Adaptive Order Flow Forecasting with MEMs

Wolfgang Karl Härdle Andrija Mihoci Christopher Hian-Ann Ting

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin Lee Kong Chian School of Business Singapore Management University http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de http://business.smu.edu.sg

Figure 1: One-minute aggregated size of buyer-initiated and seller-initiated trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities Exchange on 20130305 • Volume (Description)

Figure 2: One-minute aggregated size of buyer-initiated and seller-initiated trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities Exchange on 20130305 with an estimation window length of 60

Figure 3: One-minute aggregated size of buyer-initiated and seller-initiated trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities Exchange on 20130305 with an estimation window length of 75

Figure 4: One-minute aggregated size of buyer-initiated and seller-initiated trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities Exchange on 20130305 with an estimation window length of 94

Figure 5: One-minute aggregated size of buyer-initiated and seller-initiated trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities Exchange on 20130305 with an estimation window length of 118

Figure 6: Order flow (difference between the buyer-initiated and the sellerinitiated volume) for the 'mini Nikkei 225 index futures' traded at the Osaka Securities Exchange on 20130305

A brokerage decides to trade contracts over a forecasted period (e.g., 5min.) during March 2013. A position (buy/sell) is entered ahead the forecasted period and closed afterwards.

Trading Strategy

- ⊡ Calibration (February 2013)
 - Predict the order flow and execution costs at each period
 - Strategy (i): 'buy if predicted order flow is positive'
 - Strategy (ii): 'sell if predicted order flow is positive'
- Evaluation (March 2013): employ the best strategy found in February 2013

☑ Short-Term Order Flow Forecasting

- Local adaptive Multiplicative Error Model (MEM)
- Balance between modelling bias and parameter variability
- Estimation windows with potentially varying lengths

🖸 Intra-Day Trading

- Buyer- and seller-initiated trades and order flow dynamics
- Performance based trading strategy (signal)

Statistics and Quantitative Finance

Statistics

- Modelling bias vs. parameter variability
- □ Flexible framework and predictive accuracy

Quantitative Finance Practice

- Trading strategies and equity curves
- ⊡ Hardware: field-programmable gate array (FPGA)

Outline

- 1. Motivation
- 2. Local Adaptive Multiplicative Error Model (MEM)
- 3. Modelling Trading Volumes
- 4. Order Flow Forecasting
- 5. Intra-Day Trading
- 6. Conclusions

Local Adaptive Multiplicative Error Model (MEM) Multiplicative Error Model (MEM)

Engle (2002), MEM(p, q), \mathcal{F}_i - information set up to *i*

$$y_{i} = \mu_{i}\varepsilon_{i}, \qquad \qquad \mathsf{E}\left[\varepsilon_{i} | \mathcal{F}_{i-1}\right] = 1$$
$$\mu_{i} = \omega + \sum_{j=1}^{p} \alpha_{j}y_{i-j} + \sum_{j=1}^{q} \beta_{j}\mu_{i-j}, \qquad \omega > 0, \alpha_{j}, \beta_{j} \ge 0$$

□ Hautsch (2012) - comprehensive MEM literature overview

- > y_i squared (de-meaned) log return: GARCH(p, q)
- > y_i volume, bid-ask spread, duration: ACD(p, q)

- 1. Exponential-ACD, Engle and Russel (1998) EACD $\varepsilon_i \sim Exp(1), \ \theta_E = (\omega, \alpha, \beta)^\top, \ \alpha = (\alpha_1, \dots, \alpha_p), \ \beta = (\beta_1, \dots, \beta_q)$
- 2. Weibull-ACD, Engle and Russel (1998) \longrightarrow $\varepsilon_i \sim \mathcal{G}(s, 1), \ \boldsymbol{\theta}_W = (\omega, \boldsymbol{\alpha}, \boldsymbol{\beta}, s)^\top$

Weibull, E. H. Waloddi on BBI:

- Consistent parameter estimation
- Data calibration with time-varying intervals
- oxdot Quasi maximum likelihood estimates (QMLEs) of $oldsymbol{ heta}_E$ and $oldsymbol{ heta}_W$

$$\widetilde{\boldsymbol{\theta}}_{l} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L_{l}(\boldsymbol{y}; \boldsymbol{\theta})$$
(1)

▶ $I = [i_0 - n, i_0]$ - interval of (n + 1) observations at i_0 ▶ $L_I(\cdot)$ - log likelihood, ♥ EACD and ♥ WACD

Local Adaptive Multiplicative Error Model (MEM) – **Estimation Quality**

- Mercurio and Spokoiny (2004), Spokoiny (2009)
- Quality of estimating *true* parameter vector θ^* by QMLE $\hat{\theta}_I$ in terms of Kullback-Leibler divergence; $\mathcal{R}_r(\theta^*)$ risk bound

2-4

$$\mathsf{E}_{{\boldsymbol{ heta}}^*} \left| L_l(\widetilde{{\boldsymbol{ heta}}}_l) - L_l({\boldsymbol{ heta}}^*)
ight|^r \leq \mathcal{R}_r({\boldsymbol{ heta}}^*) \quad lacksquare{} \mathsf{Gaussian Regression}$$

- Likelihood based confidence sets
- 'Modest' risk, r = 0.5 (shorter intervals of homogeneity)
- \odot 'Conservative' risk, r = 1 (longer intervals of homogeneity)

Kullback, Solomon and Leibler, Richard A. on BBI:

Local Parametric Approach (LPA)

LPA, Spokoiny (1998, 2009)

- Time series parameters can be locally approximated
- Finding the (longest) interval of homogeneity
- Balance between modelling bias and parameter variability

Time series literature

- GARCH(1,1) models Čížek et al. (2009)
- Realized volatility Chen et al. (2010)
- Multiplicative Error Models Härdle et al. (2014)

 \boxdot (K + 1) nested intervals with length $n_k = |I_k|$

Example: Trading volumes aggregated over 1-min periods, Härdle et al. (2013)

Fix
$$i_0$$
, $l_k = [i_0 - n_k, i_0]$, $n_k = [n_0 c^k]$, $c > 1$

 ${n_k}_{k=0}^{13} = {60 \text{ min., 75 min., ..., 1 week}}, c = 1.25$

Adaptive Order Flow Forecasting with MEMs -----

- 2-6

Local Adaptive Multiplicative Error Model (MEM) Local Change Point Detection **Example**

 \boxdot Fix i_0 , sequential test $(k = 1, \ldots, K)$

 H_0 : parameter homogeneity within I_k vs. H_1 : \exists change point within J_k

2-7

$$\begin{split} T_{k} &= \sup_{\tau \in J_{k}} \left\{ L_{A_{k,\tau}} \left(\widetilde{\theta}_{A_{k,\tau}} \right) + L_{B_{k,\tau}} \left(\widetilde{\theta}_{B_{k,\tau}} \right) - L_{I_{k+1}} \left(\widetilde{\theta}_{I_{k+1}} \right) \right\}, \\ \text{with } J_{k} &= I_{k} \setminus I_{k-1}, \ A_{k,\tau} = [i_{0} - n_{k+1}, \tau] \text{ and } B_{k,\tau} = (\tau, i_{0}] \end{split}$$

Local Adaptive Multiplicative Error Model (MEM) - Critical Values, \mathfrak{Z}_k • Critical Values

2-8

Figure 7: Critical values for low ($\tilde{\alpha} + \tilde{\beta} = 0.84$) and high ($\tilde{\alpha} + \tilde{\beta} = 0.93$) weekly persistence and 'modest' risk (r = 0.5) with $\rho = 0.25$, Härdle et al. (2013)

- \Box Compare T_k at every step k with \mathfrak{z}_k
- \boxdot Data window index of the *interval of homogeneity* \widehat{k}
- 🖸 Adaptive estimate

$$\widehat{oldsymbol{ heta}} = \widetilde{oldsymbol{ heta}}_{\widehat{k}}, \quad \widehat{k} = \max_{k \leq K} \left\{ k : T_{\ell} \leq \mathfrak{z}_{\ell}, \ell \leq k
ight\}$$

■ Note: rejecting the null at k = 1, $\hat{\theta}$ equals QMLE at l₀ If the algorithm goes until K, $\hat{\theta}$ equals QMLE at I_K

Data

🖸 Osaka Securities Exchange

- Series: mini Nikkei 225 index futures
- NO12U 20120628-20120913, NO12Z 20120914-20121213, NO13H 20121214-20130307, NO13M 20130308-20130524
- ⊡ Span: 20120628 20130524
 - Data on 20130304 removed as trading stopped between 11:06-14:10
 - 218 trading days (78480 minutes), 09:01-15:00

 \boxdot One-minute cumulated volumes at day d and minute i

- ▶ Buyer-initiated volume $\breve{y}_{i,d}^{b}$
- Seller-initiated volume $\breve{y}_{i,d}^{s'}$
- Prices: ask S^a_{d,i}, bid S^b_{d,i}, transaction S_{d,i} at beginning of minute i

• Seasonally adjusted volume • Periodicity component $s_{i,d-1}$

- Buyer-initiated volume, $y_{i,d}^b = \breve{y}_{i,d}^b / s_{i,d-1}^b$
- Seller-initiated volume, $y_{i,d}^s = \breve{y}_{i,d}^s / s_{i,d-1}^s$
- ▶ d = 31, ..., 218 (20120813 20130524), i = 1, ..., 360

Modelling Trading Volumes —— Intraday Periodicity

Figure 8: Estimated intraday periodicity factors for the buyer-initiated and the seller-initiated trades for the 'mini Nikkei 225 index futures' traded at the Osaka Securities Exchange from 20120813-20130524

Modelling Trading Volumes — Adaptive Estimation

Figure 9: Estimated length of *intervals of homogeneity* for the buyerinitiated and the seller-initiated trades from 20120820-20130524 using the EACD(1,1) model with r = 0.5 and $\rho = 0.25$ Adaptive Order Flow Forecasting with MEMs

Figure 10: Estimated length of *intervals of homogeneity* for the buyerinitiated and the seller-initiated trades from 20120820-20130524 using the EACD(1,1) model with r = 1 and $\rho = 0.25$ Adaptive Order Flow Forecasting with MEMs

Forecasting Setup

- Forecasting period: 20120820 20130523 (65520 minutes)
- \boxdot Forecasts at each minute, horizon $h = 1, \dots, 60$ min.
 - Computed recursively
 - Multiplied by the seasonality component associated with the previous 30 days
- ⊡ Local MEM: EACD(1, 1), $r \in \{0.5, 1\}$, $\rho \in \{0.25, 0.5\}$

4-1

Forecasting Performance

	RMSE	RMSPE
Buyer-initiated		
r = 0.50	1220	1787
<i>r</i> = 1.00	871	1065
Seller-initiated		
r = 0.50	1195	1766
r = 1.00	878	1103

Table 1: Overall RMSEs and RMSPEs for the buyer-initiated and the seller-initiated volume from 20120820-20130523 using the EACD(1,1) model with $\rho = 0.25$

Forecasting Performance

Figure 11: RMSPEs for the buyer-initiated and the seller-initiated from 20120820-20130523 across all forecasting horizons h = 1, ..., 60 using the EACD(1,1) model with r = 0.5 (solid), r = 1 (dashed). We set $\rho = 0.25$.

Adaptive Order Flow Forecasting with MEMs

4-3

Forecasting Performance

Figure 12: RMSPEs for the buyer-initiated and the seller-initiated from 20120820-20130523 across all trading minutes i = 1, ..., 360 using the EACD(1,1) model with r = 0.5 (solid), r = 1 (dashed). We set $\rho = 0.25$.

Intra-Day Trading ——— Intra-Day Trading

🖸 Setup

- Forecasted period: 5 minutes; from 20120903-20130430
- Predict the order flow using the local MEM: EACD(1,1), r = 1 and $\rho = 0.25$
- 'Execute' orders and evaluate trading costs

Trading strategies

- Strategy (i): 'buy if predicted order flow is positive'
- Strategy (ii): 'sell if predicted order flow is positive'
- In the current month employ the strategy with the lowest costs during the previous month

Intra-Day Trading —— Trading Costs

	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr
9:01, 9:06,	0.96	1.02^{*}	0.93	0.94	1.28^{*}	1.13^{*}	1.07^{*}	0.89
9:02, 9:07,	0.95	1.05^{*}	0.92	0.86	1.21^{*}	0.98	0.96	0.94
9:03, 9:08,	0.90	0.99	0.97	0.80	0.99	1.10^{*}	1.05^{*}	1.00
9:04, 9:09,	0.88	1.02^{*}	0.94	0.76	1.14^{*}	1.29^{*}	1.01^{*}	1.03^{*}
9:05, 9:10,	0.89	0.98	1.06^{*}	0.90	1.24*	1.04^{*}	1.00^{*}	0.91

Table 2: Costs of executing strategy (i) relative to costs of strategy (ii) from 20120903 to 20130430. Superiority of strategy (i) is denoted by an asterisk (*). The costs are calculated based on trades at bid and ask prices.

Intra-Day Trading **Trading Profit**

	Oct	Nov	Dec	Jan	Feb	Mar	Apr
9:01, 9:06,	-41	39	-22	55	-9	-17	64
9:02, 9:07,	7	48	-72	47	47	-33	-27
9:03, 9:08,	-46	-49	-89	-24	13	10	27
9:04, 9:09,	-16	35	-114	18	-70	14	13
9:05, 9:10,	-31	4	70	65	6	29	39

Table 3: Monthly profit from executing previous month's best strategy in thousands of JPY per one contract from 20121001 to 20130430. The profits are calculated based on trades at transaction prices.

Intra-Day Trading **Trading Profit**

Figure 13: Equity curves in thousands of JPY per one contract from 20130201-20130228 and 20130301-20130329 using the strategy (i). The profits are calculated based on trades at transaction prices at 5 minute intervals (09:01, 09:06, \dots).

Intra-Day Trading —— Trading Profit

Intra-Day Trading —— Trading Profit

		Monthly	,	Weekly			
	Mean	St.Dev	t	Mean	St.Dev	t	
9:01, 9:06,	10.0	41.7	0.63	5.9	33.9	0.98	
9:02, 9:07,	2.4	47.6	0.13	5.4	32.1	0.95	
9:03, 9:08,	-22.6	41.6	-1.44	-0.9	33.4	-0.16	
9:04, 9:09,	-17.2	54.7	-0.83	-2.6	38.5	-0.38	
9:05, 9:10,	25.9	35.9	1.90	7.4	28.0	1.50	

Table 4: Mean, standard deviation (St.Dev) and the test statistics t (null hypothesis: average profit equals zero) of the profit in thousands of JPY per one contract from 20120903-20130430 given a monthly and a weekly evaluation scheme relative to the daily execution time points

Short-Term Order Flow Forecasting

- Order flow predicted successfully using the local adaptive MEM
- : 'Conservative' adaptive estimation (r = 1) outperforms modest risk approach (r = 0.5) and requires 3-6 hours of data

Intra-Day Trading

- Introduced strategies share similar performance
- Trading profit achieved

Adaptive Order Flow Forecasting with MEMs

Wolfgang Karl Härdle Andrija Mihoci Christopher Hian-Ann Ting

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin Lee Kong Chian School of Business Singapore Management University http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de http://business.smu.edu.sg

Chen, Y. and Härdle, W. and Pigorsch, U.
 Localized Realized Volatility
 Journal of the American Statistical Association 105(492):
 1376–1393, 2010

 Čížek, P., Härdle, W. and Spokoiny, V.
 Adaptive Pointwise Estimation in Time-Inhomogeneous Conditional Heteroscedasticity Models
 Econometrics Journal 12: 248–271, 2009

Engle, R. F.

New Frontiers for ARCH Models Journal of Applied Econometrics **17**: 425–446, 2002

 Engle, R. F. and Rangel, J. G. *The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes* Review of Financial Studies 21: 1187–1222, 2008
 Engle, R. F. and Russell, J. R.

Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data Econometrica **66**(5): 1127–1162, 1998

Gallant, A. R.

On the bias of flexible functional forms and an essentially unbiased form

Journal of Econometrics 15: 211-245, 1981

Härdle, W. K., Hautsch, N. and Mihoci, A. Local Adaptive Multiplicative Error Models for High-Frequency Forecasts Journal of Applied Econometrics, 2014

🕨 Hautsch, N.

Econometrics of Financial High-Frequency Data Springer, Berlin, 2012

Mercurio, D. and Spokoiny, V. Statistical inference for time-inhomogeneous volatility models The Annals of Statistics **32**(2): 577–602, 2004

🔋 Spokoiny, V.

Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice The Annals of Statistics **26**(4): 1356–1378, 1998

📄 Spokoiny, V.

Multiscale Local Change Point Detection with Applications to Value-at-Risk

```
The Annals of Statistics 37(3): 1405–1436, 2009
```

Volume Description Trading Volume

Buyer-initiated volume at minute i

- Consider market orders only
- Number of contracts that have been bought during minute i (at the ask price)
- Seller-initiated volume at minute i
 - Consider market orders only
 - Number of contracts that have been sold during minute i (at the bid price)

Exponential-ACD (EACD)

) 🕩 Parameter Est

 \odot Engle and Russel (1998), $\varepsilon_i \sim Exp(1)$

Figure 15: Log likelihood - EACD(1,1), $\theta_{E}^{*} = (0.10, 0.20, 0.65)^{+}$

Appendix Weibull-ACD (WACD)

▶ ACD]

▶ Parameter Estimation

 \boxdot Engle and Russel (1998), $\varepsilon_i \sim \mathcal{G}(s, 1)$

Figure 16: Log likelihood - WACD(1,1), $\theta_{W}^{*} = (0.10, 0.20, 0.65, 0.85)^{+}$

Appendix

Gaussian Regression • Estimation Quality

$$Y_{i} = f(X_{i}) + \varepsilon_{i}, i = 1, ..., n, \text{ weights } W = \{w_{i}\}_{i=1}^{n}$$
$$L(W, \theta) = \sum_{i=1}^{n} \ell\{Y_{i}, f_{\theta}(X_{i})\} w_{i}, \text{ log-density } \ell(\cdot), \tilde{\theta} = \arg \max_{\theta \in \Theta} L(W, \theta)$$

- 1. Local constant, $f(X_i) \approx \theta^*$, $\varepsilon_i \sim N(\theta^*, \sigma^2)$ $E_{\theta^*} \left| L(W, \widetilde{\theta}) - L(W, \theta^*) \right|^r \leq E |\xi|^{2r}, \quad \xi \sim N(0, 1)$
- 2. Local linear, $f(X_i) \approx \theta^{*\top} \Psi_i$, $\varepsilon_i \sim N(0, \sigma^2)$, basis functions $\Psi = \{\psi_1(X_1), \dots, \psi_p(X_p)\}$, multivariate ξ $\mathsf{E}_{\theta^*} \left| L(W, \widetilde{\theta}) - L(W, \theta^*) \right|^r \leq \mathsf{E} |\xi|^{2r}, \quad \xi \sim \mathsf{N}(0, \mathcal{I}_p)$

Local Change Point Detection PLCP

Example: Trading volumes aggregated over 1-min periods

- \odot Scheme with (K + 1) = 14 intervals and fix i_0
- \odot Assume $l_0 = 60$ min. is homogeneous
- \Box H_0 : parameter homogeneity within $I_1 = 75$ min.
 - Define $J_1 = I_1 \setminus I_0$ observations from y_{i_0-75} up to y_{i_0-60}
 - ▶ For each $\tau \in J_1$ fit log likelihoods over $A_{1,\tau}$, $B_{1,\tau}$ and I_2
 - Find the largest likelihood ratio T_{I_1,J_1}

Appendix **Critical Values**, \mathfrak{Z}_k • Critical Values

Simulate 3k - homogeneity of the interval sequence l₀,..., lk
 'Propagation' condition (under H₀)

 $\mathsf{E}_{\theta^*} \left| L_{I_k}(\widetilde{\theta}_k) - L_{I_k}(\widehat{\theta}_k) \right|^r \le \rho_k \mathcal{R}_r(\theta^*), \quad k = 1, \dots, \mathcal{K} \quad (4)$

 $ho_k =
ho k/K$ for given significance level ho, $ho \hat{\theta}_k$ - adaptive estimate

- Check \mathfrak{z}_k for (nine) different θ^* Parameter Dynamics Quartiles
 - EACD and WACD, $K \in \{8, 13\}$, $r \in \{0.5, 1\}$, $\rho \in \{0.25, 0.50\}$
 - Findings: 3_k are virtually invariable w.r.t. θ* given a scenario Largest differences at first two or three steps

Appendix Parameter Dynamics

Estimation	E	ACD(1, 1)	WACD(1, 1)			
window	Q25	Q50	Q75	Q25	Q50	Q75	
1 week	0.85	0.89	0.93	0.82	0.88	0.92	
2 days	0.77	0.86	0.92	0.74	0.84	0.91	
1 day	0.68	0.82	0.90	0.63	0.79	0.89	
3 hours	0.54	0.75	0.88	0.50	0.72	0.87	
2 hours	0.45	0.70	0.86	0.42	0.67	0.85	
1 hour	0.33	0.58	0.80	0.31	0.57	0.80	

Table 5: Quartiles of estimated persistence levels $(\tilde{\alpha} + \tilde{\beta})$ for all five stocks at each minute from 20080222-20081231 (215 trading days). Calibration period: 20080102 - 20080221, Härdle et al. (2013)

Madal	Low	Persist	ence	Moderate Persistence High Pers					ence
woder	Q25	Q50	Q75	Q25	Q50	Q75	Q25	Q50	Q75
EACD, $\tilde{\alpha}$	0.28	0.22	0.18	0.30	0.23	0.19	0.31	0.24	0.20
EACD, \widetilde{eta}	0.56	0.62	0.67	0.59	0.66	0.71	0.62	0.68	0.73
WACD, $\tilde{\alpha}$	0.28	0.21	0.17	0.30	0.23	0.18	0.32	0.24	0.19
WACD, $\widetilde{\beta}$	0.54	0.60	0.65	0.58	0.65	0.70	0.60	0.68	0.74

Table 6: Quartiles of 774,000 estimated ratios $\tilde{\beta}/(\tilde{\alpha} + \tilde{\beta})$ (estimation windows covering 1800 observations) from 20080222-20081231 conditional on the persistence level: low { EACD (0.85), WACD (0.82) }, moderate { EACD (0.89), WACD (0.88) } or high { EACD (0.93), WACD (0.92) }. 774,000 ratios = 215 days × 360 minutes/day × 5 stocks × 2 models, Härdle et al. (2013)

Intra-day Periodicity Notation

- □ Flexible Fourier Series (FFS) approximation, Gallant (1981) Intraday periodicity components $(s_{1,d-30}, \ldots, s_{360,d-1})^T$
- Estimation: 30-day rolling window with s_{i,d-1} = ... = s_{i,d-30}, Engle and Rangel (2008)

$$s_{i,d-1} = \delta \overline{\imath}_i + \sum_{m=1}^{M} \left\{ \delta_{c,m} \cos\left(\overline{\imath}_i \cdot 2\pi m\right) + \delta_{s,m} \sin\left(\overline{\imath}_i \cdot 2\pi m\right) \right\}$$

 $ar{\imath} = \left(ar{\imath}_1,\ldots,ar{\imath}_{360}
ight)^ op = \left(1/360,\ldots,360/360
ight)^ op$ - intraday time trend