Stochastic Population Forecast for Germany

Alena Myšičková

- • • • Forschungsinstitut
- - - - für Neue Alterssicherungssysteme
- und Rechtsbiometrik
- in der Humboldt-Universität zu Berlin
nestor

Motivation

Population forecast needed for many purposes

- financing of social systems
- labour market
- consumer demand
- financing of public infrastructure...

Stochastic Projection

+ application of time series models
+ modeling and forecasting of the vital rates separately
+ demographic variables
- Mortality

Stochastic Projection

+ application of time series models
+ modeling and forecasting of the vital rates separately
+ demographic variables
- Mortality
- Fertility

Stochastic Projection

+ application of time series models
+ modeling and forecasting of the vital rates separately
+ demographic variables
- Mortality
- Fertility
- Migration

Outline

1. Motivation \checkmark
2. Mortality
3. Fertility
4. Migration
5. Population forecast

Stochastic Population Forecast

Mortality Data

- Age-specific Mortality Rate (ASMR)
- Source: Human Mortality Database (http://www.mortality.org/)
- Years 1956-2004
- Age groups: $0,1,2, \ldots, 110+$
- Data just from old West German States considered
- Missing data (in the oldest age groups) replaced by a linear interpolation

Age-specific Mortality rate $\left(m_{x, t}\right)$

$m_{x, t}=$ total number of deaths per 1000 people of the age x in the time period t

- mortality relations in East Germany adapt on the relations in West Germany
- mortality decline in the 2nd half of the 20th century
- mortality decline in all age groups

Men's Mortality Rates 1990

Women's Mortality Rates 1990

Men's Mortality Rates 2004

Women's Mortality Rates 2004

Age-specific mortality rates for 1990 and 2004:
East Germany red, West Germany blue.

Men's Mortality Rates

Log mortality rates for males.

Women's Mortality Rates

Log mortality rates for females.

Lee-Carter Model for Mortality

$$
\log \left(m_{x, t}\right)=a_{x}+b_{x} k_{t}+\varepsilon_{x, t}
$$

a_{x} - age specific parameter
$e^{a_{x}}$ - the general shape of the mortality function across the age
b_{x} - age specific parameter

- how fast declines the rate with respect to changes in k_{t}
k_{t} - time-varying mortality index
$\varepsilon_{x, t} \sim\left(0, \sigma_{\varepsilon}^{2}\right)$ - error term
- particular age-specific historical influences not captured by the model

Estimation of the Model

Assumptions:

$$
\begin{aligned}
& \sum_{t} k_{t}=0 \\
& \sum_{x} b_{x}=1 \\
\rightarrow & a_{x}=\frac{1}{T} \sum_{t} \log \left(m_{x, t}\right), \text { with } t=1, \ldots, T
\end{aligned}
$$

Estimation of the Model

Assumptions:

$$
\begin{aligned}
& \sum_{t} k_{t}=0 \\
& \sum_{x} b_{x}=1 \\
\rightarrow & a_{x}=\frac{1}{T} \sum_{t} \log \left(m_{x, t}\right), \text { with } t=1, \ldots, T
\end{aligned}
$$

\rightarrow Singular Value Decomposition (SVD) to estimate k_{t} and b_{x}

Estimation of the Model

Singular Value Decomposition of Matrix $M(p \times T)$:

$$
M=\log \left(m_{x, t}\right)-a_{x}=\Gamma \wedge \Delta^{\top}
$$

$\Gamma(p \times r)$ and $\Delta(T \times r)$ - orthonormal: $\Gamma^{\top} \Gamma=\Delta^{\top} \Delta=I_{r}$, $r=\operatorname{rank}(M)$
$\Lambda=\operatorname{diag}\left(\lambda_{1}^{1 / 2}, \ldots, \lambda_{r}^{1 / 2}\right), \lambda_{i}$ - eigenvalues of $M^{\top} M$
$\rightarrow b_{x}, k_{t}$ - first column vectors of matrices Γ and Δ, resp. multiplied by $\lambda_{1}^{1 / 2}$

	Males		Females	
Age	a_{x}	$b_{x} * 10^{3}$	a_{x}	$b_{x} * 10^{3}$
0	-4.27	27.24	-4.52	23.58
5	-7.87	24.33	-8.18	19.42
10	-8.27	21.91	-8.67	14.91
15	-7.65	15.58	-8.13	11.96
20	-6.61	11.75	-7.67	8.38
25	-6.73	10.30	-7.64	11.23
30	-6.66	9.97	-7.38	11.65
35	-6.40	8.86	-6.98	10.05
40	-5.98	7.30	-6.54	8.42
45	-5.52	6.23	-6.07	7.20
50	-5.03	6.28	-5.64	6.91
55	-4.55	7.38	-5.25	7.17
60	-4.06	8.26	-4.80	7.94
65	-3.58	8.53	-4.30	9.06
70	-3.11	8.21	-3.74	9.75
75	-2.65	7.53	-3.14	9.97
80	-2.18	6.31	-2.54	8.70
85	-1.72	5.03	-1.96	6.96
90	-1.28	3.44	-1.46	4.76
95	-0.90	2.63	-1.03	3.48
100	-0.43	2.19	-0.59	4.37
105	-0.42	1.96	-0.51	2.84

Mortality index k_{t}

Aim: find adequate ARIMA Time Series Model for the forecast (Box-Jenkins Method)

\rightarrow Random Walk with Drift appropriate for both genders

Random Walk with Drift

$$
k_{t}=\delta+k_{t-1}+u_{t}
$$

δ - slope of the deterministic trend; $\quad u_{t} \sim \mathrm{WN}\left(0, \sigma_{\mathrm{u}}^{2}\right)$
The fitted model:

- males: $k_{t}=-1.84+k_{t-1}+u_{t}$ with $\widehat{\sigma}_{u^{m}}=6.33$
- females: $k_{t}=-2.15+k_{t-1}+u_{t}$ with $\widehat{\sigma}_{u^{f}}=5.11$
- $\delta=$ the average annual changes in k
- standard deviation $\widehat{\sigma}_{u}$: uncertainty associated with a one-year forecast k_{t}

The Fitted Model

Actual and fitted mortality rates for all ages in 1956 and 1985 with forecast for 2050.

Stochastic Population Forecast

Forecast of Mortality Index

Mortality index for men and women with 95% forecast intervals.
Stochastic Population Forecast

Life Expectancy

Life expectancy at birth for boys and girls with 95% forecast intervals. Stochastic Population Forecast

Histogram for the life expectancy of newborn boys (left) and girls (right) in year 2070.

Fertility Data

- Age-specific Fertility Rate (ASFR)
- Source: Statistisches Bundesamt (http://www.destatis.de/)
- Years 1950-2005
- mothers at the age of: $15,16, \ldots, 44$
- old West German States data considered
- no missing data

Age-specific Fertility Rate $\left(f_{x, t}\right)$

$f_{x, t}=$ number of births from mothers at the age of x per 1000 women at the same age in the time period t

Fertility Rates

Age-specific Fertility Rates in 1990 and 2004. East Germany red, West Germany blue.

Totale Fertility Rate

$$
\mathrm{TFR}_{t}=\sum_{x=15}^{44} f_{x, t}
$$

- the sum of the age-specific rates for the given time period t
- the average number of children that would be born to a woman over her lifetime if she were to experience the exact current age-specific fertility rates (ASFRs) through her lifetime
\rightarrow Interpretation: mean number of children a woman is expected to bear during her child-bearing years
- independent from the age-sex structure of the population

Total Fertility Rate

$\operatorname{Max}($ TFR $)=2.54$ in 1964
$\operatorname{Min}(T F R)=1.28$ in 1985.
Stochastic Population Forecast

Lee-Carter Model for Fertility

\rightarrow Lee-Carter Model:

$$
f_{x, t}=a_{x}+b_{x} f_{t}+\varepsilon_{x, t}
$$

a_{x} - age-specific parameter
$A=\sum_{x} a_{x}$ - average value of the TFR over the sample period
b_{x} - age-specific parameter
f_{t} - time-varying fertility index
$\varepsilon_{x, t} \sim\left(0, \sigma_{\varepsilon}^{2}\right)$ - error term

Lee-Carter Model for Fertility

\rightarrow Lee-Carter Model:

$$
f_{x, t}=a_{x}+b_{x} f_{t}+\varepsilon_{x, t}
$$

a_{x} - age-specific parameter
$A=\sum_{x} a_{x}$ - average value of the TFR over the sample period
b_{x} - age-specific parameter
f_{t} - time-varying fertility index
$\varepsilon_{x, t} \sim\left(0, \sigma_{\varepsilon}^{2}\right)$ - error term
$\rightarrow \mathrm{TFR}_{t}=A+f_{t}+E_{t}$, with $E_{t}=\sum_{x} \varepsilon_{x, t}$

Lee-Carter Model for Fertility

\rightarrow Lee-Carter Model:

$$
f_{x, t}=a_{x}+b_{x} f_{t}+\varepsilon_{x, t}
$$

a_{x} - age-specific parameter
$A=\sum_{x} a_{x}$ - average value of the TFR over the sample period
b_{x} - age-specific parameter
f_{t} - time-varying fertility index
$\varepsilon_{x, t} \sim\left(0, \sigma_{\varepsilon}^{2}\right)$ - error term
$\rightarrow \mathrm{TFR}_{t}=A+f_{t}+E_{t}$, with $E_{t}=\sum_{x} \varepsilon_{x, t}$
$\rightarrow f_{t}$ - deviation in period t of the TFR from its long term average A

Estimation of the model

Analogue to mortality model:

- Assumptions: $\sum_{t} f_{t}=0, \quad \sum_{x} b_{x}=1$
$\rightarrow a_{x}=\frac{1}{T} \sum_{t} f_{x, t}$, with $t=1, \ldots, T$
\rightarrow SVD to estimate b_{x} and f_{t}

- Fertility index f_{t} - large variance, problems with direct forecasting \rightarrow not demographically plausible results
- definition of bounds for TFR:
- L - lower bound
- U - upper bound
- F^{*} - ultimate level

Transformed Fertility Index

$$
g_{t}=\log \left(\frac{F_{t}-L}{U-F_{t}}\right) \Leftrightarrow F_{t}=\frac{U \cdot \exp \left(g_{t}\right)+L}{1+\exp \left(g_{t}\right)}
$$

- $F_{t}=f_{t}+A$ - fitted value of the TFR
$-g_{t} \longrightarrow \infty \Rightarrow F_{t} \longrightarrow U$
- $g_{t} \longrightarrow-\infty \Rightarrow F_{t} \longrightarrow L$
\rightarrow modeling of time series $\left(g_{t}-G^{*}\right)$
- with G^{*} calculated as: $G^{*}=\log \left(\frac{F^{*}-L}{U-F^{*}}\right)$

ARMA(1,1) Model

$$
g_{t}-G^{*}=\delta+\phi\left(g_{t-1}-G^{*}\right)+\theta u_{t-1}+u_{t}, \quad u_{t} \sim \mathrm{WN}\left(0, \sigma_{\mathrm{u}}^{2}\right)
$$

δ, ϕ, θ - Parameters

The Fitted Model

with $L=0, U=4$, and $F^{*}=1.395$ (TFR average in 1973-2004)

$$
g_{t}+0.625=0.360+0.987\left(g_{t-1}+0.625\right)+0.234 u_{t-1}+u_{t}
$$

$\widehat{\sigma}_{u}=0.081$.

Stochastic Population Forecast

Forecast of TFR

95\%-Forecast Interval with Monte Carlo Simulation.
Stochastic Population Forecast

TFR Distribution in 2050 and 2070

Median $=1.375$

TFR in Year 2070

Median $=1.381$

Migration

- modeled constant
- influenced by many factors
- political development in Germany
- political development in migration countries
- development of the labour market
- ...
\rightarrow average of last 10 years

Assumption for Immigration:

- 51000 men and 95000 women per year
- altogether: 146000 persons
- Assumptions from Statistisches Bundesamt: 100000 and 200000

Cohort-Component Method

For females:

$$
\left(\begin{array}{c}
N_{1, t+1} \\
N_{2, t+1} \\
N_{3, t+1} \\
\vdots \\
N_{k, t+1}
\end{array}\right)=\left(\begin{array}{cccccc}
0 & \ldots & s \cdot F_{15, t} & \ldots & s \cdot F_{44, t} & 0 \\
P_{1, t} & 0 & \ldots & \ldots & \ldots & 0 \\
0 & P_{2, t} & \ddots & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & P_{k-1, t} & 0
\end{array}\right) \cdot\left(\begin{array}{c}
N_{1, t} \\
N_{2, t} \\
N_{3, t} \\
\vdots \\
N_{k, t}
\end{array}\right)+\left(\begin{array}{c}
N I_{1, t} \\
N 2_{2, t} \\
N I_{3, t} \\
\vdots \\
N I_{k, t}
\end{array}\right)
$$

Cohort-Component Method

- $N_{i, t}$ - population in the i-th age group in year t
- $F_{i, t}$ - age-specific fertility rate for mother in the i-th age group in year t multiplied by the number of woman
- $P_{i, t}$ - probability for one person in the i-th age group to achieve the next year
- $N I_{i, t}$ - number of immigrants in the i-th age group in year t
- s - sex ratio at birth (taken as 100:106)
- for males a similar matrix without fertility rates, male newborns calculated from the number of female birth

Population Size

Estimation after 5000 simulations compared with the results of the 11th Coordinated Projection of Statistisches Bundesamt

Year	5%-Quantile	Mean	95\%-Quantile	L-Bound	U-Bound
2010	82.01	82.53	83.04	81.89	82.04
2025	79.94	81.05	82.17	78.77	80.67
2040	74.81	76.55	78.26	73.42	77.28
2055	67.10	69.51	71.95	-	-
2070	60.81	63.83	66.90	-	-

Population Size

Distribution of population in mio. in years 2010, 2030, 2050 and 2070

Population pyramids in years 2010, 2030, 2050 and 2070.

Old-age dependency ratio

Age quotient with age limit 65 years (black) and with age limit 67 years (red).

References

三
B．Babel．
Bevölkerungsvorausberechnungen unter besonderer
Berücksichtigung von Unsicherheiten
EUL Verlag， 2007
圊 R．D．Lee，L．R．Carter．
Modelling and Forecasting U．S．Mortality．
Journal of the American Statistical Association，87：659－675， 1992.

图 R．D．Lee．
Modelling and forecasting the time series of US fertility：Age distribution，range，and ultimate level．
International Journal of Forecasting，9：187－201， 1993.

References

(O. Lipps und F. Betz
Stochastische Bevölkerungsprojektion für West- und Ostdeutschland
Zeitschrift für Bevlkerungswissenschaft, 30(1):3-42, 2005.
(P. Pflaumer
Confidence Intervals for Population Projections based on Monte Carlo Methods
International Journal of Forecasting, 4:135-142, 1988.
圊 Statistisches Bundesamt
11. koordinierte Bevölkerungsvorausberechnung

Annahmen und Ergebnisse 2006.
Stochastic Population Forecast

