# TERES - Tail Event Risk Expected Shortfall

Philipp Gschöpf Wolfgang Karl Härdle Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de/
http://case.hu-berlin.de
http://irtg1792.hu-berlin.de







#### **Motivation**



### Risk Management

- Challenges
  - **Expected shortfall**  $ES_{\alpha}$  coherent;  $VaR_{\alpha}$  not coherent
  - Extreme value theory discards data
  - Historical estimation not feasible for small samples

**Example:** credit rating,  $VaR_{0.0002}$ ,  $ES_{0.001}$ ,  $ES_{0.01}$ 

▶ Coherence

# **Objectives**

- (i) Expected Shortfall (ES)
  - ▶ M-quantiles: expectiles, quantiles
  - ► Tail heaviness
- (ii) TERES
  - ES estimation: robustness; pseudo maximum likelihood
  - Tail scenarios and ES range: risk level, lengthening the tail

### Example 1



Figure 1: Discrete distribution of returns,  $VaR_{0.05}$  remains unchanged if tail structure changes

TERES - Tail Event Risk Expected Shortfall

# Example 2

#### **Expected Shortfall** (lengthening the tail)

An investor holds a portfolio and investigates the theoretical ES at 1% level across two scenarios

#### Result

- (a) Standard normal,  $VaR_{0.01} = -2.33$ ,  $ES_{0.01} = -2.66$
- (b) Standard Laplace,  $VaR_{0.01} = -3.91$ ,  $ES_{0.01} = -4.91$

# Example 3

#### Expected Shortfall (lengthening the tail)

An investor has a long position in the S&P 500 index and estimates ES at 1% level, 20000911-20140911 (3654 days)

TERES - standardized returns

- (a) Standard normal
- (b) Standard Laplace

### Example 3



Figure 2: S&P 500 returns from 20000911-20140911 (3654 days)

TERES - Tail Event Risk Expected Shortfall

### Example 3



Figure 3: Estimated  $ES_{0.01}$  using TERES, (a) standard normal - solid, (b) standard Laplace - dashed

TERES - Tail Event Risk Expected Shortfall

### **Research Questions**

How are M-Quantiles used for ES estimation?

How does the risk level  $\alpha$  influence the variability of ES estimates?

Which range of ES is expected under different tail scenarios?

### **Outline**

- 1 Motivation ✓
- 2. Expected Shortfall
- 3. TERES
- 4. Empirical Results
- 5. Conclusions

- $\Box$  Standardized (portfolio) return Y with pdf  $f(\cdot)$  and cdf  $F(\cdot)$
- Expected shortfall

$$ES_{\alpha} = E[Y|Y < q_{\alpha}]$$

with quantile  $VaR_{\alpha}=q_{\alpha}=F^{-1}\left(\alpha\right)$  at risk level  $\alpha\in\left[0,1\right]$ 

### M-Quantiles

- $oxed{\Box}$  Loss function  $ho_{lpha,\gamma}\left(u
  ight)=\left|lpha-\mathrm{I}\left\{u<0
  ight\}\right|\left|u\right|^{\gamma}$ 
  - Quantile ALD location estimate  $q_{\alpha} = \arg\min_{\theta} \mathsf{E} \, \rho_{\alpha,1} \, (\mathsf{Y} \theta)$
  - Expectile AND location estimate  $e_{\alpha} = \arg\min_{\theta} \mathbb{E} \rho_{\alpha,2} (Y \theta)$

#### Loss Function



Figure 4: Expectile and quantile loss functions at  $\alpha=0.01$  (left) and  $\alpha=0.50$  (right)

Q LQRcheck

#### Tail Structure

- - ▶ Level  $\alpha$ ,  $e_{\alpha}$  and  $q_{\alpha}$
  - lacksquare Level  $au_lpha$ ,  $e_{ au_lpha}=q_lpha$

$$ES_{\alpha} = e_{\tau_{\alpha}} + \frac{e_{\tau_{\alpha}} - E[Y]}{1 - 2\tau_{\alpha}} \frac{\tau_{\alpha}}{\alpha}$$

### **Expectiles and Quantiles**

$$\tau_{\alpha} = \frac{LPM_{Y}(q_{\alpha}) - q_{\alpha}\alpha}{2\{LPM_{Y}(q_{\alpha}) - q_{\alpha}\alpha\} + q_{\alpha} - E[Y]}$$

$$LPM_{Y}(u) = \int_{-\infty}^{u} sf(s)ds$$

**Example:**  $LPM_Y(q_\alpha) = -\varphi(q_\alpha)$  for N(0,1)

TERES — 3-1

#### **TERES**

- ES estimation
  - 1. Mixture distribution for Y or
  - 2. Loss function reparameterization asymmetric generalized error distribution (GED)

#### Mixture Distribution

oxdot Contamination level  $\delta \in [0,1]$ , Huber (1964)

$$F_{\delta}(x) = (1 - \delta) \Phi(x) + \delta H(x)$$

with  $H(\cdot)$  - cdf of a symmetrically distributed r.v., e.g., standard Laplace

TERES — 3-3

### Mixture Distribution

- Lengthening the tail
- Special cases
  - ightharpoonup Standard normal,  $\delta=0$
  - lacksquare Standard Laplace,  $\delta=1$

TERES — 3-4



Figure 5: Theoretical ES assuming different contamination  $(\delta)$  and risk levels  $(\alpha)$ 

#### Data

■ Datastream: S&P 500 Index

Standardized daily returns

#### Data



Figure 6: S&P 500 standardized returns

- $\square$  Risk level  $\alpha$ : 0.01, 0.05 and 0.10
- $oxed{\square}$  Sample quantiles  $\widehat{q}_{\alpha}$ : -2.62, -1.43 and -1.03
- Contamination level

```
\delta \in \{0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.10, 0.15, 0.25, 0.5, 1\}
```

► GARCH scaling

| $\delta$ | $ES_{0.10}$ | $\delta$ | $ES_{0.1}$ |
|----------|-------------|----------|------------|
| 0.0      | -1.46       | 0.05     | -1.49      |
| 0.001    | -1.46       | 0.10     | -1.5       |
| 0.002    | -1.46       | 0.15     | -1.5       |
| 0.005    | -1.46       | 0.25     | -1.5       |
| 0.01     | -1.47       | 0.50     | -1.6       |
| 0.02     | -1.47       | 1.00     | -1.7       |
|          |             |          |            |

Table 1: *ES* for the S&P 500 at  $\alpha = 0.10$ 

| $ES_{0.05}$ |                                           |
|-------------|-------------------------------------------|
| -1.86       |                                           |
| -1.86       |                                           |
| -1.86       |                                           |
| -1.87       |                                           |
| -1.87       |                                           |
| -1.88       |                                           |
|             | -1.86<br>-1.86<br>-1.86<br>-1.87<br>-1.87 |

| _ |      |                    |
|---|------|--------------------|
|   | δ    | ES <sub>0.05</sub> |
| _ | 0.05 | -1.90              |
|   | 0.10 | -1.94              |
|   | 0.15 | -1.98              |
|   | 0.25 | -2.04              |
|   | 0.50 | -2.13              |
|   | 1.00 | -2.13              |
|   |      |                    |

Table 2: *ES* for the S&P 500 at  $\alpha = 0.05$ 

| δ     | ES <sub>0.01</sub> |  |
|-------|--------------------|--|
| 0.0   | -3.03              |  |
| 0.001 | -3.03              |  |
| 0.002 | -3.04              |  |
| 0.005 | -3.05              |  |
| 0.01  | -3.06              |  |
| 0.02  | -3.09              |  |

| δ    | ES <sub>0.01</sub> |
|------|--------------------|
| 0.05 | -3.18              |
| 0.10 | -3.28              |
| 0.15 | -3.37              |
| 0.25 | -3.45              |
| 0.50 | -3.44              |
| 1.00 | -3.32              |

Table 3: *ES* for the S&P 500 at  $\alpha = 0.01$ 



Figure 7: Expected shortfall using S&P 500 sample quantiles and assuming different contamination ( $\delta$ ) and risk levels ( $\alpha$ ).

### Outlook

- $\odot$   $\delta$ -environment
  - Strict convexity
  - Analytical formula for Normal and Laplace cases
- Connection to Generalized Error Distribution (GED)
  - $\triangleright$  Risk level  $\alpha$  is connected to skewness
  - ▶ Integration of moments into  $\tau$  estimation

→ GED



Figure 8: Asymmetric GED Likelihood and expectile loss function for  $\alpha = 0.05$ .

☑ TERESGEDandMQuantile

### **Conclusions**

- (i) Expected Shortfall (ES)
  - ► M-Quantiles applied successfully to estimate *ES*
  - $\blacktriangleright$  Interaction between  $\alpha$  and  $\tau$  illustrated
- (ii) Estimating Expected Shortfall
  - ightharpoonup Distributional robustness:  $\delta$ -neighborhood
  - ► TERES: S&P 500  $ES_{0.01}$ ,  $ES_{0.05}$  and  $ES_{0.10}$

# TERES - Tail Event Risk Expected Shortfall

Philipp Gschöpf Wolfgang Karl Härdle Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de/
http://case.hu-berlin.de
http://irtg1792.hu-berlin.de







#### References



Bellini, F., Klar, B., Muller, A. and Gianin, E. R.

Generalized quantiles as risk measures

Insurance: Mathematics and Economics 54, 41-48, 2014, ISSN: 0167-6687



🗎 E., Guo M. and Härdle, W. K.

Simultaneous Confidence Band for Expectile Function

Advances in Statistical Analysis, 2011

DOI: 10.1007/s10182-011-0182-1





Breckling, J. and Chambers, R.

#### M-quantiles

Biometrica **75**(4): 761-771, 1988 DOI: 10.1093/biomet/75.4.761



📑 Huber, P.J.

Robust Estimation of a Location Parameter

The Annals of Mathematical Statistics 35(1): 73-101, 1964

DOI: 10.1214/aoms/1177703732



陯 Huber, P.J. and Ronchetti, E.M.

Robust Statistics

Second Edition, 2009, ISBN: 978-0-470-12990-6



Jones, M.C.

Expectiles and M-quantiles are quantiles

Statistics & Probability letters 20(2): 149-153, 1993, DOI: http://dx.doi.org/10.1016/0167-7152(94)90031-0



🗎 Koenker, R.

When are expectiles percentiles?

Economic Theory 9(3): 526-527, 1993 DOI:http://dx.doi.org/10.1017/S0266466600007921



Newey, W. K., Powell J.L.

Asymmetric Least Squares Estimation and Testing.

Econometrica 55(4): 819-847, 1987 DOI: 10.2307/1911031



Taylor, J. W Estimating value at risk and expected shortfall using expectiles Journal of Financial Econometrics (6), 2, 2008



Yao, Q. and Tong, H.

Asymmetric least squares regression estimation: A nonparametric approach Journal of Nonparametric Statistics (6), 2-3, 1996



Yee, T. W.

The VGAM Package for Categorical Data Analysis R reference manual http://127.0.0.1:16800/library/VGAM/doc/categoricalVGAM.pdf Appendix

7-1

#### **Coherence**

- $\bigcirc$  Coherent risk measure  $\rho(Y)$ 
  - ▶ Subadditivity,  $\rho(Y_1 + Y_2) \le \rho(Y_1) + \rho(Y_2)$
  - ▶ Translation invariance,  $\rho(Y + c) = \rho(Y)$  for constant c
  - Monotonicity,  $\rho(Y_1) > \rho(Y_2) \quad \forall Y_1 < Y_2$
  - ▶ Positive homogeneity,  $\rho(kY) = k\rho(Y) \quad \forall k > 0$

▶ Risk Management

Appendix — 7-2

# Subadditivity

- Diversification never increases risk
- Quantiles are not subadditive

▶ Risk Management

The expectile is defined as

$$\begin{split} e_{\tau_{\alpha}} &= \arg \, \min_{\theta} \operatorname{E} \rho_{\tau_{\alpha},2} \left( Y - \theta \right) \\ \rho_{\tau_{\alpha},2} \left( u \right) &= \left| \tau_{\alpha} - \operatorname{I} \left\{ u < 0 \right\} \right| \left| u \right|^2 \end{split}$$

For the continuous case

$$e_{ au_lpha} = rg \min_{ heta} \int 
ho_{ au_lpha,2} (Y- heta)$$

This is a Quadratic convex problem with F.O.C.

$$(1-\tau_{\alpha})\int_{-\infty}^{s}(y-s)f(y)dy+\tau_{\alpha}\int_{s}^{\infty}(y-s)f(y)dy=0$$

▶ Tail Structure

$$(1 - \tau_{\alpha}) \int_{-\infty}^{e_{\tau_{\alpha}}} (y - e_{\tau_{\alpha}}) f(y) dy + (1 - \tau_{\alpha}) \int_{e_{\tau_{\alpha}}}^{\infty} (y - e_{\tau_{\alpha}}) f(y) dy$$
$$= - \tau_{\alpha} \int_{e_{\tau_{\alpha}}}^{\infty} (y - e_{\tau_{\alpha}}) f(y) dy + (1 - \tau_{\alpha}) \int_{e_{\tau_{\alpha}}}^{\infty} (y - e_{\tau_{\alpha}}) f(y) dy$$

$$(1- au)\{\mathsf{E}(Y)-e_{ au_lpha}\}=(1-2 au_lpha)\int_{e_{ au_lpha}}^\infty (y-e_{ au_lpha})f(y)dy$$
  $e_{ au_lpha}-\mathsf{E}(Y)=rac{(2 au_lpha-1)}{1- au_lpha}\int_{e_{ au_lpha}}^\infty (y-e_{ au_lpha})f(y)dy$ 

This result is equal to (2.7) in Newey and Powell (1987)

▶ Tail Structure

Finally, as pointed out in Taylor (2008)

$$\begin{split} e_{\tau_{\alpha}} - \mathsf{E}[Y] &= \frac{1 - 2\tau_{\alpha}}{\tau_{\alpha}} \, \mathsf{E}\left[ (Y - e_{\tau_{\alpha}}) \, \mathsf{I}\{Y > e_{\tau_{\alpha}} \} \right] \\ \mathsf{E}[Y|Y > e_{\tau_{\alpha}}] &= e_{\tau_{\alpha}} + \frac{\tau(e_{\tau_{\alpha}} - \mathsf{E}[Y])}{(1 - 2\tau_{\alpha})F(e_{\tau_{\alpha}})} \\ \mathsf{And} \ \mathsf{using} \ e_{\tau_{\alpha}} &= q_{\alpha} \\ \mathsf{E}[Y|Y > q_{\alpha}] &= e_{\tau_{\alpha}} + \frac{(e_{\tau_{\alpha}} - \mathsf{E}[Y])\tau_{\alpha}}{(1 - 2\tau_{\alpha})\alpha} \\ &= \mathsf{ES}(e_{\tau_{\alpha}}, \tau_{\alpha}|\alpha) \end{split}$$

▶ Tail Structure

Appendix —

### Relation of Expectiles and Quantiles

F.O.C. of Expectiles:

$$0 = (1 - \tau_{\alpha}) \int_{-\infty}^{e_{\tau_{\alpha}}} (y - e_{\tau_{\alpha}}) f(y) dy + \tau_{\alpha} \int_{e_{\tau_{\alpha}}}^{\infty} (y - e_{\tau_{\alpha}}) f(y) dy$$

Reformulation yields

$$\tau_{\alpha} \left( e_{\tau_{\alpha}} - 2 \int_{-\infty}^{e_{\tau_{\alpha}}} e_{\tau_{\alpha}} f(y) dy \right) + \int_{-\infty}^{e_{\tau_{\alpha}}} e_{\tau_{\alpha}} f(y) dy$$
$$= \tau_{\alpha} \left( \int_{-\infty}^{\infty} y f(y) dy - 2 \int_{-\infty}^{e_{\tau_{\alpha}}} y f(y) dy \right) + \int_{-\infty}^{e_{\tau_{\alpha}}} y f(y) dy$$

► Expectiles and Quantiles

$$\tau_{\alpha} \left\{ 2 \left( \int_{-\infty}^{e_{\tau_{\alpha}}} y f(y) dy - e_{\tau_{\alpha}} \int_{-\infty}^{e_{\tau_{\alpha}}} f(y) dy \right) + e_{\tau_{\alpha}} - \mathbb{E}[Y] \right\}$$

$$= \int_{-\infty}^{e_{\tau_{\alpha}}} y f(y) dy - \int_{-\infty}^{e_{\tau_{\alpha}}} e_{\tau_{\alpha}} f(y) dy$$

And finally

$$\tau_{\alpha} = \frac{\mathsf{LPM}_{e_{\tau_{\alpha}}}(y) - e_{\tau_{\alpha}}F(e_{\tau_{\alpha}})}{2\left\{\mathsf{LPM}_{e_{\tau_{\alpha}}}(y) - e_{\tau_{\alpha}}F(e_{\tau_{\alpha}})\right\} + e_{\tau_{\alpha}} - \mathsf{E}[Y]}$$

► Expectiles and Quantiles

Appendix — 7-8

### Tail Event Risk

Figure 9:  $\alpha \tau(\alpha)$  for  $F_{\delta}$ 

► Expectiles and Quantiles

### **Standardization**

 $\odot$   $\widehat{\sigma}_i$  from GARCH(1,1)

$$y_i = \beta_0 + \beta_1 y_{i-1} + \varepsilon_i$$
  
$$\sigma_i^2 = \alpha_0 + \alpha_1 \varepsilon_{i-1}^2 + \alpha_2 \sigma_{i-1}^2$$

- $\widehat{Y}_i = \frac{r_i \widehat{e}_{0.5}}{\widehat{\sigma}_i}$

▶ Back

#### Generalized Error Distribution

- oxdot Let  $\kappa > 0$  and g(x) be a symmetric distribution
- $\square$  An asymmetric distribution f(x) can be obtained as:

$$f(x) = \frac{2\kappa}{1 + \kappa^2} \begin{cases} g(x\kappa) & , 0 \le x \\ g(\frac{x}{\kappa}) & , \text{ else} \end{cases}$$
 (1)

 The Generalized Error Distribution (GED, Exponential Power distr.) is defined as

$$g(x|\gamma, \sigma, \theta) = \frac{\gamma}{2\sigma\Gamma(\frac{1}{\gamma})} \exp\left\{-\left|\frac{x-\theta}{\sigma}\right|^{\gamma}\right\}$$
 (2)

▶ Outlook

Following Ayebo and Kozubowski (2003), (1) and (2) yield a skew GED:

$$f(x|\gamma,\kappa,\sigma,\theta) = \frac{\gamma}{2\sigma\Gamma(\frac{1}{\gamma})} \frac{\kappa}{1+\kappa^2} \exp\left\{-\frac{\kappa^{\gamma}}{\sigma^{\gamma}} |x-\theta|_+^{\gamma} - \frac{1}{\kappa^{\gamma}\sigma^{\gamma}} |x-\theta|_-^{\gamma}\right\}$$

- Parameter
  - $ightharpoonup \gamma$  Shape,  $\gamma=1$  Laplace,  $\gamma=2$  Normal
  - ightharpoonup  $\kappa$  Skewness,  $\kappa=1$  is symmetric
  - $ightharpoonup \sigma$  Scale
  - ightharpoonup heta Mean

➤ Outlook

 $\square$  Part of  $-\ln\{f(\cdot)\}$  that depends on x

$$\frac{\kappa^{\gamma}}{2\sigma^{\gamma}}|x-\theta|^{\gamma}\mathsf{I}\{x-\theta\leq 0\} + \frac{1}{2\kappa^{\gamma}\sigma^{\gamma}}|x-\theta|^{\gamma}\mathsf{I}\{x-\theta< 0\}$$

$$\rho(x - \theta) = |\tau - I\{x - \theta < 0\}||x - \theta|^{\gamma}$$
  
=  $\tau |x - \theta|^{\gamma} I\{x - \theta \le 0\} + (1 - \tau)|x - \theta|^{\gamma} I\{x - \theta < 0\}$ 

▶ Outlook