \boldsymbol{\theta}_{E}) = \sum_{i=\max(p,q)+1}^{n} \left(-\log \mu_{i} - \frac{y_{i}}{\mu_{i}}\right) I\{i \in I\}$$
 (6)

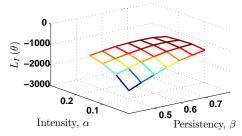


Figure 16: Log likelihood - EACD(1,1), $heta_{\it E}^* = (0.10, 0.20, 0.65)^{
m T}$ Local Adaptive MEM

Weibull-ACD (WACD)

→ ACD → Parameter Estimation

 $ext{ iny Engle}$ Engle and Russel (1998), $ε_i ∼ 𝒢(s,1)$

$$L_{I}(y;\theta_{W}) = \sum_{i \in I} \left[\log \frac{s}{y_{i}} + s \log \frac{\Gamma(1+1/s)y_{i}}{\mu_{i}} - \left\{ \frac{\Gamma(1+1/s)y_{i}}{\mu_{i}} \right\}^{s} \right] I \left\{ i \in I \right\}$$

$$\begin{array}{c} 0 \\ 0 \\ -1000 \\ \hline S -2000 \\ -3000 \\ \hline \end{array}$$

$$\begin{array}{c} 0 \\ 0.2 \\ \hline \end{array}$$

$$\begin{array}{c} 0 \\ 0.1 \\ \hline \end{array}$$

$$\begin{array}{c} 0 \\ 0.5 \\ \hline \end{array}$$

Figure 17: Log likelihood - WACD(1,1), $\theta_{W}^{*} = (0.10, 0.20, 0.65, 0.85)^{\top}$

Local Adaptive MEM

Parameter Dynamics

Estimation	EACD(1,1)			WACD(1, 1)		
window	Q25	Q50	Q75	Q25	Q50	Q75
1 week	0.85	0.89	0.93	0.82	0.88	0.92
2 days	0.77	0.86	0.92	0.74	0.84	0.91
1 day	0.68	0.82	0.90	0.63	0.79	0.89
3 hours	0.54	0.75	0.88	0.50	0.72	0.87
2 hours	0.45	0.70	0.86	0.42	0.67	0.85
1 hour	0.33	0.58	0.80	0.31	0.57	0.80

Table 1: Quartiles of estimated persistence levels $\left(\widetilde{\alpha}+\widetilde{\beta}\right)$ for all five stocks at each minute from 20080222-20081231 (215 trading days). Calibration period: 20080102 - 20080221

Local Adaptive MEM —

Model	Low Persistence		Moderate Persistence			High Persistence			
Model	Q25	Q50	Q75	Q25	Q50	Q75	Q25	Q50	Q75
EACD, $\widetilde{\alpha}$	0.28	0.22	0.18	0.30	0.23	0.19	0.31	0.24	0.20
EACD, \widetilde{eta}	0.56	0.62	0.67	0.59	0.66	0.71	0.62	0.68	0.73
WACD, $\widetilde{\alpha}$	0.28	0.21	0.17	0.30	0.23	0.18	0.32	0.24	0.19
WACD, \widetilde{eta}	0.54	0.60	0.65	0.58	0.65	0.70	0.60	0.68	0.74

Table 2: Quartiles of 774,000 estimated ratios $\widetilde{\beta}/\left(\widetilde{\alpha}+\widetilde{\beta}\right)$ (estimation windows covering 1800 observations) from 20080222-20081231 conditional on the persistence level: low { EACD (0.85), WACD (0.82) }, moderate { EACD (0.89), WACD (0.88) } or high { EACD (0.93), WACD (0.92) }. 774,000 ratios = 215 days \times 360 minutes/day \times 5 stocks \times 2 models.

Parameter Dynamics - Summary

- MEM parameters, their variability and distribution properties change over time
- Longer local estimation windows increase estimation precision and the misspecification risk
- □ Tradeoff between estimation (in)efficiency and local flexibility

Critical Values, 3k Critical Values

- oxdot Simulate \mathfrak{z}_k homogeneity of the interval sequence I_0,\ldots,I_k
- \square 'Propagation' condition (under H_0)

$$\mathsf{E}_{\theta^*} \left| L_{l_k}(\widetilde{\theta}_k) - L_{l_k}(\widehat{\theta}_k) \right|^r \le \rho_k \mathcal{R}_r(\theta^*), \quad k = 1, \dots, K$$
 (8)

 $\rho_k = \rho k/K$ for given significance level $\rho_k = \frac{\partial}{\partial k}$ - adaptive estimate

- $oxed{\cdot}$ Check ${\mathfrak z}_k$ for (nine) different θ^* Parameter Dynamics Quartiles
 - ▶ EACD and WACD, $K \in \{8, 13\}$, $r \in \{0.5, 1\}$, $\rho \in \{0.25, 0.50\}$
 - Findings: \mathfrak{z}_k are virtually invariable w.r.t. θ^* given a scenario Largest differences at first two or three steps

Local Change Point Detection ••••

Example: Trading volumes aggregated over 1-min periods

- \odot Scheme with (K+1)=14 intervals and fix i_0
- oxdot Assume $I_0=60$ min. is homogeneous
- - lacksquare Define $J_1=I_1\setminus I_0$ observations from y_{i_0-75} up to y_{i_0-60}
 - lacksquare For each $au\in J_1$ fit log likelihoods over $A_{1, au}$, $B_{1, au}$ and I_2
 - Find the largest likelihood ratio T_{I_1,J_1}

Forecasting Measures Porecasting Measures

	EACD(1,1)						
	AAPL	CSCO	INTC	MSFT	ORCL		
1 week							
$r = 0.5, \ \rho = 0.25$	-38.9	-28.6	-24.1	-33.8	-31.4		
$r = 0.5, \ \rho = 0.50$	-38.7	-28.7	-24.2	-33.8	-31.4		
$r = 1.0, \ \rho = 0.25$	-40.5	-31.4	-23.3	-39.1	-32.8		
$r = 1.0, \ \rho = 0.50$	-40.4	-31.3	-23.3	-39.0	-32.9		
1 day							
$r = 0.5, \ \rho = 0.25$	-10.8	-6.0	-13.1	-5.7	-15.1		
$r = 0.5, \ \rho = 0.50$	-10.6	-6.0	-12.8	-5.5	-15.0		
$r = 1.0, \ \rho = 0.25$	-6.9	-8.6	-8.7	-4.4	-12.9		
$r = 1.0, \ \rho = 0.50$	-7.1	-8.6	-8.8	-4.4	-13.0		

Table 3: Largest (in absolute terms) test statistic $T_{ST,h}$ across all 60 forecasting horizons from 20080222-20081222 (210 trading days). LPA against a fixed-window scheme using 360 and 1800 observations

Local Adaptive MEM

Forecasting Measures Forecasting Measures

	WACD(1,1)						
	AAPL	CSCO	INTC	MSFT	ORCL		
1 week							
$r = 0.5, \ \rho = 0.25$	-22.6	-25.7	-20.2	-26.7	-26.6		
$r = 0.5, \ \rho = 0.50$	-22.7	-25.5	-20.3	-26.7	-26.6		
$r = 1.0, \ \rho = 0.25$	-27.9	-30.8	-21.5	-31.3	-29.8		
$r = 1.0, \ \rho = 0.50$	-28.1	-30.8	-21.5	-31.5	-29.7		
1 day							
$r = 0.5, \ \rho = 0.25$	-6.4	-3.5	-6.1	-4.9	-12.6		
$r = 0.5, \ \rho = 0.50$	-6.3	-3.2	-6.2	-4.8	-12.7		
$r = 1.0, \ \rho = 0.25$	-4.1	-5.1	-6.5	-4.2	-11.5		
$r = 1.0, \ \rho = 0.50$	-3.9	-5.2	-6.5	-4.1	-11.4		

Table 4: Largest (in absolute terms) test statistic $T_{ST,h}$ across all 60 forecasting horizons from 20080222-20081222 (210 trading days). LPA against a fixed-window scheme using 360 and 1800 observations

Local Adaptive MEM