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Abstract

We propose a local adaptive multiplicative error model (MEM) accommodating time-

varying parameters. MEM parameters are adaptively estimated based on a sequential

testing procedure. A data-driven optimal length of local windows is selected, yielding

adaptive forecasts at each point in time. Analyzing one-minute cumulative trading vol-

umes of five large NASDAQ stocks in 2008, we show that local windows of approximately

3 to 4 hours are reasonable to capture parameter variations while balancing modelling bias

and estimation (in)efficiency. In forecasting, the proposed adaptive approach significantly

outperforms a MEM where local estimation windows are fixed on an ad hoc basis.
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1 Introduction

Recent theoretical and empirical research in econometrics and statistics shows that mod-

elling and forecasting of high-frequency financial data is a challenging task. Researchers

strive to understand the dynamics of processes when all single events are recorded while

accounting for external shocks as well as structural shifts on financial markets. The fact

that high-frequency dynamics are not stable over time but are subject to regime shifts is

hard to capture by standard time series models. This is particularly true whenever it is

unclear where the time-varying nature of the data actually comes from and how many

underlying regimes there might be.

This paper addresses the phenomenon of time-varying dynamics in high-frequency data,

such as, for instance, (cumulative) trading volumes, trade durations, market depth or

bid-ask spreads. The aim is to adapt and to implement a local parametric framework

for multiplicative error processes and to illustrate its usefulness when it comes to out-

of-sample forecasting under possibly non-stable market conditions. We propose a flexi-

ble statistical approach allowing to adaptively select a data window over which a local

constant-parameter model is estimated and forecasts are computed. The procedure re-

quires (re-)estimating models on windows of evolving lengths and yields an optimal local

estimation window. As a result, we provide insights into the time-varying nature of

parameters and of local window lengths.

The so-called multiplicative error model (MEM), introduced by Engle (2002), serves

as a workhorse for the modelling of positive valued, serially dependent high-frequency

data. It is successfully applied to financial duration data where it originally has been

introduced by Engle and Russell (1998) in the context of an autoregressive conditional

duration (ACD) model. Likewise, it is applied to model intraday trading volumes, see,

e.g., Manganelli (2005), Brownlees et al. (2011) and Hautsch et al. (2011), among others.

MEM parameters are typically estimated over long estimation windows in order to in-

crease estimation efficiency. However, empirical evidence makes parameter constancy in
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high-frequency models over long time intervals questionable. Possible structural breaks

in MEM parameters have been addressed, for instance, by Zhang et al. (2001) who iden-

tify regime shifts in trade durations and suggest a threshold ACD (TACD) specification

in the spirit of threshold ARMA models, see, e.g., Tong (1990). To capture smooth

transitions of parameters between different states, Meitz and Teräsvirta (2006) propose

a smooth transition ACD (STACD) model. While in (STACD) models, parameter tran-

sitions are driven by observable variables, Hujer et al. (2002) allow for an underlying

(hidden) Markov process governing the underlying state of the process.

Regime-switching MEM approaches have the advantage of allowing for changing param-

eters on possibly high frequencies (in the extreme case from observation to observation)

but require to impose a priori structures on the form of the transition, the number of

underlying regimes and (in case of transition models) on the type of the transition vari-

able. Moreover, beyond short-term fluctuations, parameters might also reveal transitions

on lower frequencies governed by the general (unobservable) state of the market. Such

regime changes might be captured by adaptively estimating a MEM based on a window

of varying length and thus providing updated parameter estimates at each point in time.

The main challenge of the latter approach, however, is the selection of the estimation

window. From theoretical perspective, the length of the window should be, on the one

hand, maximal to increase the precision of parameter estimates, and, on the other hand,

sufficiently short to capture structural changes. This observation is also reflected in the

well-known result that aggregations over structural breaks (caused by too long estimation

windows) can induce spurious persistence and long range dependence.

This paper suggests a data-driven length of (local) estimation windows. The key idea is to

implement a sequential testing procedure to search for the longest time interval with given

right end for which constancy of model parameters cannot be rejected. This mechanism is

carried out by re-estimating (local) MEMs based on data windows of increasing lengths

and sequentially testing for a change in parameter estimates. By controlling the risk

of false alarm, the algorithm selects the longest possible window for which parameter
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constancy cannot be rejected at a given significance level. Based on this data interval,

forecasts for the next period are computed. These steps are repeated in every period.

Consequently, period-to-period variations in parameters are automatically captured and

rolling-window out-of-sample forecasts account only for information which is statistically

identified as being ’relevant’.

The proposed framework builds on the local parametric approach (LPA) originally pro-

posed by Spokoiny (1998). The presented methodology has been gradually introduced

into the time series literature, see, e.g., Mercurio and Spokoiny (2004) for an application

to daily exchange rates and Čížek et al. (2009) for an adaptation of the approach to

GARCH models. In realized volatility analysis, LPA has been applied by Chen et al.

(2010) to daily stock index returns.

The contribution of this paper is to introduce local adaptive calibration techniques into

the class of multiplicative error models, to provide valuable empirical insights into the

(non-)homogeneity of high-frequency processes and to show the approach’s usefulness in

the context of out-of-sample forecasting. Though we specifically focus on one-minute

cumulative trading volumes of five highly liquid stocks traded at NASDAQ, our findings

may be carried over to other high-frequency series as the stochastic properties of high-

frequency volumes are quite similar to those of other high-frequency series, such as trade

counts, squared midquote returns, market depth or bid-ask spreads.

We aim at answering the following research questions: (i) How strong is the variation of

MEM parameters over time? (ii) What are typical interval lengths of parameter homo-

geneity implied by the adaptive approach? (iii) How good are out-of-sample short-term

forecasts compared to adaptive procedures where the length of the estimation windows

is fixed on an ad hoc basis?

Implementing the proposed framework requires re-estimating and re-evaluating the model

based on rolling windows of different lengths which are moved forward from minute to

minute, yielding extensive insights into the time-varying nature of high-frequency trad-
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ing processes. Based on NASDAQ trading volumes, we show that parameter estimates

and estimation quality clearly change over time and provide researchers valuable rule of

thumbs for the choice of local intervals. In particular, we show that, on average, precise

adaptive estimates require local estimation windows of approximately 3 to 4 hours. More-

over, it turns out that the proposed adaptive method yields significantly better short-term

forecasts than competing approaches using fixed-length rolling windows of comparable

sizes. Hence, it is not only important to use local windows but also to adaptively adjust

their length in accordance with prevailing (market) conditions. This is particularly true

in periods of market distress where forecasts utilizing too much historical information

perform clearly worse.

The remainder of the paper is structured as follows: After the data description in Section

2, the multiplicative error model and the local parametric approach are introduced in

Sections 3 and 4, respectively. Empirical results on forecasts of trading volumes are

provided in Section 5. Section 6 concludes.

2 Data

We use transaction data of five large companies traded at NASDAQ: Apple Inc. (AAPL),

Cisco Systems, Inc. (CSCO), Intel Corporation (INTC), Microsoft Corporation (MSFT)

and Oracle Corporation (ORCL). These companies account for approximately one third of

the market capitalization within the technology sector. Our variable of interest is the one-

minute cumulative trading volume, reflecting high-frequency liquidity demand, covering

the period from January 2 to December 31, 2008 (250 trading days with continuous

trading activity). To remove effects due to market opening, the first 30 minutes of each

trading session are discarded. Hence, at each trading day, we analyze data from 10:00

to 16:00. Descriptive statistics of daily and one-minute cumulated trading volume of the

five analysed stocks are shown in Table 1.

We find right-skewed distributions with higher dispersions on the high-frequency level
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AAPL CSCO INTC MSFT ORCL
Daily volume in million
Minimum 8.7 12.8 12.5 15.3 8.2
25%-quantile 24.3 38.2 41.8 48.7 25.6
Median 30.6 47.7 54.9 64.7 33.3
75%-quantile 39.3 59.4 67.5 81.3 41.9
Maximum 100.4 177.3 227.8 204.8 88.4
Mean 33.4 50.9 58.3 68.7 35.0
Standard deviation 13.4 19.0 24.8 28.0 13.1
LB(10) 651.8 271.9 373.3 537.0 252.8
One-minute volume in 1000 shares
Minimum 1.5 0.4 0.6 1.6 0.4
25%-quantile 47.3 58.7 63.6 78.6 35.9
Median 75.4 105.7 119.4 141.7 70.1
75%-quantile 118.5 180.8 208.9 242.1 124.4
Maximum 2484.8 3064.9 12231.4 7360.8 3558.2
Mean 92.9 141.4 162.0 190.8 97.1
Standard deviation 68.9 131.7 166.4 183.0 101.1
LB(10) 334076.1 164999.2 142128.8 197173.7 107629.6

Table 1: Descriptive statistics and Ljung-Box statistics (based on 10 lags) of daily and
one-minute cumulated trading volumes of five large companies traded at NASDAQ be-
tween January 2 and December 31, 2008 (250 trading days, 90000 observations per stock).

than on the daily level. The Ljung-Box (LB) tests statistics indicate a strong serial de-

pendence as the the null hypothesis of no autocorrelations (among the first 10 lags) is

clearly rejected on any reasonable significance level. In fact, autocorrelation functions

(not shown in the paper) indicate that high-frequency volumes are strongly and persis-

tently clustered over time.

Denote the one-minute cumulative trading volume by y̆i. Assuming a multiplicative

impact of intra-day periodicity effects, we compute seasonality adjusted volumes by

yi = y̆is
−1
i , (1)

with si representing the intraday periodicity component at time point i. Typically, season-

ality components are assumed to be deterministic and thus constant over time. However,

to capture slowly moving (’long-term’) components in the spirit of Engle and Rangel
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(2008), we estimate the periodicity effects on the basis of 30-days rolling windows. Alter-

natively, seasonality effects could be captured directly within the local adaptive frame-

work presented below avoiding to fix the length of the rolling window on an ad hoc basis.

However, as our focus is on (pure stochastic) short-term variations in parameters rather

than on (more deterministic) periodicity effects, we decide to remove the former before-

hand. This leaves us with non-homogeneity in processes which is not straightforwardly

taken into account and allows us to evaluate the potential of a local adaptive approach

even more convincingly. The intra-day component si is specified via a flexible Fourier

series approximation as proposed by Gallant (1981),

si = δ · ı̄+
M∑
m=1
{δc,m cos (̄ı · 2πm) + δs,m sin (̄ı · 2πm)}. (2)

Here, δ, δc,m and δs,m are coefficients to be estimated, and ı̄ ∈ (0, 1] denotes a normalized

intraday time trend defined as the number of minutes from opening until i divided by

the length of the trading day, i.e. ı̄ = i/360. The order M is selected according to the

Bayes Information Criterion (BIC) within each 30-day rolling window. To avoid forward-

looking biases in the forecasting study in Section 5, at each observation, the seasonality

component is estimated using previous data only. Accordingly, the sample of seasonality

standardized cumulative one-minute trading volumes covers the period from February

14 to December 31, 2008, corresponding to 220 trading days and 79,200 observations

per stock. In nearly all cases, M = 6 is selected. We observe that the estimated daily

seasonality factors change mildly in their level reflecting slight long-term movements.

Conversely, the intraday shape is rather stable.

Figure 1 displays the intra-day periodicity components associated with the lowest and

largest monthly volumes, respectively, observed through the sample period. We observe

the well-known (asymmetric) U-shaped intraday pattern with high volumes at the opening

and before market closure. Particularly, before closure, it is evident that traders intend

to close their positions creating high activity.
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Figure 1: Estimated intra-day periodicity components for cumulative one-minute trading
volumes (in units of 100, 000 and plotted against the time of the day) of selected companies
at NASDAQ on 2 September (blue, lowest 30-day trading volume) and 30 October 2008
(red, highest 30-day volume).

3 Local Multiplicative Error Models

The Multiplicative Error Model (MEM), as discussed by Engle (2002), has become a

workhorse for analyzing and forecasting positive valued financial time series, like, e.g.,

trading volumes, trade durations, bid-ask spreads, price volatilities, market depth or

trading costs. The idea of a multiplicative error structure originates from the structure

of the autoregressive conditional heteroscedasticity (ARCH) model introduced by Engle

(1982). In high-frequency financial data analysis, a MEM has been firstly proposed by

Engle and Russell (1998) to model the dynamic behavior of the time between trades

and has been referred to as autoregressive conditional duration (ACD) model. Thus, the

ACD model is a special type of MEM applied to financial durations. For a comprehensive

literature overview, see Hautsch (2012).

3.1 Model Structure

The principle of a MEM is to model a non-negative positive valued process y = {yi}ni=1,

e.g., the trading volume time series in our context, in terms of the product of its condi-

tional mean process µi and a positive valued error term εi with unit mean,

yi = µiεi, E [εi | Fi−1] = 1, (3)
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conditional on the information set Fi up to observation i. The conditional mean process

of order (p, q) is given by an ARMA-type specification

µi = µi(θ) = ω +
p∑
j=1

αjyi−j +
q∑
j=1

βjµi−j, (4)

with parameters ω, α = (α1, . . . , αp)> and β = (β1, . . . , βq)>. The model structure re-

sembles the conditional variance equation of a GARCH(p, q) model, as soon as yi denotes

the squared (de-meaned) log return at observation i. In the context of financial duration

processes, Engle and Russell (1998) call the model Autoregressive Conditional Duration

(ACD) model. During the remainder of the paper, we use both labels as synonyms.

Natural choices for the distribution of εi are the (standard) exponential distribution

and the Weibull distribution. Both distributions allow for quasi maximum likelihood

estimation and therefore consistent estimates of MEM parameters even in the case of

distributional misspecification. Define I = [i0 − n, i0] as a (right-end) fixed interval of

(n+ 1) observations at observation i0. Then, local ACD models are given as follows:

(i) Exponential-ACD model (EACD) - εi ∼ Exp (1), θE =
(
ω, α>, β>

)>
, with (quasi)

log likelihood function over I = [i0 − n, i0] given i0,

LI (y; θE) =
n∑

i=max(p,q)+1

(
− log µi −

yi
µi

)
I (i ∈ I) ; (5)

(ii) Weibull-ACD model (WACD) - εi ∼ G (s, 1), θW =
(
ω, α>, β>, s

)>
, with (quasi)

log likelihood function over I = [i0 − n, i0] given i0,

LI (y; θW ) =
n∑

i=max(p,q)+1

[
log s

yi
+ s log Γ (1 + 1/s) yi

µi
−
{

Γ (1 + 1/s) yi
µi

}s]
I (i ∈ I) .

(6)

Correspondingly, the quasi-maximum likelihood estimates (QMLEs) of θE and θW over
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the data interval I are given by

θ̃I = arg max
θ∈Θ

LI (y; θ). (7)

3.2 Local Parameter Dynamics

The idea behind the Local Parametric Approach (LPA) is to select at each time point

an optimal length of a data window over which a constant parametric model cannot be

rejected by a test to be described here. The resulting interval of homogeneity is used to

locally estimate the model and to compute out-of-sample predictions. Since the approach

is implemented on a rolling window basis, it naturally captures time-varying parameters

and allows identifying break points where the length of the locally optimal estimation

window has to be adjusted.

The implementation of the LPA requires estimating the model at each point in time using

estimation windows with sequentially varying lengths. We consider data windows of the

lengths of 1 hour, 2 hours, 3 hours, 1 trading day (6 hours), 2 trading days (12 hours) and

1 trading week (30 hours). As non-trading periods (i.e., overnight periods, weekends or

holidays) are removed, the estimation windows contain data potentially covering several

days. Applying (local) EACD(1, 1) and WACD(1, 1) models based on five stocks, we esti-

mate in total 4,644,000 parameter vectors. It turns out that estimated MEM parameters

substantially change over time with the variations depending on the lengths of underlying

local (rolling) windows. As an illustration, Figure 2 shows EACD parameters employing

one-day (six trading hours) and one-week (30 trading hours) estimation windows for Intel

Corporation (INTC). Note that the first 30 days are used for the estimation of intraday

periodicity effects, whereas additional 5 days are required to obtain the first ’weekly’

estimate (i.e., an estimate using one trading week of data).

We observe that estimated parameters (ω̃, α̃ and β̃) and persistence levels
(
α̃ + β̃

)
clearly

vary over time. As expected, estimates are less volatile if longer estimation windows (such
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Figure 2: Time series of estimated ’weekly’ (left panel, rolling windows covering
1800 observations) and ’daily’ (right panel, rolling windows covering 360 observations)
EACD(1, 1) parameters and functions thereof based on seasonally adjusted one-minute
trading volumes for Intel Corporation (INTC) at each minute from 22 February to 31
December 2008 (215 trading days). First 35 days are used for initialization. Based on
154,800 individual estimations.
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as one week of data) are used. Conversely, estimates based on local windows of six hours

are less stable. This might be induced either by high (true) local variations which are

smoothed away if the data window becomes larger or by an obvious loss of estimation

efficiency as less data points are employed. These differences in estimates’ variations

are also reflected in the empirical time series distributions of MEM parameters. Table 2

provides quartiles of the estimated persistence
(
α̃ + β̃

)
(pooled across all five stocks) in

dependence of the length of the underlying data window. We associate the first quartile

(25% quantile) with a ’low’ persistence level, whereas the second quartile (50% quantile)

and third quartile (75% quantile) are associated with ’moderate’ and ’high’ persistence

levels, respectively. It is shown that the estimated persistence increases with the length

of the estimation window. Again, this result might reflect that the ’true’ persistence

of the process can only be reliably estimated over sufficiently long sampling windows.

Alternatively, it might indicate that the revealed persistence is just a spurious effect

caused by aggregations over underlying structural changes.

Estimation EACD(1, 1) WACD(1, 1)
window Low Moderate High Low Moderate High

1 week 0.85 0.89 0.93 0.82 0.88 0.92
2 days 0.77 0.86 0.92 0.74 0.84 0.91
1 day 0.68 0.82 0.90 0.63 0.79 0.89
3 hours 0.54 0.75 0.88 0.50 0.72 0.87
2 hours 0.45 0.70 0.86 0.42 0.67 0.85
1 hour 0.33 0.58 0.80 0.31 0.57 0.80

Table 2: Quartiles of estimated persistence levels
(
α̃ + β̃

)
for all five stocks at each

minute from 22 February to 31 December 2008 (215 trading days) and six lengths of
local estimation windows based on EACD and WACD specifications. We label the first
quartile as ’low’, the second quartile as ’moderate’ and the third quartile as ’high’.

Summarizing these first pieces of empirical evidence on local variations of MEM param-

eters, we can conclude: (i) MEM parameters, their variability and their distribution

properties change over time and are obviously dependent on the length of the underlying

estimation window. (ii) Longer local estimation windows increase the estimation preci-

sion but also enlarge the risk of misspecifications (due to averaging over structural breaks)
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and thus increase the modelling bias. Standard time series approaches would strive to

obtain precise estimates by selecting large estimation windows, inflating, however, at the

same time the bias. Conversely, the LPA aims at finding a balance between parameter

precision (variability) and modelling bias. By controlling estimation risk, the procedure

accounts for the possible tradeoff between (in)efficiency and the coverage of local varia-

tions by finding the longest possible interval over which parameter homogeneity cannot

be rejected.

An important ingredient of the sequential testing procedure in the LPA is a set of critical

values. The critical values have to be calculated for reasonable parameter constellations.

Therefore, we aim at parameters which are most likely to be estimated from the data.

As a first criterion we distinguish between different levels of persistence, α̃ + β̃. This is

performed by classifying the estimates into three persistence groups (low, medium or high

persistence) according to the first row of Table 2. Then, within each persistence group,

we distinguish between different magnitudes of α̃ relative to β̃. This naturally results into

groups according to the quartiles of the ratio β̃/(α̃ + β̃) yielding again three categories

(low, mid or high ratio). As a result, we obtain nine groups of parameter constellations

which are used below to simulate critical values for the sequential testing procedure.

Model Low Persistence Moderate Persistence High Persistence
Low Mid High Low Mid High Low Mid High

EACD, α̃ 0.28 0.22 0.18 0.30 0.23 0.19 0.31 0.24 0.20
EACD, β̃ 0.56 0.62 0.67 0.59 0.66 0.71 0.62 0.68 0.73
WACD, α̃ 0.28 0.21 0.17 0.30 0.23 0.18 0.32 0.24 0.19
WACD, β̃ 0.54 0.60 0.65 0.58 0.65 0.70 0.60 0.68 0.74

Table 3: Quartiles of 774,000 estimated ratios β̃/
(
α̃ + β̃

)
(based on estimation windows

covering 1800 observations) for all five stocks at each minute from 22 February to 31
December 2008 (215 trading days) and both model specifications (EACD and WACD)
conditional on the persistence level (low, moderate or high). We label the first quartile
as ’low’, the second quartile as ’mid’ and the third quartile as ’high’.
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3.3 Estimation Quality

Addressing the inherent tradeoff between estimation (in)efficiency and local flexibility

requires controlling the estimation quality. The quality of the QMLE θ̃I of the true

parameter vector θ∗ is assessed by the Kullback-Leibler divergence. For a fixed interval I

consider the (positive) difference LI(θ̃I) − LI(θ∗) with log likelihood expressions for the

EACD and WACD models given by (5) and (6), respectively. By introducing the r−th

power of that difference, define the loss function LI(θ̃I , θ∗) def=
∣∣∣LI(θ̃I)− LI(θ∗)∣∣∣r. For any

r > 0, there is a constant Rr (θ∗) satisfying

Eθ∗
∣∣∣LI(θ̃I , θ∗)∣∣∣r ≤ Rr (θ∗) (8)

and denoting the (parametric) risk bound depending on r > 0 and θ∗, see, e.g., Spokoiny

(2009) and Čížek et al. (2009). The risk bound (8) allows the construction of non-

asymptotic confidence sets and testing the validity of the (local) parametric model. For

the construction of critical values, we exploit (8) to show that the random set SI(zα) =

{θ : LI(θ̃I , θ∗) ≤ zα} is an α-confidence set in the sense that Pθ∗(θ∗ /∈ SI(zα)) ≤ α.

The parameter r drives the tightness of the risk bound. Accordingly, different values of r

lead to different risk bounds, critical values and thus adaptive estimates. Higher values of

r lead to, ceteris paribus, a selection of longer intervals of homogeneity and more precise

estimates, however, increase the modelling bias. It might be chosen in a data-driven way,

e.g., by minimizing forecasting errors. Here, we follow Čížek et al. (2009) and consider

r = 0.5 and r = 1, a ’modest risk case’ and a ’conservative risk case’, respectively.

4 Local Parametric Modelling

A local parametric approach (LPA) requires that a time series can be locally, i.e., over

short periods of time, approximated by a parametric model. Though local approxima-

tions are obviously more accurate than global ones, this proceeding, however, raises the
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question of the optimal size of the local interval.

4.1 Statistical Framework

Including more observations in an estimation window reduces the variability, but obvi-

ously enlarges the bias. The algorithm presented below strikes a balance between bias

and parameter variability and yields an interval of homogeneity. Consider the Kullback-

Leibler divergence K(v, v′) between probability distributions induced by v and v′. Then,

define ∆Ik(θ) = ∑
i∈Ik K{µi, µi(θ)}, where µi(θ) denotes the model described by (4) and

µi is the (true) data generating process. The entity ∆Ik(θ) measures the distance between

the underlying process and the parametric model. Let for some θ ∈ Θ,

E [∆Ik(θ)] ≤ ∆, (9)

where ∆ ≥ 0 denotes the small modelling bias (SMB) for an interval Ik. Čížek et al.

(2009) show that under the SMB condition (9), estimation loss scaled by the parametric

risk bound Rr (θ∗) is stochastically bounded. In particular, in case of QML estimation

with loss function LI(θ̃I , θ∗), the SMB condition implies

E
[
log

{
1 +

∣∣∣LI(θ̃I , θ∗)∣∣∣r /Rr (θ∗)
}]
≤ 1 + ∆. (10)

Consider now (K + 1) nested intervals (with fixed right-end point i0) Ik = [i0 − nk, i0] of

length nk and I0 ⊂ I1 ⊂ · · · ⊂ IK . Then, the ’oracle’ (i.e., theoretically optimal) choice

Ik∗ of the interval sequence is defined as the largest interval for which the SMB condition

holds:

E [∆Ik∗ (θ)] ≤ ∆. (11)

In practice, however, ∆Ik is unknown and therefore, the oracle k∗ cannot be implemented.

The aim is to mimic the oracle choice using a sequential testing procedure for the different
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intervals k = 1, . . . , K. Based on the resulting interval I
k̂
one defines the local estimator.

Čížek et al. (2009) and Spokoiny (2009) show that the estimation errors induced by

adaptive estimation during steps k ≤ k∗ are not larger than those induced by QML

estimation directly based on k∗ (stability condition). Hence, the sequential estimation

and testing procedure does not incur a larger estimation error compared to the situation

where k∗ is known, see (10).

In practice, the lengths of the underlying intervals are chosen to evolve on a geometric

grid with initial length n0 and a multiplier c > 1, nk =
[
n0c

k
]
. In the present study, we

select n0 = 60 observations (i.e., minutes) and consider two schemes with c = 1.50 and

c = 1.25 and K = 8 and K = 13, respectively:

(i) n0 = 60 min, n1 = 90 min, . . ., n8 = 1 week (9 estimation windows, K = 8), and

(ii) n0 = 60 min, n1 = 75 min, . . ., n13 = 1 week (14 estimation windows, K = 13).

The later scheme bears a slightly finer granulation than the first one.

4.2 Local Change Point (LCP) Detection Test

Selecting the optimal length of the interval builds on a sequential testing procedure where

at each interval Ik one tests the null hypothesis on parameter homogeneity against the

alternative of a change point at unknown location τ within Ik.

The test statistic is given by

TIk,Jk = sup
τ∈Jk

{
LAk,τ

(
θ̃Ak,τ

)
+ LBk,τ

(
θ̃Bk,τ

)
− LIk+1

(
θ̃Ik+1

)}
, (12)

where Jk and Bk denote intervals Jk = Ik \ Ik−1, Ak,τ = [i0 − nk+1, τ ] and Bk,τ = (τ, i0]

utilizing only a part of the observations within Ik+1. As the location of the change point

is unknown, the test statistic considers the maximum (supremum) of the corresponding

likelihood ratio statistics over all τ ∈ Ik.
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Figure 3 illustrates the underlying idea graphically: Assume that for a given time point

i0, parameter homogeneity in interval Ik−1 has been established. Then, homogeneity

in interval Ik is tested by considering any possible break point τ in the interval Jk =

Ik \ Ik−1. This is performed by computing the log likelihood values over the intervals

Ak,τ = [i0 − nk+1, τ ] (colored in red) and Bk,τ = (τ, i0] (colored in blue) for given τ .

Computing the supremum of these two likelihood values for any τ ∈ Jk and relating it to

the log likelihood associated with Ik+1 ranging from i0 to i0 − nk+1 results into the test

statistic (12). For instance, in our setting based on (K + 1) = 14 intervals, we test for a

breakpoint, e.g., in interval I1 = 75 min by searching only within the interval J1 = I1 \I0,

containing observations from yi0−75 up to yi0−60. Then, for any observation within this

interval, we sum (5) and (6) for the EACD and WACD model, respectively, over A1,τ and

B1,τ and subtract the likelihood over I2. Then, the test statistic (12) corresponds to the

largest obtained likelihood ratio.
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Figure 6: Estimated length of the interval of homogeneity nk̂ (in hours) for seasonally
adjusted trading volumes of selected companies in the case of modest (r = 0.5, blue) and
conservative modelling risk (r = 1, red), using an EACD(1, 1) model for data from NAS-
DAQ trading on 22 February 2008. We use the interval scheme with K = 13 estimation
windows.

We apply the LPA to seasonally adjusted 1-min aggregated trading volumes for all five

stocks at each minute from 22 February to 31 December 2008 (215 trading days, in total

77400 trading minutes). We use two specifications (EACD and WACD) with two risk

levels (modest, r = 0.5, and conservative, r = 1). Furthermore, schemes (a) with K = 8

and (b) with K = 13 are employed to set the estimation windows.

The empirical results can be summarised as follows:

(i) Interval of homogeneity - The distribution of all interval lengths is similar across all

five stocks, see Figure 7. The interval of homogeneity ranges between 60 minutes

and 6 hours for all cases. Intervals for AAPL and INTC are slightly larger than those

for other companies. In the course of a typical trading day, even after removing

the seasonal component, one observes slightly shorter intervals in the opening and

closing phase, see Figure 8. We attribute this to a higher variation of trading

volumes during the market opening and closure.

(ii) Risk level - the length of the intervals is shorter and more variable in the modest

risk case (r = 0.5) than in the conservative case (r = 1), see Figures 7 and 8.

Practically, if an investor aims for obtaining more precise estimates, it is advisable

to select longer estimation periods, such as 4-5 hours. By doing so, the investor
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conservative modelling risk (r = 1, red), using an EACD(1, 1) model for data from NAS-
DAQ trading on 22 February 2008. We use the interval scheme with K = 13 estimation
windows.

We apply the LPA to seasonally adjusted 1-min aggregated trading volumes for all five

stocks at each minute from 22 February to 31 December 2008 (215 trading days, in total

77400 trading minutes). We use two specifications (EACD and WACD) with two risk

levels (modest, r = 0.5, and conservative, r = 1). Furthermore, schemes (a) with K = 8

and (b) with K = 13 are employed to set the estimation windows.

The empirical results can be summarised as follows:

(i) Interval of homogeneity - The distribution of all interval lengths is similar across all

five stocks, see Figure 7. The interval of homogeneity ranges between 60 minutes

and 6 hours for all cases. Intervals for AAPL and INTC are slightly larger than those

for other companies. In the course of a typical trading day, even after removing

the seasonal component, one observes slightly shorter intervals in the opening and

closing phase, see Figure 8. We attribute this to a higher variation of trading

volumes during the market opening and closure.

(ii) Risk level - the length of the intervals is shorter and more variable in the modest

risk case (r = 0.5) than in the conservative case (r = 1), see Figures 7 and 8.

Practically, if an investor aims for obtaining more precise estimates, it is advisable

to select longer estimation periods, such as 4-5 hours. By doing so, the investor
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Figure 3: Graphical illustration of sequential testing for parameter homogeneity in inter-
val Ik with length nk = |Ik| ending at fixed time point i0. Suppose we have not rejected
homogeneity in interval Ik−1, we search within the interval Jk = Ik \ Ik−1 for a possible
change point τ . The red interval marks Ak,τ and the blue interval marks Bk,τ (blue)
splitting the interval Ik+1 into two parts depending upon the position of the unknown
change point τ .

Comparing the test statistic (12) for given i0 at every step k with the corresponding (sim-

ulated) critical value, we search for the longest interval of homogeneity I
k̂
for which the

null is not rejected. The adaptive estimate θ̂ is the QMLE at the interval of homogeneity,

i.e., θ̂ = θ̃
k̂
. If the null is already rejected at the first step, then θ̂ equals to the QMLE
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at the shortest interval (e.g., I0 = 60 min). Conversely, if no break point can be detected

within IK , then θ̂ equals the QMLE of the longest window (e.g., IK = 1 week).

4.3 Critical Values

Under the null hypothesis of parameter homogeneity, the correct choice is the largest

considered interval IK . The critical values are chosen in a way such that the probability

of selecting k < K is minimized. In case of selecting k < K and thus choosing θ̂ = θ̃Ik

instead of θ̃IK , the loss is LIK (θ̃IK , θ̂) = LIK (θ̃IK )− LIK (θ̂) and is stochastically bounded

by

Eθ∗
∣∣∣LIK (θ̃IK , θ̂)

∣∣∣r ≤ ρRr (θ∗) . (13)

Critical values must ensure that the loss associated with ’false alarm’ (i.e., selecting

k < K) is at most a ρ-fraction of the parametric risk bound of the ’oracle’ estimate θ̃IK .

For r → 0, ρ can be interpreted as the false alarm probability.

Accordingly, an estimate θ̂Ik , k = 1, . . . , K, should satisfy

Eθ∗
∣∣∣LIk(θ̃Ik , θ̂Ik)∣∣∣r ≤ ρkRr (θ∗) , (14)

with ρk = ρk/K. Čížek et al. (2009) show that critical values of the form zρ,k =

C +D log(nk) for k = 1, . . . , K with constants C and D satisfy condition (14). However,

C and D have to be selected by Monte Carlo simulation on the basis of the assumed

data-generating process (4) and the assumption of parameter homogeneity over the in-

terval sequence {Ik}Kk=1. To simulate the data-generating process, we use the parameter

constellations underlying the nine groups described in Section 3.2 and shown in Table

3 for nine different parameters θ∗. The Weibull parameter s is set to its median value

s̃ = 1.57 in all cases. Moreover, we consider two risk levels (r = 0.5 and r = 1), two

interval granulation schemes (K = 8 and K = 13) and two significance levels (ρ = 0.25

and ρ = 0.50) underlying the test.
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The resulting critical values satisfying (14) for the nine possibilities of ’true’ parameter

constellations of the EACD(1, 1) model for K = 13, r = 0.5 (’moderate risk case’) and

ρ = 0.25 are displayed in Figure 4. We observe that the critical values are virtually

invariable with respect to θ∗ across the nine scenarios. The largest difference between all

cases appears for interval lengths up to 90 minutes. Beyond that, the critical values are

robust across the range of parameters also for the conservative risk case (r = 1), other

significance levels and interval selection schemes.
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Figure 4: Simulated critical values of an EACD(1, 1) model for the ’moderate risk case’
(r = 0.5), ρ = 0.25, K = 13 and chosen parameters constellations according to Ta-
ble 3. The low (blue), middle (green) and upper (red) curves are associated with the
corresponding ratio levels β̃/(α̃ + β̃).

Nevertheless, in the sequential testing procedure, we employ parameter-specific critical

values. In particular, at each minute i0, we estimate a local MEM over a given interval

length and choose the critical values (for given levels of ρ and r) simulated for those

parameter constellations (according to Table 3) which are closest to our local estimates.

For instance, suppose that at some point i0, we have α̃ = 0.32 and β̃ = 0.53. Then, we

select the curve associated with the low persistence (α̃+ β̃) and low ratio level β̃/(α̃+ β̃).

For illustration, the resulting adaptive choice of intervals at each minute on 2 February

2002 is shown by Figure 5. Adopting the EACD specification (for ρ = 0.25 and K = 13)

in the modest risk case (r = 0.5, blue curve), one would select the length of the adaptive

estimation interval lying between 1.5 and 3.5 hours over the course of the selected day.

Likewise, in the conservative risk case (r = 1, red curve), the approach would select

longer time windows with smaller variability and thus larger modelling bias.
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Figure 5: Estimated length of intervals of homogeneity n
k̂
(in hours) for seasonally ad-

justed one-minute cumulative trading volumes of selected companies in case of a modest
(r = 0.5, blue) and conservative (r = 1, red) modelling risk level. We use the interval
scheme with K = 13 and ρ = 0.25. Underlying model: EACD(1, 1). NASDAQ trading
on 22 February 2008.

4.4 Empirical Findings

We apply the LPA to seasonally adjusted 1-min aggregated trading volumes for all five

stocks at each minute from 22 February to 31 December 2008 (215 trading days, 77400

trading minutes). We use the EACD and WACD model as the two (local) specifications,

two model risk levels (modest, r = 0.5, and conservative, r = 1) and two significance

levels (ρ = 0.25 and ρ = 0.50). Furthermore, interval length schemes with (i) K = 8, and

(ii) K = 13 are employed.

Figure 6 depicts the time series distributions of selected oracle interval lengths. Firstly,

as expected, the chosen intervals are shorter in the modest risk case (r = 0.5) than in

the conservative case (r = 1). Practically, if a trader aims at obtaining more precise

volume estimates, it is advisable to select longer estimation periods, such as 4-5 hours.

By doing so, the trader increases the modelling bias, but still can control it according

to (8). Hence, this risk level allows for more controlled flexibility in modelling the data.

Conversely, setting r = 1 implies a smaller modelling bias and thus lower estimation

precision. Consequently, it yields smaller local intervals ranging between 2-3 hours in

most cases.

Secondly, our results provide guidance on how to (a priori) choose the length of a local
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window in practice. Interestingly, the procedure never selects the longest possible interval

according to our interval scheme (one week of data), but chooses a maximum length of

6 hours. This finding suggests that even a week of data is clearly too long to capture

parameter inhomogeneity in high-frequency variables. As a rough rule of thumb, a horizon

of up to one trading day seems to be reasonable. This result is remarkably robust across

the individual stocks suggesting that the stochastic properties of high-frequency trading

volumes are quite similar, at least across (heavily traded) blue chips stocks. Nevertheless,

as also illustrated in Figure 5, our findings show that the selected interval lengths clearly

vary across time. Hence, a priori fixing the length of a rolling window can be still

problematic and sub-optimal – even over the course of a day.

Thirdly, the optimal length of local windows does obviously also depend on the complexity

of the underlying (local) model. In fact, we observe that local EACD specifications seem

to sufficiently approximate the data over longer estimation windows than in case of WACD

specifications. This is true for nearly all stocks and is most likely due to the variability

of the Weibull shape parameter resulting in shorter intervals. Fourth, in Figure 7, we

show time series averages of selected interval lengths in dependence of the time of the

day. Even after removing the intraday seasonality component, we observe slightly shorter

intervals in the opening and before closure. This is obviously induced by the fact that the

local estimation window during the morning still includes significant information from the

previous day. This effect is strongest at the opening where estimates are naturally based

on previous day information solely and becomes weaker as time moves on and the fraction

of current-day-information is increasing. Consequently, we observe the longest intervals

around mid-day where most information in the local window stems from the current

day. Hence, the LPA automatically accounts for the effects arising from concatenated

time series omitting non-trading periods. During the afternoon, interval lengths further

shrink as trading becomes more active (and obviously less time-homogeneous) before

closure.
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Figure 6: Distribution of estimated interval length n
k̂
(in hours) for seasonally adjusted

trading volumes of selected companies in case of modest (r = 0.5, red) and conservative
modelling risk (r = 1, blue), using an EACD (upper panel) and a WACD model (lower
panel) from 22 February to 31 December 2008 (215 trading days). We select 13 estimation
windows based on significance level ρ = 0.25.
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Figure 7: Average estimated interval length n
k̂
(in hours) over the course of a trading day

for seasonally adjusted trading volumes of selected companies in case of modest (r = 0.5,
red) and conservative modelling risk (r = 1, blue), using an EACD (upper panel) and a
WACD model (lower panel) from 22 February to 31 December 2008 (215 trading days).
We select 13 based on significance level ρ = 0.25.
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5 Forecasting Trading Volumes

Besides providing empirical evidence on the time (in)homogeneity of high-frequency data,

our aim is to analyze the potential of the LPA when it comes to out-of-sample forecasts.

The most important question is whether the proposed adaptive approach yields better

predictions than a (rolling window) approach where the length of the estimation win-

dow is fixed on an a priori basis. To set up the forecasting framework as realistic as

possible, at each trading minute from February 22, to December 22, 2008, we predict

the trading volume over all horizons h = 1, 2, . . . , 60 min during the next hour. The

predictions are computed using multi-step-ahead forecasts using the currently prevailing

MEM parameters and initialized based on the data from the current local window.

The local window is selected according to the LPA approach using r ∈ {0.5, 1} and ρ ∈

{0.25, 0.5}. Denoting the corresponding h-step prediction by ŷi+h, the resulting prediction

error is ε̂i+h = y̆i+h− ŷi+h, with y̆i+h denoting the observed trading volume. As competing

approach, we consider predictions based on a fixed estimation window covering one day

(i.e., 360 observations) and, alternatively, one week (i.e., 1800 observations) yielding

predictions ỹi+h and prediction errors ε̃i+h = y̆i+h−ỹi+h. To account for the multiplicative

impact of intraday periodicities according to (1), we multiply the corresponding forecasts

by the estimated seasonality component associated with the previous 30 days.

To test for the significance of forecasting superiority, we apply the Diebold and Mar-

iano (1995) test. Define the loss differential dh between the squared prediction errors

stemming from both methods given horizon h and n observations as dh = {di+h}ni=1, with

di+h = ε̂2
i+h− ε̃2

i+h. Then, testing whether one forecasting model yields qualitatively lower

prediction errors is performed based on the statistic

TST,h =
{

n∑
i=1

I (di+h > 0)− 0.5n
}
/
√

0.25n, (15)

which is approximately N(0, 1) distributed. Our sample covers n = 75600 trading minutes

(corresponding to 210 trading days). To test for quantitative forecasting superiority, we
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test the null hypothesis H0 : E [dh] = 0 using the test statistic

TDM,h = d̄h/
√

2πf̂dh (0) /n L→ N(0, 1). (16)

Here, d̄h denotes the average loss differential d̄h = n−1∑n
i=1 di+h and f̂dh (0) is a consistent

estimate of the spectral density of the loss differential at frequency zero. As shown by

Diebold and Mariano (1995), the latter can be computed by

f̂dh (0) = (2π)−1
h−1∑

m=−(h−1)
γ̂dh (m) , (17)

γ̂dh (m) = n−1
n∑

i=|m|+1

(
di+h − d̄h

) (
di+h−|m| − d̄h

)
. (18)

Figure 8 displays the Diebold-Mariano test statistics TDM,h against the forecasting horizon

h. The underlying LPA is based on the EACD model with significance level ρ = 0.25.

Negative statistics indicate that the LPA provides smaller forecasting errors. We observe

that in all cases, the fixed-window based forecast is worse than the LPA. The fixed-window

approach performs particularly poorly if it utilizes windows covering one week of data.

Hence, these windows seem to be clearly too long to cover local variations in parameters

and thus yield estimates which are too strongly smoothed. Our results show that these

misspecifications of (local) dynamics result in qualitatively significantly worse predictions.

Conversely, fixed windows of one day seem to be much more appropriate resulting in

clearly reduced (in absolute terms) statistics. Nevertheless, even in this context, the

LPA significantly outperforms the fixed-window setting reflecting the importance of time-

varying window lengths.

Analyzing the prediction performance in dependence of the forecasting horizon we observe

that LPA-based predictions are particularly powerful over short horizons. The highest

LPA overperformance is achieved at horizons of approximately 3-4 minutes. This is

not surprising as the local adaptive estimates and thus corresponding forecasts are most

appropriate in periods close to the local interval. Conversely, over longer prediction
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horizons, the advantage of local modelling vanishes as the occurrence of further break

points is more likely. We show that the best forecasting accuracy is achieved over horizons

of up to 20 minutes. Finally, an important result is that the results are quite robust with

respect to the choice of the modelling risk level r. This makes the method quite universal

and not critically dependent on the selection of steering parameters.

20 40 60
−40

−20

0

AAPL

T
es

t S
ta

tis
tic

20 40 60
−40

−20

0

Horizon

T
es

t S
ta

tis
tic

20 40 60
−40

−20

0

CSCO

20 40 60
−40

−20

0

Horizon

20 40 60
−40

−20

0

INTC

20 40 60
−40

−20

0

Horizon

20 40 60
−40

−20

0

MSFT

20 40 60
−40

−20

0

Horizon

20 40 60
−40

−20

0

ORCL

20 40 60
−40

−20

0

Horizon

Figure 8: Test statistic TDM,h across all 60 forecasting horizons for five large companies
traded at NASDAQ from 22 February to 22 December 2008 (210 trading days). The red
curve depicts the statistic based on a test of the LPA against a fixed-window scheme
using 360 observations (6 trading hours). The blue curve depicts the statistic based on
a test of the LPA against a fixed-window scheme using 1800 observations (30 trading
hours). The upper panel shows the results for the ’modest risk case’ (r = 0.5) and the
lower panel shows the results for the ’conservative risk case’ (r = 1) given a significance
level of ρ = 0.25.

Table 4 summarizes test statistics TST,h. The table reports the correspondingly largest

(i.e., least negative) statistics across all 60 forecasting horizons. These results clearly con-

firm the findings reported in Figure 8: The LPA produces significantly smaller (squared)

forecasting errors in all cases. Moreover, Table 4 confirms the findings above that the

forecasting accuracy is widely unaffected by the selection of LPA tuning parameters.

By depicting the ratio of root mean squared errors

√√√√n−1
n∑
i=1

ε̂2
i+h

/√√√√n−1
n∑
i=1

ε̃2
i+h ,
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Figure 9: Ratio between the RMSPEs of the LPA and of a fixed-window approach (cover-
ing 6 trading hours) over the sample from 22 February to 22 December 2010 (210 trading
days). Upper panel: Results for underlying (local) EACD model. Lower panel: Results
for underlying (local) WACD model.
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Figure 10: Ratio between the RMSPEs of the LPA and of a fixed-window approach
(covering 6 trading hours) over the sample from 22 February to 22 December 2010 (210
trading days). Upper panel: EACD model, lower panel: WACD model.
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EACD WACD
AAPL CSCO INTC MSFT ORCL AAPL CSCO INTC MSFT ORCL

1 week
r = 0.5, ρ = 0.25 -38.9 -28.6 -24.1 -33.8 -31.4 -22.6 -25.7 -20.2 -26.7 -26.6
r = 0.5, ρ = 0.50 -38.7 -28.7 -24.2 -33.8 -31.4 -22.7 -25.5 -20.3 -26.7 -26.6
r = 1.0, ρ = 0.25 -40.5 -31.4 -23.3 -39.1 -32.8 -27.9 -30.8 -21.5 -31.3 -29.8
r = 1.0, ρ = 0.50 -40.4 -31.3 -23.3 -39.0 -32.9 -28.1 -30.8 -21.5 -31.5 -29.7
1 day
r = 0.5, ρ = 0.25 -10.8 -6.0 -13.1 -5.7 -15.1 -6.4 -3.5 -6.1 -4.9 -12.6
r = 0.5, ρ = 0.50 -10.6 -6.0 -12.8 -5.5 -15.0 -6.3 -3.2 -6.2 -4.8 -12.7
r = 1.0, ρ = 0.25 -6.9 -8.6 -8.7 -4.4 -12.9 -4.1 -5.1 -6.5 -4.2 -11.5
r = 1.0, ρ = 0.50 -7.1 -8.6 -8.8 -4.4 -13.0 -3.9 -5.2 -6.5 -4.1 -11.4

Table 4: Largest (in absolute terms) test statistic TST,h across all 60 forecasting horizons
as well as EACD and WACD specifications for five large companies traded at NASDAQ
from 22 February to 22 December 2008 (210 trading days). We compare LPA-implied
forecasts with those based on rolling windows using a priori fixed lengths of one week and
one day, respectively. Negative values indicate lower squared prediction errors resulting
from the LPA. According to the Diebold-Mariano test (16), the average loss differential
is significantly negative in all cases (significance level 5%).

Figure 9 provides deeper insights into the forecasting performance of the two competing

approaches over time and over the sample. In most cases, the ratio is clearly below

one and thus also indicates a better forecasting performance of the LPA method. This

is particularly true during the last months and thus the height of the financial crisis in

2008. During this period, market uncertainty has been high and trading activity has been

subject to various information shocks. Our results show that the flexibility offered by the

LPA is particularly beneficial in such periods whereas fixed-window approaches tend to

perform poorly. Similar results are reported in the context of daily volatility modelling

during periods of financial distress, see Čížek et al. (2009). Moreover, it turns out that

the results do not critically depend on the choice of the underlying local model as the

findings based on EACD and WACD models are quite comparable.

Figure 10 shows the ratio of root mean squared errors in dependence of the length of the

forecasting horizon (in minutes). It turns out that the LPA’s overperformance is strongest

over horizons between two and four minutes. Over these intervals, the effects of superior

(local) estimates of MEM parameters fully pay out. Over longer horizons, differences in
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prediction performance naturally shrink as forecasts converge to unconditional averages.

6 Conclusions

We propose a local adaptive multiplicative error model (MEM) for financial high-frequency

variables. The approach addresses the inherent inhomogeneity of parameters over time

and is based on local window estimates of MEM parameters. Adapting the local paramet-

ric approach (LPA) by Spokoiny (1998) and Mercurio and Spokoiny (2004), the length

of local estimation intervals is chosen by a sequential testing procedure. Balancing mod-

elling bias and estimation (in)efficiency, the approach provides the longest interval of

parameter homogeneity which is used to (locally) estimate the model and to compute

corresponding forecasts.

Applying the proposed approach to the high-frequency series of one-minute cumulative

trading volumes based on several NASDAQ blue chip stocks, we can conclude as follows:

First, MEM parameters reveal substantial variations over time. Second, the optimal

length of local intervals varies between one and six hours. Nevertheless, as a rule of thumb,

local intervals of around four hours are suggested. Third, the local adaptive approach

provides significantly better out-of-sample forecasts than competing approaches using a

priori fixed lengths of estimation intervals. This result demonstrates the importance of

an adaptive approach. Finally, we show that the findings are robust with respect to the

choice of LPA steering parameters controlling modelling risk.

As the stochastic properties of cumulative trading volumes are similar to those of other

(persistent) high-frequency series, our findings are likely to be carried over to, for instance,

the time between trades, trade counts, volatilities, bid-ask spreads and market depth.

Hence, we conclude that adaptive techniques constitute a powerful device to improve high-

frequency forecasts and to gain deeper insights into local variations in model parameters

and thus structural relationships.
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