TERES - Tail Event Risk Expected Shortfall

Philipp Gschöpf Wolfgang Karl Härdle Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de/
http://case.hu-berlin.de
http://irtg1792.hu-berlin.de

Motivation

Risk Management

- Challenges
 - **Expected shortfall** ES_{α} coherent; VaR_{α} not coherent
 - Extreme value theory discards data
 - Historical estimation not feasible for small samples

Example: credit rating, $VaR_{0.0002}$, $ES_{0.001}$, $ES_{0.01}$

▶ Coherence

Objectives

- (i) Expected Shortfall (ES)
 - ▶ M-quantiles: expectiles, quantiles
 - ► Tail heaviness
- (ii) TERES
 - ES estimation: robustness; pseudo maximum likelihood
 - Tail scenarios and ES range: risk level, lengthening the tail

Example 1

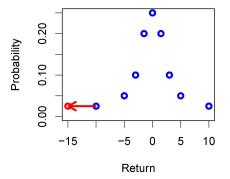


Figure 1: Discrete distribution of returns, $VaR_{0.05}$ remains unchanged if tail structure changes

TERES - Tail Event Risk Expected Shortfall

Example 2

Expected Shortfall (lengthening the tail)

An investor holds a portfolio and investigates the theoretical ES at 1% level across two scenarios

Result

- (a) Standard normal, $VaR_{0.01} = -2.33$, $ES_{0.01} = -2.66$
- (b) Standard Laplace, $VaR_{0.01} = -3.91$, $ES_{0.01} = -4.91$

Example 3

Expected Shortfall (lengthening the tail)

An investor has a long position in the S&P 500 index and estimates ES at 1% level, 20000911-20140911 (3654 days)

TERES - standardized returns

- (a) Standard normal
- (b) Standard Laplace

Example 3

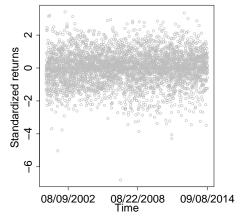


Figure 2: S&P 500 returns from 20000911-20140911 (3654 days)

TERES - Tail Event Risk Expected Shortfall

Example 3

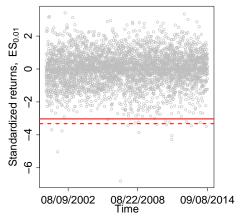


Figure 3: Estimated $ES_{0.01}$ using TERES, (a) standard normal - solid, (b) standard Laplace - dashed

TERES - Tail Event Risk Expected Shortfall

Research Questions

How are M-Quantiles used for ES estimation?

How does the risk level α influence the variability of ES estimates?

Which range of ES is expected under different tail scenarios?

Outline

- 1 Motivation ✓
- 2. Expected Shortfall
- 3. TERES
- 4. Empirical Results
- 5. Conclusions

- \Box Standardized (portfolio) return Y with pdf $f(\cdot)$ and cdf $F(\cdot)$
- Expected shortfall

$$ES_{\alpha} = E[Y|Y < q_{\alpha}]$$

with quantile $VaR_{\alpha}=q_{\alpha}=F^{-1}\left(\alpha\right)$ at risk level $\alpha\in\left[0,1\right]$

M-Quantiles

- $oxed{\Box}$ Loss function $ho_{lpha,\gamma}\left(u
 ight)=\left|lpha-\mathrm{I}\left\{u<0
 ight\}\right|\left|u\right|^{\gamma}$
 - Quantile ALD location estimate $q_{\alpha} = \arg\min_{\theta} \mathsf{E} \, \rho_{\alpha,1} \, (\mathsf{Y} \theta)$
 - Expectile AND location estimate $e_{\alpha} = \arg\min_{\theta} \mathbb{E} \rho_{\alpha,2} (Y \theta)$

Loss Function

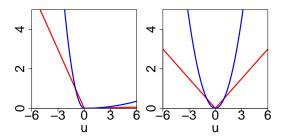


Figure 4: Expectile and quantile loss functions at $\alpha=0.01$ (left) and $\alpha=0.50$ (right)

Q LQRcheck

Tail Structure

- - ▶ Level α , e_{α} and q_{α}
 - lacksquare Level au_lpha , $e_{ au_lpha}=q_lpha$

$$ES_{\alpha} = e_{\tau_{\alpha}} + \frac{e_{\tau_{\alpha}} - E[Y]}{1 - 2\tau_{\alpha}} \frac{\tau_{\alpha}}{\alpha}$$

Expectiles and Quantiles

$$\tau_{\alpha} = \frac{LPM_{Y}(q_{\alpha}) - q_{\alpha}\alpha}{2\{LPM_{Y}(q_{\alpha}) - q_{\alpha}\alpha\} + q_{\alpha} - E[Y]}$$

$$LPM_{Y}(u) = \int_{-\infty}^{u} sf(s)ds$$

Example: $LPM_Y(q_\alpha) = -\varphi(q_\alpha)$ for N(0,1)

TERES — 3-1

TERES

- ES estimation
 - 1. Mixture distribution for Y or
 - 2. Loss function reparameterization asymmetric generalized error distribution (GED)

Mixture Distribution

oxdot Contamination level $\delta \in [0,1]$, Huber (1964)

$$F_{\delta}(x) = (1 - \delta) \Phi(x) + \delta H(x)$$

with $H(\cdot)$ - cdf of a symmetrically distributed r.v., e.g., standard Laplace

TERES — 3-3

Mixture Distribution

- Lengthening the tail
- Special cases
 - ightharpoonup Standard normal, $\delta=0$
 - lacksquare Standard Laplace, $\delta=1$

TERES — 3-4

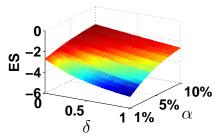


Figure 5: Theoretical ES assuming different contamination (δ) and risk levels (α)

Data

■ Datastream: S&P 500 Index

Standardized daily returns

Data

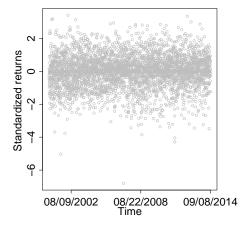


Figure 6: S&P 500 standardized returns

- \square Risk level α : 0.01, 0.05 and 0.10
- $oxed{\square}$ Sample quantiles \widehat{q}_{α} : -2.62, -1.43 and -1.03
- Contamination level

```
\delta \in \{0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.10, 0.15, 0.25, 0.5, 1\}
```

► GARCH scaling

δ	$ES_{0.10}$	δ	$ES_{0.1}$
0.0	-1.46	0.05	-1.49
0.001	-1.46	0.10	-1.5
0.002	-1.46	0.15	-1.5
0.005	-1.46	0.25	-1.5
0.01	-1.47	0.50	-1.6
0.02	-1.47	1.00	-1.7

Table 1: *ES* for the S&P 500 at $\alpha = 0.10$

$ES_{0.05}$	
-1.86	
-1.86	
-1.86	
-1.87	
-1.87	
-1.88	
	-1.86 -1.86 -1.86 -1.87 -1.87

_		
	δ	ES _{0.05}
_	0.05	-1.90
	0.10	-1.94
	0.15	-1.98
	0.25	-2.04
	0.50	-2.13
	1.00	-2.13

Table 2: *ES* for the S&P 500 at $\alpha = 0.05$

δ	ES _{0.01}	
0.0	-3.03	
0.001	-3.03	
0.002	-3.04	
0.005	-3.05	
0.01	-3.06	
0.02	-3.09	

δ	ES _{0.01}
0.05	-3.18
0.10	-3.28
0.15	-3.37
0.25	-3.45
0.50	-3.44
1.00	-3.32

Table 3: *ES* for the S&P 500 at $\alpha = 0.01$

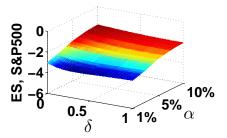


Figure 7: Expected shortfall using S&P 500 sample quantiles and assuming different contamination (δ) and risk levels (α).

Outlook

- \odot δ -environment
 - Strict convexity
 - Analytical formula for Normal and Laplace cases
- Connection to Generalized Error Distribution (GED)
 - \triangleright Risk level α is connected to skewness
 - ▶ Integration of moments into τ estimation

→ GED

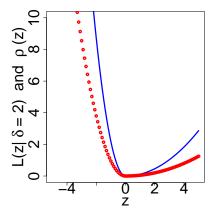


Figure 8: Asymmetric GED Likelihood and expectile loss function for $\alpha = 0.05$.

☑ TERESGEDandMQuantile

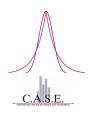
Conclusions

- (i) Expected Shortfall (ES)
 - ► M-Quantiles applied successfully to estimate *ES*
 - \blacktriangleright Interaction between α and τ illustrated
- (ii) Estimating Expected Shortfall
 - ightharpoonup Distributional robustness: δ -neighborhood
 - ► TERES: S&P 500 $ES_{0.01}$, $ES_{0.05}$ and $ES_{0.10}$

TERES - Tail Event Risk Expected Shortfall

Philipp Gschöpf Wolfgang Karl Härdle Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de/
http://case.hu-berlin.de
http://irtg1792.hu-berlin.de



References

Bellini, F., Klar, B., Muller, A. and Gianin, E. R.

Generalized quantiles as risk measures

Insurance: Mathematics and Economics 54, 41-48, 2014, ISSN: 0167-6687

🗎 E., Guo M. and Härdle, W. K.

Simultaneous Confidence Band for Expectile Function

Advances in Statistical Analysis, 2011

DOI: 10.1007/s10182-011-0182-1

Breckling, J. and Chambers, R.

M-quantiles

Biometrica **75**(4): 761-771, 1988 DOI: 10.1093/biomet/75.4.761

📑 Huber, P.J.

Robust Estimation of a Location Parameter

The Annals of Mathematical Statistics 35(1): 73-101, 1964

DOI: 10.1214/aoms/1177703732

陯 Huber, P.J. and Ronchetti, E.M.

Robust Statistics

Second Edition, 2009, ISBN: 978-0-470-12990-6

Jones, M.C.

Expectiles and M-quantiles are quantiles

Statistics & Probability letters 20(2): 149-153, 1993, DOI: http://dx.doi.org/10.1016/0167-7152(94)90031-0

🗎 Koenker, R.

When are expectiles percentiles?

Economic Theory 9(3): 526-527, 1993 DOI:http://dx.doi.org/10.1017/S0266466600007921

Newey, W. K., Powell J.L.

Asymmetric Least Squares Estimation and Testing.

Econometrica 55(4): 819-847, 1987 DOI: 10.2307/1911031

Taylor, J. W Estimating value at risk and expected shortfall using expectiles Journal of Financial Econometrics (6), 2, 2008

Yao, Q. and Tong, H.

Asymmetric least squares regression estimation: A nonparametric approach Journal of Nonparametric Statistics (6), 2-3, 1996

Yee, T. W.

The VGAM Package for Categorical Data Analysis R reference manual http://127.0.0.1:16800/library/VGAM/doc/categoricalVGAM.pdf Appendix

7-1

Coherence

- \bigcirc Coherent risk measure $\rho(Y)$
 - ▶ Subadditivity, $\rho(Y_1 + Y_2) \le \rho(Y_1) + \rho(Y_2)$
 - ▶ Translation invariance, $\rho(Y + c) = \rho(Y)$ for constant c
 - Monotonicity, $\rho(Y_1) > \rho(Y_2) \quad \forall Y_1 < Y_2$
 - ▶ Positive homogeneity, $\rho(kY) = k\rho(Y) \quad \forall k > 0$

▶ Risk Management

Appendix — 7-2

Subadditivity

- Diversification never increases risk
- Quantiles are not subadditive

▶ Risk Management

The expectile is defined as

$$\begin{split} e_{\tau_{\alpha}} &= \arg \, \min_{\theta} \operatorname{E} \rho_{\tau_{\alpha},2} \left(Y - \theta \right) \\ \rho_{\tau_{\alpha},2} \left(u \right) &= \left| \tau_{\alpha} - \operatorname{I} \left\{ u < 0 \right\} \right| \left| u \right|^2 \end{split}$$

For the continuous case

$$e_{ au_lpha} = rg \min_{ heta} \int
ho_{ au_lpha,2} (Y- heta)$$

This is a Quadratic convex problem with F.O.C.

$$(1-\tau_{\alpha})\int_{-\infty}^{s}(y-s)f(y)dy+\tau_{\alpha}\int_{s}^{\infty}(y-s)f(y)dy=0$$

▶ Tail Structure

$$(1 - \tau_{\alpha}) \int_{-\infty}^{e_{\tau_{\alpha}}} (y - e_{\tau_{\alpha}}) f(y) dy + (1 - \tau_{\alpha}) \int_{e_{\tau_{\alpha}}}^{\infty} (y - e_{\tau_{\alpha}}) f(y) dy$$
$$= - \tau_{\alpha} \int_{e_{\tau_{\alpha}}}^{\infty} (y - e_{\tau_{\alpha}}) f(y) dy + (1 - \tau_{\alpha}) \int_{e_{\tau_{\alpha}}}^{\infty} (y - e_{\tau_{\alpha}}) f(y) dy$$

$$(1- au)\{\mathsf{E}(Y)-e_{ au_lpha}\}=(1-2 au_lpha)\int_{e_{ au_lpha}}^\infty (y-e_{ au_lpha})f(y)dy$$
 $e_{ au_lpha}-\mathsf{E}(Y)=rac{(2 au_lpha-1)}{1- au_lpha}\int_{e_{ au_lpha}}^\infty (y-e_{ au_lpha})f(y)dy$

This result is equal to (2.7) in Newey and Powell (1987)

▶ Tail Structure

Finally, as pointed out in Taylor (2008)

$$\begin{split} e_{\tau_{\alpha}} - \mathsf{E}[Y] &= \frac{1 - 2\tau_{\alpha}}{\tau_{\alpha}} \, \mathsf{E}\left[(Y - e_{\tau_{\alpha}}) \, \mathsf{I}\{Y > e_{\tau_{\alpha}} \} \right] \\ \mathsf{E}[Y|Y > e_{\tau_{\alpha}}] &= e_{\tau_{\alpha}} + \frac{\tau(e_{\tau_{\alpha}} - \mathsf{E}[Y])}{(1 - 2\tau_{\alpha})F(e_{\tau_{\alpha}})} \\ \mathsf{And} \ \mathsf{using} \ e_{\tau_{\alpha}} &= q_{\alpha} \\ \mathsf{E}[Y|Y > q_{\alpha}] &= e_{\tau_{\alpha}} + \frac{(e_{\tau_{\alpha}} - \mathsf{E}[Y])\tau_{\alpha}}{(1 - 2\tau_{\alpha})\alpha} \\ &= \mathsf{ES}(e_{\tau_{\alpha}}, \tau_{\alpha}|\alpha) \end{split}$$

▶ Tail Structure

Appendix —

Relation of Expectiles and Quantiles

F.O.C. of Expectiles:

$$0 = (1 - \tau_{\alpha}) \int_{-\infty}^{e_{\tau_{\alpha}}} (y - e_{\tau_{\alpha}}) f(y) dy + \tau_{\alpha} \int_{e_{\tau_{\alpha}}}^{\infty} (y - e_{\tau_{\alpha}}) f(y) dy$$

Reformulation yields

$$\tau_{\alpha} \left(e_{\tau_{\alpha}} - 2 \int_{-\infty}^{e_{\tau_{\alpha}}} e_{\tau_{\alpha}} f(y) dy \right) + \int_{-\infty}^{e_{\tau_{\alpha}}} e_{\tau_{\alpha}} f(y) dy$$
$$= \tau_{\alpha} \left(\int_{-\infty}^{\infty} y f(y) dy - 2 \int_{-\infty}^{e_{\tau_{\alpha}}} y f(y) dy \right) + \int_{-\infty}^{e_{\tau_{\alpha}}} y f(y) dy$$

► Expectiles and Quantiles

$$\tau_{\alpha} \left\{ 2 \left(\int_{-\infty}^{e_{\tau_{\alpha}}} y f(y) dy - e_{\tau_{\alpha}} \int_{-\infty}^{e_{\tau_{\alpha}}} f(y) dy \right) + e_{\tau_{\alpha}} - \mathbb{E}[Y] \right\}$$

$$= \int_{-\infty}^{e_{\tau_{\alpha}}} y f(y) dy - \int_{-\infty}^{e_{\tau_{\alpha}}} e_{\tau_{\alpha}} f(y) dy$$

And finally

$$\tau_{\alpha} = \frac{\mathsf{LPM}_{e_{\tau_{\alpha}}}(y) - e_{\tau_{\alpha}}F(e_{\tau_{\alpha}})}{2\left\{\mathsf{LPM}_{e_{\tau_{\alpha}}}(y) - e_{\tau_{\alpha}}F(e_{\tau_{\alpha}})\right\} + e_{\tau_{\alpha}} - \mathsf{E}[Y]}$$

► Expectiles and Quantiles

Appendix — 7-8

Tail Event Risk

Figure 9: $\alpha \tau(\alpha)$ for F_{δ}

► Expectiles and Quantiles

Standardization

 \odot $\widehat{\sigma}_i$ from GARCH(1,1)

$$y_i = \beta_0 + \beta_1 y_{i-1} + \varepsilon_i$$

$$\sigma_i^2 = \alpha_0 + \alpha_1 \varepsilon_{i-1}^2 + \alpha_2 \sigma_{i-1}^2$$

- $\widehat{Y}_i = \frac{r_i \widehat{e}_{0.5}}{\widehat{\sigma}_i}$

▶ Back

Generalized Error Distribution

- oxdot Let $\kappa > 0$ and g(x) be a symmetric distribution
- \square An asymmetric distribution f(x) can be obtained as:

$$f(x) = \frac{2\kappa}{1 + \kappa^2} \begin{cases} g(x\kappa) & , 0 \le x \\ g(\frac{x}{\kappa}) & , \text{ else} \end{cases}$$
 (1)

 The Generalized Error Distribution (GED, Exponential Power distr.) is defined as

$$g(x|\gamma, \sigma, \theta) = \frac{\gamma}{2\sigma\Gamma(\frac{1}{\gamma})} \exp\left\{-\left|\frac{x-\theta}{\sigma}\right|^{\gamma}\right\}$$
 (2)

▶ Outlook

Following Ayebo and Kozubowski (2003), (1) and (2) yield a skew GED:

$$f(x|\gamma,\kappa,\sigma,\theta) = \frac{\gamma}{2\sigma\Gamma(\frac{1}{\gamma})} \frac{\kappa}{1+\kappa^2} \exp\left\{-\frac{\kappa^{\gamma}}{\sigma^{\gamma}} |x-\theta|_+^{\gamma} - \frac{1}{\kappa^{\gamma}\sigma^{\gamma}} |x-\theta|_-^{\gamma}\right\}$$

- Parameter
 - $ightharpoonup \gamma$ Shape, $\gamma=1$ Laplace, $\gamma=2$ Normal
 - ightharpoonup κ Skewness, $\kappa=1$ is symmetric
 - $ightharpoonup \sigma$ Scale
 - ightharpoonup heta Mean

➤ Outlook

 \square Part of $-\ln\{f(\cdot)\}$ that depends on x

$$\frac{\kappa^{\gamma}}{2\sigma^{\gamma}}|x-\theta|^{\gamma}\mathsf{I}\{x-\theta\leq 0\} + \frac{1}{2\kappa^{\gamma}\sigma^{\gamma}}|x-\theta|^{\gamma}\mathsf{I}\{x-\theta< 0\}$$

$$\rho(x - \theta) = |\tau - I\{x - \theta < 0\}||x - \theta|^{\gamma}$$

= $\tau |x - \theta|^{\gamma} I\{x - \theta \le 0\} + (1 - \tau)|x - \theta|^{\gamma} I\{x - \theta < 0\}$

▶ Outlook