Stochastic Population Forecast for Germany and its Consequence for the German Pension System

Wolfgang K. Härdle Alena Myšičková

Forschungsinstitut
 für Neue Alterssicherungssysteme
 und Rechtsbiometrik
 in der Humboldt-Universität zu Berlin

Motivation

Population forecast needed for many purposes

- ☑ financing of social systems
- Iabour market
- consumer demand
- ☑ financing of public infrastructure...

German Pension System

- ⊡ established 1881 from O. v. Bismark
- pay-as-you-go financing brought 1957 from K. Adenauer: "Kinder kriegen die Leute immer"
- ⊡ transfer of the system in 1990 on GDR citizens

German Family in 1910

1-4

German Family in 2007

Drastic consequences for the social system!

Stochastic Population Forecast -

Conventional Population Projections

- using deterministic models
- ☑ 2 or 3 different scenarios for future vital rates
- forecast interval defined by the combination of the scenarios
- this technique faces substantial difficulties (no access probabilities, unrealistic correlations)

Stochastic Projection

- ⊡ application of time series models
- modeling and forecasting of the vital rates separately
- demographic variables involving the size and the structure of population
 - Mortality

Stochastic Projection

- ⊡ application of time series models
- modeling and forecasting of the vital rates separately
- demographic variables involving the size and the structure of population
 - Mortality
 - Fertility

Stochastic Projection

- ⊡ application of time series models
- modeling and forecasting of the vital rates separately
- demographic variables involving the size and the structure of population
 - Mortality
 - Fertility
 - Migration

1-10

Outline

- 1. Motivation \checkmark
- 2. Mortality
- 3. Fertility
- 4. Migration
- 5. Population forecast
- 6. Consequence for the German pension system

Mortality Data

- □ Age-specific Mortality Rate (ASMR)
- Source: Human Mortality Database (http://www.mortality.org/)
- ⊡ Time period: 1956–2006
- ⊡ Age groups: 0, 1, 2, ..., 110+
- ☑ Data just from former West Germany considered
- Missing data (in the oldest age groups) replaced by a linear interpolation

Age-specific Mortality rate $(m_{x,t})$

 $m_{x,t} =$ total number of deaths per 1000 people of the age x in the time period t

- mortality relations in East Germany adapt on the relations in West Germany
- mortality decline in the 2nd half of the 20th century
- mortality decline in all age groups

Age-specific mortality rates in 1990 and 2006 for East Germany (triangles) and West Germany (circles).

Lee-Carter Model for Mortality

$$\log(m_{x,t}) = a_x + b_x k_t + \varepsilon_{x,t}$$

- a_x age specific parameter exp (a_x) is the general shape of the mortality across the age
- b_{\times} age specific parameter
 - how fast declines the rate with respect to changes in k_t
- k_t time-varying mortality index
- $arepsilon_{{\sf x},{t}} \sim (0,\sigma_arepsilon^2)$ error term
 - particular age-specific historical influences not captured by the model

Assumptions:

$$\sum_{t=t_1}^{t_n} k_t = 0$$

$$\sum_{x=x_0}^{x_p} b_x = 1$$

$$\widehat{a}_x = \frac{1}{T} \sum_{t=t_1}^{t_n} \log(m_{x,t})$$

$$t = \{1956 = t_1, 1957 \dots, 2006 = t_n\}, \ T = t_n - t_1 + 1,$$

$$x = \{x_0 = 0, \dots, 110 + = x_p\}.$$

Assumptions:

$$\sum_{t=t_1}^{t_n} k_t = 0$$

$$\sum_{x=x_0}^{x_p} b_x = 1$$

$$\widehat{a}_x = \frac{1}{T} \sum_{t=t_1}^{t_n} \log(m_{x,t})$$

$$t = \{1956 = t_1, 1957 \dots, 2006 = t_n\}, \ T = t_n - t_1 + 1,$$

$$x = \{x_0 = 0, \dots, 110 + = x_p\}.$$
From the Vertee December (CVD) to decimal to

Singular Value Decomposition (SVD) to derive k_t and b_x

Singular Value Decomposition of Matrix $M(p \times T)$:

$$M = \log(m_{x,t}) - a_x = \Gamma \wedge \Delta^{\top}$$

 $\Gamma(p \times r)$ and $\Delta(T \times r)$ - orthonormal: $\Gamma^{\top}\Gamma = \Delta^{\top}\Delta = I_r$, $r = \operatorname{rank}(M)$ $\Lambda = \operatorname{diag}(\lambda_1^{1/2}, \dots, \lambda_r^{1/2})$, λ_i - eigenvalues of $M^{\top}M$ $b_x(p \times 1)$, $k_t(T \times 1)$ - first column vectors of matrices Γ and Δ , resp.multiplied by $\lambda_1^{1/2}$

	Males		Females		Boromotor o(x)
Age	a _x	$b_x * 10^3$	a _x	$b_x * 10^3$	
0	-4.27	27.24	-4.56	22.99	And a second sec
5	-7.87	24.33	-8.22	19.43	7
10	-8.27	21.91	-8.70	14.88	
15	-7.65	15.58	-8.15	11.85	24-1
20	-6.61	11.75	-7.70	8.93	æ
25	-6.73	10.30	-7.67	11.42	φ_
30	-6.66	9.97	-7.40	11.40	
35	-6.40	8.86	-7.00	10.25	Ψ -
40	-5.98	7.30	-6.57	8.60	0 20 40 60 80 100
45	-5.52	6.23	-6.09	7.20	Age group
50	-5.03	6.28	-5.65	6.85	Parameter b(x)
55	-4.55	7.38	-5.26	7.03	
60	-4.06	8.26	-4.81	7.84	
65	-3.58	8.53	-4.32	9.20	8 - 8
70	-3.11	8.21	-3.77	9.82	- Vil
75	-2.65	7.53	-3.17	10.00	5 ² 2 1
80	-2.18	6.31	-2.56	8.74	
85	-1.72	5.03	-1.98	6.90	
90	-1.28	3.44	-1.46	4.66	- 01
95	-0.90	2.63	-1.03	3.39	
100	-0.43	2.19	-0.60	4.27	0 20 40 60 80 100
105	-0.42	1.96	-0.50	2.29	Age group

Mortality Index k_t

Aim: find adequate ARIMA Time Series Model for the forecast

 \rightarrow Random Walk with Drift appropriate for both genders Unit root test (ADF) for I(1) rejected (*p*-value < 0.01)

Random Walk with Drift

$$k_t = \delta + k_{t-1} + u_t$$

 δ - slope of the deterministic trend; $u_t \sim (0, \sigma_u^2)$ The fitted model:

- \boxdot males: $k_t = -1.83 + k_{t-1} + u_t$; $\widehat{\sigma}_{u^m} = 3.11$
- : females: $k_t = -2.14 + k_{t-1} + u_t$; $\widehat{\sigma}_{u^f} = 3.26$
- $\boxdot \delta =$ the average annual changes in k
- \odot $\hat{\sigma}_u$ = uncertainty associated with a one-year forecast k_t

The Fitted Model

Actual and fitted mortality rates for all age groups in 1956 and 2006.

Mortality index for men and women with 95% forecast intervals.

Stochastic Population Forecast

Life Expectancy

Computing formula:

$$e_{x,t} = rac{1}{2} + \sum_{y=x}^{x_p-1} \prod_{i=x}^{y} (1-q_{i,t}) \; ,$$

with the probability of death: $q_{x,t} = \frac{2m_{x,t}}{2+m_{x,t}}$.

Year	Males	Females	
1956	65.9	70.9	
2006	77.2	82.3	
2056	83.2	89.1	

Life Expectancy

Life Expectancy at Birth

Forecast of the life expectancy at birth for boys and girls with 95% forecast intervals.

Stochastic Population Forecast

Fertility Data

- □ Age-specific Fertility Rate (ASFR)
- Source: Federal Statistical Office (www.destatis.de)
- ⊡ Time period: 1950–2007
- ☑ Mothers at the age of: 15, 16, ..., 49
- Data just from former West Germany considered
- No missing data

Age-specific Fertility Rate $(f_{x,t})$

 $f_{x,t}$ = number of births from mothers at the age of x per 1000 women at the same age in the time period t

Stochastic Population Forecast

Age-specific Fertility Rates in 1990 and 2007 for East Germany (red) and West Germany (blue).

Total Fertility Rate

$$\mathsf{TFR}_t = 10^{-3} \cdot \sum_{x=15}^{49} f_{x,t}$$

- the average number of children that would be born to one woman over her lifetime if she were to experience the exact current age-specific fertility rates (ASFRs) through her lifetime
- Interpretation: mean number of children a woman is expected to bear during her child-bearing years
- independent from the age-sex structure of the population

- 3-30

Total Fertility Rate

Lee-Carter Model for Fertility

$$f_{x,t} = a_x + b_x f_t + \varepsilon_{x,t}$$

 $\begin{array}{ll} f_t & \text{-time-varying fertility index} \\ a_x, b_x & \text{-age-specific parameters} \\ \varepsilon_{x,t} & \sim (0, \sigma_{\varepsilon}^2) \text{-error term} \end{array}$

Lee-Carter Model for Fertility

$$f_{x,t} = a_x + b_x f_t + \varepsilon_{x,t}$$

 $\begin{array}{ll} f_t & \mbox{-time-varying fertility index} \\ a_x, b_x & \mbox{-age-specific parameters} \\ \varepsilon_{x,t} & \sim (0, \sigma_{\varepsilon}^2) \mbox{-error term} \\ & A = \sum_x a_x \mbox{-average value of the TFR over the sample period} \end{array}$

Lee-Carter Model for Fertility

$$f_{x,t} = a_x + b_x f_t + \varepsilon_{x,t}$$

 $\begin{array}{ll} f_t & - \text{ time-varying fertility index} \\ a_x, b_x & - \text{ age-specific parameters} \\ \varepsilon_{x,t} & \sim (0, \sigma_{\varepsilon}^2) \text{ - error term} \\ & A = \sum\limits_x a_x \text{ - average value of the TFR over the sample period} \\ & \mathsf{TFR}_t = A + f_t + E_t, \ \text{ with } E_t = \sum\limits_x \varepsilon_{x,t} \end{array}$

Stochastic Population Forecast -

Analogue assumptions to mortality model:

$$\sum_{t} f_{t} = 0$$

$$\sum_{x} b_{x} = 1$$

$$\widehat{a}_{x} = \frac{1}{T} \sum_{t} f_{x,t}, \text{ with } t = \{t_{0} = 1950, \dots, t_{n} = 2007\}$$

SVD to determine b_{x} and f_{t}

- Fertility index f_t large variance, problems with direct forecasting \rightarrow not demographically plausible results
- ☑ definition of bounds for TFR:
 - L lower bound
 - U upper bound

Transformed Fertility Index

$$g_t = \log\left(\frac{F_t - L}{U - F_t}
ight) \Leftrightarrow F_t = \frac{U \cdot \exp(g_t) + L}{1 + \exp(g_t)}$$

$$\bigcirc$$
 $F_t = f_t + A$ - fitted value of the TFR

$$oxdot F_t \longrightarrow U$$
 as $g_t \longrightarrow \infty$

modeling of time series g_t

consider the data after 1976 (after the pill took effect)

ARMA(1,1) Model

$$g_t = \delta + \phi g_{t-1} + \theta u_{t-1} + u_t ,$$

with parameters δ, ϕ, θ and $u_t \sim (0, \sigma_u^2)$.

The Fitted Model

with L = 0, U = 5:

$$g_t = -0.96^* + 0.51^* g_{t-1} + 0.33^* u_{t-1} + u_t ,$$

 $\hat{\sigma}_{u}^{2} = 9.22 \cdot 10^{-4}$ Unit root test (ADF) rejected (*p*-value = 0.07) * = significant at 5%

Stochastic Population Forecast -

Transformed fertility index with 95%-confidence interval.

3-39

Forecast of TFR

TFR with 95%-confidence interval.

Stochastic Population Forecast -

Migration

Influenced by many factors

- in migration policy and labour market development in Germany
- political, economic, demographic development in migration countries
- strongly regulated migration in the former German Democratic Republic
- ⊡ before 1990 only data from former West Germany

Migration Data

- ☑ Source: Federal Statistical Office
- ⊡ Time period: 1980–2007
- ⊡ Age groups: 0, 1, ..., 110+
- Data from former West Germany (1980–1989)

Net migration (solid), immigration (dashed) and emigration level (dotdashed).

Model for Migration

- estimate the age density of in-moving and out-moving individuals
- ☑ kernel density estimator:

$$\widehat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x-x_i}{h}\right)$$

- K kernel function (Gaussian)
- *h* bandwidth (Silverman's rule of thumb)
- *n* number of observations
- no significant trend in the age structure of migrants

Age Density for Male Immigrants

Estimated density of immigrants.

Age Density for Female Immigrants

Age Density for Female Emigrants

Estimated density of emigrants.

Forecast of Net Migration

- appropriate time series model for the level of immigrants (data 1994-2007) and emigrants (data 1980-2007)
- ⊡ forecast of the number of in-moving and out-moving people
- number of immigrants and emigrants in the single age group estimated by the kernel density estimator (from 2007)
- \boxdot net migrants = immigrated ind. emigrated ind.

with

AR(1) Model

$$y_t = \delta + \phi y_{t-1} + \varepsilon_t$$
, parameters δ, ϕ and $\varepsilon_t \sim (0, \sigma_{\varepsilon}^2)$.

The Fitted Model

Unit root tests (ADF) rejected (*p*-values $\leq 10\%$).

Stochastic Population Forecast -

Cohort-Component Method

For females:

$$\begin{pmatrix} N_{1,t+1} \\ N_{2,t+1} \\ N_{3,t+1} \\ \vdots \\ N_{k,t+1} \end{pmatrix} = \begin{pmatrix} 0 & \dots & s \cdot F_{15,t} & \dots & s \cdot F_{49,t} & 0 \\ P_{1,t} & 0 & \dots & \dots & 0 \\ 0 & P_{2,t} & \ddots & 0 & \dots & 0 \\ 0 & 0 & \dots & \dots & P_{k-1,t} & 0 \end{pmatrix} \cdot \begin{pmatrix} N_{1,t} \\ N_{2,t} \\ N_{3,t} \\ \vdots \\ N_{k,t} \end{pmatrix} + \begin{pmatrix} NI_{1,t} \\ NI_{2,t} \\ NI_{3,t} \\ \vdots \\ NI_{k,t} \end{pmatrix}$$

Cohort-Component Method

- \square $N_{i,t}$ population in the *i*-th age group in year *t*
- : $F_{i,t}$ age-specific fertility rate for mother in the *i*-th age group in year *t*
- \therefore $P_{i,t}$ probability for one person in the *i*-th age group to achieve the next year
- \boxdot $NI_{i,t}$ number of immigrants in the *i*-th age group in year t
- \odot s sex ratio at birth (taken as 100:106)
- for males a similar matrix without fertility rates, male newborns calculated from the number of female birth

Population Size

Estimation after 1000 simulations compared with the results of the 11th Coordinated Projection of Statistisches Bundesamt

Year	5%-Quantile	Mean	95%-Quantile	L-Bound	U-Bound
2010	81.78	82.52	83.27	81.89	82.04
2025	79.67	82.55	85.30	78.77	80.67
2040	75.83	80.14	84.25	73.42	77.28
2050	72.46	77.48	82.27	68.74	73.96

Population Size

Forecast of the population size compared to the forecast with a deterministic constant migration assumption (green).

Population Size

Forecast of the population size compared to the forecast of the Federal Statistical Office (red and blue).

Consequence for the German Pension System

Some facts about the actual system

- pay-as-you-go financing
- ⊡ pension costs in 2006: 190 bn.€
- ⊡ government subventions in 2006: 55 bn.€
- averaged pension payment amount in 2006: 720€/month (men: 985€, women: 510€)

Old-Age Ratio

Old-age dependency ratio with age limit 65 years (black) and with age limit 67 years (red) with 95% forecast intervals.

Estimated premium rate in the pension system to maintain the pension level.

Estimated level of the average pension amount ($720 \in$ in 2007) with constant premium rate.

References

🔈 B. Babel.

Bevölkerungsvorausberechnungen unter besonderer Berücksichtigung von Unsicherheiten EUL Verlag, 2007

R.D. Lee, L.R. Carter.

Modelling and Forecasting U.S. Mortality.

Journal of the American Statistical Association, 87:659–675, 1992

R.D. Lee.

Modelling and forecasting the time series of US fertility: Age distribution, range, and ultimate level.

International Journal of Forecasting, 9:187–201, 1993.

Stochastic Population Forecast -

References

🔋 O. Lipps und F. Betz

Stochastische Bevölkerungsprojektion für West- und Ostdeutschland

Zeitschrift für Bevlkerungswissenschaft, 30(1):3-42, 2005.

🔋 A. Renshaw and S. Haberman

Lee-Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections

Appliued Statistics, 52:119–137, 2003.

Statistisches Bundesamt

11. koordinierte Bevölkerungsvorausberechnung Annahmen und Ergebnisse 2006.

