Applications of Copulae for the Calculation of Value-at-Risk

Barbara Choroś

Institut für Statistik and Ökonometrie CASE - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin

Copula vs Normal Distribution

1. The empirical marginal distributions are skewed and fat tailed.
2. Multivariate normal distribution does not consider the possibility of extreme joint co-movement of asset returns. The dependency structure of portfolio asset returns is different from the Gaussian one.

Advantages

1. Copulae are useful tools to simulate asset return distributions in a more realistic way.
2. Copulae allow to model the dependence structure independently from the marginal distributions

- construct a multivariate distribution with different margins
- the dependence structure is given by the copula.

Dependency Structures

Figure 1: Scatter plots of bivariate samples with different dependency structures and equal correlation coefficient.

Varying Dependency

Figure 2: Standardized log returns of Bayer and Siemens 2000010320020101 (left) and 20040101-20060102 (right).

Outline

1. Motivation \checkmark
2. Copulae
3. Parameter Estimation
4. Sampling from Copulae
5. Tail Dependence
6. Value-at-Risk with Copulae
7. Application

Copulae

A copula is a multivariate distribution function defined on the unit cube $[0,1]^{d}$, with uniformly distributed margins.

$$
\begin{aligned}
P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{d}\right) & =C\left\{P\left(X_{1} \leq x_{1}\right), \ldots, P\left(X_{d} \leq x_{d}\right)\right\} \\
& =C\left\{F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right\}
\end{aligned}
$$

Bivariate Copulae

A 2-dimensional copula is a function $C:[0,1]^{2} \rightarrow[0,1]$ with the following properties:

1. For every $u \in[0,1], C(0, u)=C(u, 0)=0 \quad$ (grounded)
2. For every $u \in[0,1], C(u, 1)=u \quad$ and $\quad C(1, u)=u$
3. For every $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in[0,1] \times[0,1]$ with $u_{1} \leq v_{1}$ and
$u_{2} \leq v_{2}: C\left(v_{1}, v_{2}\right)-C\left(v_{1}, u_{2}\right)-C\left(u_{1}, v_{2}\right)+C\left(u_{1}, u_{2}\right) \geq 0$
(2-increasing)

Multivariate Copula

A d-dimensional copula is a function $C:[0,1]^{d} \rightarrow[0,1]$:

1. $C\left(u_{1}, \ldots, u_{i-1}, 0, u_{i+1}, \ldots, u_{d}\right)=0$ (at least one u_{i} is 0);
2. $u \in[0,1], C\left(1, \ldots, 1, u_{i}, 1, \ldots, 1\right)=u_{i}$ (all coordinates except u_{i} is 1)
3. For each $u<v \in[0,1]^{d}\left(u_{i}<v_{i}\right)$

$$
V_{C}[u, v]=\sum_{a} \operatorname{sgn}(a) C(a) \geq 0
$$

where a is taken over all vertices of $[u, v] . \operatorname{sgn}(a)=1$ if $a_{k}=u_{k}$ for an even number of $k^{\prime} s$ and $\operatorname{sgn}(a)=-1$ if $a_{k}=u_{k}$ for an odd number of $k^{\prime} s$ (d-increasing)

Sklar's Theorem

For a distribution function F with marginals $F_{X_{1} \ldots,} F_{X_{d}}$. There exists a copula $C:[0,1]^{d} \rightarrow[0,1]$, such that

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{d}\right)=C\left\{F_{X_{1}}\left(x_{1}\right), \ldots, F_{X_{d}}\left(x_{d}\right)\right\} \tag{1}
\end{equation*}
$$

for all $x_{i} \in \overline{\mathbb{R}}, i=1, \ldots, d$. If $F_{X_{1}}, \ldots, F_{X_{d}}$ are cts, then C is unique. If C is a copula and $F_{X_{1}}, \ldots, F_{X_{d}}$ are cdfs, then the function F defined in (1) is a joint cdf with marginals $F_{X_{1}}, \ldots, F_{X_{d}}$.

$$
\begin{array}{r}
X_{2} \quad X_{1} \quad X_{7} \\
X_{4} \quad{ }_{X_{6}}{ }^{X_{3}} X_{5}
\end{array}
$$

\square a copula C and marginal distributions can be "coupled" together into a distribution function:

$$
F_{X}\left(x_{1}, \ldots, x_{d}\right)=C\left\{F_{X_{1}}\left(x_{1}\right), \ldots, F_{X_{d}}\left(x_{d}\right)\right\}
$$

\square a (unique) copula is obtained from "decoupling" every (continuous) multivariate distribution function from its marginal distributions:

$$
\begin{gathered}
C\left(u_{1}, \ldots, u_{d}\right)=F_{X}\left\{F_{X_{1}}^{-1}\left(u_{1}\right), \ldots, F_{X_{d}}^{-1}\left(u_{d}\right)\right\} \\
u_{j}=F_{X_{j}}\left(x_{j}\right), \quad j=1, \ldots, d
\end{gathered}
$$

\square if C is absolute continuous there exists a copula density

$$
c\left(u_{1}, \ldots, u_{d}\right)=\frac{\partial^{d} C\left(u_{1}, \ldots, u_{d}\right)}{\partial u_{1} \ldots \partial u_{d}}
$$

\square the joint density f_{X} is

$$
f_{X}\left(x_{1}, \ldots, x_{d}\right)=c\left\{F_{X_{1}}\left(x_{1}\right), \ldots, F_{X_{d}}\left(x_{d}\right)\right\} \prod_{j=1}^{d} f_{j}\left(x_{j}\right)
$$

Fréchet-Hoeffding Bounds, Product Copula

1. every copula C satisfies

$$
W\left(u_{1}, \ldots, u_{d}\right) \leq C\left(u_{1}, \ldots, u_{d}\right) \leq M\left(u_{1}, \ldots, u_{d}\right)
$$

2. upper and lower bounds

$$
\begin{aligned}
& M\left(u_{1}, \ldots, u_{d}\right)=\min \left(u_{1}, \ldots, u_{d}\right) \\
& W\left(u_{1}, \ldots, u_{d}\right)=\max \left(\sum_{i=1}^{d} u_{i}-d+1,0\right)
\end{aligned}
$$

3. product copula

$$
\Pi\left(u_{1}, \ldots, u_{d}\right)=\prod_{j=1}^{d} u_{j}
$$

Copulae Fréchet Copulae

Figure 3: $M(u, v)=\min (u, v), W(u, v)=\max (u+v-1,0)$ and $\Pi(u, v)=u v$
M. Fréchet on BBI :

Applications of Copulae for the calculation of VaR

Product Copula

Let X_{1} and X_{2} be random variables with continuous distribution functions F_{1} and F_{2} and joint distribution function H. Then X_{1} and X_{2} are independent if and only if $C_{X_{1} X_{2}}=\Pi$. According to Sklar's Theorem, there exists a unique copula C with

$$
\begin{aligned}
P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right) & =H\left(x_{1}, x_{2}\right) \\
& =C\left\{F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right\} \\
& =F_{1}\left(x_{1}\right) \cdot F_{2}\left(x_{2}\right)
\end{aligned}
$$

Gauss Copula

$$
\begin{aligned}
C\left(u_{1}, u_{2}\right) & =\Phi_{\rho}\left\{\Phi^{-1}\left(u_{1}\right), \Phi^{-1}\left(u_{2}\right)\right\} \\
& =\int_{-\infty}^{\Phi^{-1}\left(u_{1}\right) \Phi^{-1}\left(u_{2}\right)} \frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{-\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)}\right\} d x d y
\end{aligned}
$$

Gaussian Copula Density, $\mathrm{r}=0.4$

Figure 4: Gauss copula density, parameter $\rho=0.4$.
C. Gauss on BBI:

Applications of Copulae for the calculation of VaR

t-Student Copula

$$
\begin{aligned}
C\left(u_{1}, u_{2}\right) & =t_{\rho, \nu}\left\{t_{\nu}^{-1}\left(u_{1}\right), t_{\nu}^{-1}\left(u_{2}\right)\right\} \\
& =\int_{-\infty}^{t_{\nu}^{-1}\left(u_{1}\right)} \int_{-\infty}^{t_{\nu}^{-1}\left(u_{2}\right)} \frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{1+\frac{x^{2}-2 \rho x y+y^{2}}{\nu\left(1-\rho^{2}\right)}\right\}^{-(\nu+2) / 2} d x d y
\end{aligned}
$$

t-Student Copula Density, $v=3, r=0.4$

Figure 5: t-Student copula density, parameters $\nu=3$ and $\rho=0.4$.
W. Gosset on BBI:

Applications of Copulae for the calculation of VaR

Archimedean Copulae

Archimedean copula:

$$
C(u, v)=\psi^{[-1]}\{\psi(u)+\psi(v)\}
$$

for a continuous, decreasing and convex $\psi, \psi(1)=0$.
$\psi^{[-1]}(t)= \begin{cases}\psi^{-1}(t), & 0 \leq t \leq \psi(0), \\ 0, & \psi(0)<t \leq \infty .\end{cases}$
The function ψ is a generator of the Archimedean copula.
For $\psi(0)=\infty: \psi^{[-1]}=\psi^{-1}$ and the ψ is called a strict generator.

Gumbel Copula

$$
C(u, v)=\exp \left[-\left\{(-\log u)^{\theta}+(-\log v)^{\theta}\right\}^{\frac{1}{\theta}}\right]
$$

Gumbel Copula Density, $\theta=2$

Figure 6: Gumbel copula density, parameter $\theta=2$.
E. Gumbel on BBI: A

Applications of Copulae for the calculation of VaR

Clayton Copula

$$
C(u, v)=\max \left\{\left(u^{-\theta}+v^{-\theta}-1\right)^{\frac{1}{\theta}}, 0\right\}
$$

Clayton Copula Density, $\theta=2$

Figure 7: Clayton copula density, parameter $\theta=2$.

Frank Copula

$$
C(u, v)=-\frac{1}{\theta} \log \left\{1+\frac{\left(e^{-\theta u}-1\right)\left(e^{-\theta v}-1\right)}{e^{-\theta}-1}\right\}
$$

Frank Copula Density, $\theta=2$

Figure 8: Frank copula density, parameter $\theta=2$.
Applications of Copulae for the calculation of VaR

Multivariate Elliptical Copulae

\square Gauss

$$
\begin{aligned}
& \int_{-\infty}^{\Phi^{-1}\left(u_{1}\right)} \cdots \int_{-\infty}^{\Phi^{-1}\left(u_{d}\right)}(2 \pi)^{-\frac{d}{2}}|R|^{-\frac{1}{2}} \exp \left(-\frac{1}{2} r^{\top} R^{-1} r\right) d r_{1} \ldots d r_{d}, \\
& \text { where } r=\left(r_{1}, \ldots, r_{n}\right)^{\top}
\end{aligned}
$$

$\square t$-Student

$$
\int_{-\infty}^{t_{\nu}^{-1}\left(u_{1}\right)} \cdots \int_{-\infty}^{t_{\nu}^{-1}\left(u_{d}\right)}(2 \pi)^{-\frac{d}{2}}|R|^{-\frac{1}{2}}\left(1+\frac{r^{\top} R^{-1} r}{\nu}\right)^{-\frac{v+n}{2}} d r_{1} \ldots d r_{d}
$$

$$
\text { where } r=\left(r_{1}, \ldots, r_{n}\right)^{\top}
$$

Multivariate Archimedean Copulae

\checkmark Gumbel

$$
C\left(u_{1}, \ldots, u_{d}\right)=\exp \left[-\left\{\left(-\log u_{1}\right)^{\theta}+\ldots+\left(-\log u_{d}\right)^{\theta}\right\}^{\frac{1}{\theta}}\right]
$$

\square Cook-Johnson

$$
C\left(u_{1}, \ldots, u_{d}\right)=\left(\sum_{j=1}^{n} u_{j}^{-\theta}-d+1\right)^{-\frac{1}{\theta}}
$$

\checkmark Frank

$$
C\left(u_{1}, \ldots, u_{d}\right)=-\frac{1}{\theta} \log \left\{1+\frac{\left(e^{-\theta u_{1}}-1\right) \ldots\left(e^{-\theta u_{d}}-1\right)}{\left(e^{-\theta}-1\right)^{d-1}}\right\}
$$

Dimensionality

In d-dimension

1. Elliptical Copulae: correlation matrix with $\frac{d(d-1)}{2}$ parameters
2. Archimedean Copulae: 1 parameter

Parameter Estimation

\checkmark Full Maximum Likelihood (FML)
\square Method of Inference Functions for Margins (IFM)
\square Canonical Maximum Likelihood (CML) method

Copula Estimation

Given observations $\left\{x_{t}\right\}_{t=1}^{T}$ the log-likelihood function for a copula C_{θ}, marginal distributions $F_{j}\left(x_{j}\right)$ and parameters $\alpha=\left(\delta_{1}, \ldots, \delta_{d}, \theta\right)^{\top}$ is
$\ell\left(\alpha ; x_{1}, \ldots, x_{T}\right)=$
$=\sum_{t=1}^{T} \log c\left\{F_{X_{1}}\left(x_{1, t} ; \delta_{1}\right), \ldots, F_{X_{d}}\left(x_{d, t} ; \delta_{d}\right) ; \theta\right\}+\sum_{t=1}^{T} \sum_{j=1}^{d} \log f_{j}\left(x_{j, t} ; \delta_{j}\right)$

Full Maximum Likelihood - FML

The parameters are estimated through

$$
\tilde{\alpha}_{F M L}=\underset{\alpha}{\arg \max } \ell(\alpha)
$$

The estimates $\tilde{\alpha}_{F M L}=\left(\tilde{\delta}_{1}, \ldots, \tilde{\delta}_{d}, \tilde{\theta}\right)^{\top}$ solve

$$
\left(\partial \ell / \partial \delta_{1}, \ldots, \partial \ell / \partial \delta_{d}, \partial \ell / \partial \theta\right)=0
$$

Inference Functions for Margins - IFM

1. step:

Estimating the parameters $\delta_{j}, j=1, \ldots, d$ of the marginal distributions $F_{X_{j}}$ using the ML method

$$
\hat{\delta}_{j}=\underset{\delta_{j}}{\arg \max } \ell_{j}\left(\delta_{j}\right)=\underset{\delta_{j}}{\arg \max } \sum_{t=1}^{T} \log f_{j}\left(x_{j, t} ; \delta_{j}\right)
$$

where ℓ_{j} is the log-likelihood function of the marginal distribution $F_{X_{j}}$ with density f_{j}.

Inference Functions for Margins - IFM

2. step:

Estimating the copula parameters θ,
$\hat{\theta}=\underset{\theta}{\arg \max } \ell(\theta)=\underset{\theta}{\arg \max } \sum_{t=1}^{T} \log c\left(F_{X_{1}}\left(x_{1, t} ; \hat{\delta}_{1}\right), \ldots, F_{X_{d}}\left(x_{d, t} ; \hat{\delta}_{d}\right) ; \theta\right)$,
where ℓ is the log-likelihood function of the copula.
The estimates $\hat{\alpha}_{\text {IFM }}=\left(\hat{\delta}_{1}, \ldots, \hat{\delta}_{d}, \hat{\theta}\right)^{\top}$ solve

$$
\left(\partial \ell_{1} / \partial \delta_{1}, \ldots, \partial \ell_{d} / \partial \delta_{d}, \partial \ell / \partial \theta\right)=0
$$

Canonical Maximum Likelihood

In the CML method no assumptions are made about the parametric form of the marginal distributions.
The CML estimator maximizes the pseudo log-likelihood function with empirical marginal distributions \hat{F}_{j}

$$
\begin{gathered}
\ell(\theta)=\sum_{t=1}^{T} \log c\left\{\hat{F}_{1}\left(x_{1}\right), \ldots, \hat{F}_{d}\left(x_{d}\right) ; \theta\right\} \\
\hat{\theta}_{C M L}=\arg \max _{\theta} \ell(\theta)
\end{gathered}
$$

where

$$
\hat{F}_{j}(x)=\frac{1}{T+1} \sum_{t=1}^{T} I\left(X_{j, t} \leq x\right), j=1, \ldots, d
$$

Multivariate Gaussian Copula

Algorithm of simulating pseudo rvs from Gaussian copula with correlation matrix R

1. Perform a Cholesky decomposition $R=A^{\top} A$.
2. Simulate n independent rvs $\mathbf{z}=z_{1}, \ldots, z_{n}$ from $N(0,1)$.
3. Set $\left(x_{1}, \ldots, x_{n}\right)=\mathbf{x}=A \mathbf{z}$.
4. Set $u_{i}=\Phi\left(x_{i}\right), i=1, \ldots, n$.
$\left(u_{1}, \ldots, u_{n}\right)^{\top} \sim C_{R}^{\text {Gauss }}$.

Multivariate t-Student

Algorithm of simulating pseudo rvs from t-Student copula with correlation matrix R and ν degrees of freedom

1. Perform a Cholesky decomposition $R=A^{\top} A$.
2. Simulate n independent rvs $\mathbf{z}=z_{1}, \ldots, z_{n}$ from $N(0,1)$.
3. Simulate a random variate s from χ_{ν}^{2} independent of \mathbf{z}.
4. Set $\left(y_{1}, \ldots, y_{n}\right)=\mathbf{y}=A \mathbf{z}$.
5. Set $\mathbf{x}=\frac{\sqrt{\nu}}{\sqrt{s}} \mathbf{y}$.
6. Set $u_{i}=t_{\nu}\left(x_{i}\right), i=1, \ldots, n$.
$\left(u_{1}, \ldots, u_{n}\right)^{\top} \sim C_{\nu, R}^{t}$.

Conditional Inverse Method

The method is based on the conditional distributions of a random vector $\mathbf{U}=\left(U_{1}, \ldots, U_{d}\right)$.
Let U_{1}, \ldots, U_{d} have joint distribution function C. Then conditional distribution of U_{k} given the values of U_{1}, \ldots, U_{k-1} is given by

$$
\begin{aligned}
\Lambda\left(u_{k}\right) & =C\left(u_{k} \mid u_{1}, \ldots, u_{k-1}\right)=P\left(U_{k} \leq u_{k} \mid U_{1}=u_{1}, \ldots, U_{k-1}=u_{k-1}\right) \\
& =\frac{\frac{\partial^{k-1}}{\partial u_{1} \ldots \partial u_{k-1}} C\left(u_{1}, \ldots, u_{k}, 1, \ldots, 1\right)}{\frac{\partial^{k-1}}{\partial u_{1} \ldots \partial u_{k-1}} C\left(u_{1}, \ldots, u_{k-1}, 1, \ldots, 1\right)} .
\end{aligned}
$$

Conditional Inverse Method

The generation follows the steps:

1. generate v_{1}, \ldots, v_{d} independent and uniformly distributed in $[0,1]$.
2. for $n=1, \ldots, d$ generate $u_{n}=\Lambda^{-1}\left(v_{n}\right)$.
u_{1}, \ldots, u_{d} have uniform marginal distributions in $[0,1]$ and dependence structure given by copula C.
3. set $x_{n}=F_{n}^{-1}\left(u_{n}\right)$.
x_{1}, \ldots, x_{d} have the desired marginal distributions.

Laplace Transform Archimedean Copulae

The considered copulae - Gumbel, Clayton and Frank - fall into the class of Laplace transform Archimedean copulae. For this class, the inverse of the generator ψ has a representation of a Laplace transform \hat{G} of some distribution function G :

$$
\psi^{-1}(t)=\hat{G}(t)=\int_{0}^{\infty} e^{-t x} d G(x), \quad t \geq 0
$$

We set $\hat{G}(\infty)=0$.
$\hat{G}(t)$ is continuous and strictly decreasing function.

Laplace Transform Algorithm (Marshal-Olkin Method)

1. Generate a pseudo rv V with $\operatorname{cdf} G$

- For a Clayton copula, V is gamma distributed, $G a\left(\frac{1}{\theta}\right)$, and $\hat{G}(t)=(1+t)^{-1 / \theta}$
- For a Gumbel copula V is stable distributed, $\operatorname{St}\left(\frac{1}{\theta}, 1, \gamma, 0\right)$ with $\gamma=\left\{\cos \left(\frac{\pi}{2 \theta}\right)\right\}^{\theta}$ and $\hat{G}(t)=\exp \left(-t^{1 / \theta}\right)$
- For a Frank copula, V is discrete with

$$
P(V=k)=\left(1-e^{-\theta}\right)^{k} /(k \theta) \text { for } k=1,2, \ldots
$$

2. Generate iid uniform pseudo rvs X_{1}, \ldots, X_{d}
3. Return $U_{i}=\hat{G}\left(-\frac{\ln X_{i}}{V}\right), i=1, \ldots, d$.

Sampling from Copulae

Figure 9: Monte Carlo sample of 10.000 realizations of pseudo random variable with uniform marginals in $[0,1]$ and dependence structure given by Clayton (left) and Gumbel (right) copula with $\theta=3$.

Tail Dependence

\square Risk behavior is determined by tails large losses that can occur jointly.
\square Pearson's correlation can not capture joint large loss events.
\square Tail dependence describes the limiting proportion that one margin exceeds a certain threshold given that the other margin has already exceeded that threshold.

Upper tail Dependence

Figure 10: UTD for standardized log-returns of BMW vs Volkswagen transformed by t-Student cdf.

Applications of Copulae for the calculation of VaR

Upper tail Dependence

Let $\left(X_{1}, X_{2}\right) \sim F$ with margins F_{1} and F_{2}.
Coefficient of upper tail dependence (UTD):

$$
\lambda_{U}=\lim _{u \nearrow_{1}^{1}} P\left\{Y>F_{2}^{-1}(u) \mid X>F_{1}^{-1}(u)\right\}
$$

Asymptotical upper tail dependence: $\lambda_{U} \in(0,1]$.
Asymptotical upper tail independence: $\lambda_{U}=0$.

Lower tail dependence

Let $\left(X_{1}, X_{2}\right) \sim F$ with margins F_{1} and F_{2}.
Coefficient of lower tail dependence:

$$
\lambda_{L}=\lim _{u \backslash 0} P\left\{Y \leq F_{2}^{-1}(u) \mid X \leq F_{1}^{-1}(u)\right\}
$$

Asymptotical lower tail dependence: $\lambda_{L} \in(0,1]$. Asymptotical lower tail independence: $\lambda_{U}=0$.

Tail Dependence and Copulae

Tail dependence is a copula property:

$$
\begin{align*}
& \lambda_{U}=\lim _{v / 1} \frac{1-2 v+C(v, v)}{1-v} \\
& \lambda_{L}=\lim _{v \backslash 0} \frac{C(v, v)}{v} \tag{2}
\end{align*}
$$

Copula	λ_{U}	λ_{L}
Gauss	0 for $\rho<1$	0 for $\rho<1$
	1 for $\rho=1$	1 for $\rho=1$
t_{ν}	$2 \bar{t}_{\nu+1}\left(\sqrt{\frac{(\nu+1)(1-\rho)}{1+\rho}}\right)$	λ_{U}
Gumbel	$2-2^{\frac{1}{\theta}}$	0
Clayton	0	$2^{-\frac{1}{\theta}}$
Frank	0	0

Table 1: TDCs for various selected copulae.

Risk Measures

1. Value-at-Risk (negative)

$$
\operatorname{VaR}_{1-\alpha}^{X}=Q_{\alpha}^{X}=-q_{1-\alpha}^{-X},
$$

- $Q_{\alpha}^{X}=\inf \left\{x \in \mathbb{R}: F_{X}(x)>\alpha\right\}$,
- $q_{\alpha}^{X}=\inf \left\{x \in \mathbb{R}: F_{X}(x) \geq \alpha\right\}$.

2. Expected Shortfall

$$
E S_{1-\alpha}^{X}=E\left(X \mid X<V_{a} R_{1-\alpha}^{X}\right)
$$

Value-at-Risk with Copulae

For a sample of log-returns $\left\{X_{j, t}\right\}_{t=1}^{T}, j=1, \ldots, d$

1. specification of marginal distributions $F_{X_{j}}\left(x_{j} ; \delta_{j}\right)$
2. specification of copula $C\left(u_{1}, \ldots, u_{d} ; \theta\right)$ where $u_{j}=F_{X_{j}}\left(x_{j}\right)$
3. fit of the copula C (estimation the copula parameters)
4. generation of n Monte Carlo data

$$
U_{T+1} \sim C\left\{F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right) ; \hat{\theta}\right\}
$$

5. generation of a sample of portfolio profits $L_{T+1}\left(X_{T+1}\right)$
6. estimation of $\widehat{V a R}{ }_{1-\alpha}$, the empirical quantile from L_{T+1}.

Estimation of VaR

$$
\widehat{\operatorname{VaR}}_{1-\alpha}^{L}=L_{(\lfloor\alpha n\rfloor+1): n}
$$

where L is Profit and Loss function

$$
\begin{aligned}
L_{t+1} & =\sum_{j=1}^{d} S_{j, t+1}-\sum_{j=1}^{d} S_{j, t} \\
& =\sum_{j=1}^{d} S_{j, t}\left(\exp \left(X_{j, t+1}\right)-1\right)
\end{aligned}
$$

and $X_{t+1}=\log S_{t+1}-\log S_{t}$.

Applications of Copulae for the calculation of VaR

Generation of Possible Scenarios

Assume that the standardized returns of margin $j, j=1, \ldots, d$, are modeled with t-Student distribution with ν_{j} degrees of freedom. Generation of possible values of change of the portfolio at time $T+1$ follows the steps:

1. sampling $n=10.000$ pseudo rvs for each $U_{1, T+1}, \ldots, U_{d, T+1}$
2. generation t-distributed rvs by $V_{j, T+1}=\operatorname{tinv}\left(U_{j, T+1}, \nu_{j}\right)$
3. generation of the values of possible log-returns

$$
X_{j, T+1}=V_{j, T+1} \cdot \operatorname{std}_{j}+\text { mean }_{j}
$$

4. determinig values of profit and loss function

$$
L_{T+1}=\sum_{j=1}^{d} S_{j, T}\left(\exp \left(X_{j, T+1}\right)-1\right)
$$

Moving Window

\square Specify the subsets of size $h=250:\left\{u_{j, t}\right\}_{t=s-h+1}^{s}$ for $s=h, \ldots, T$.
\square Obtain the sequence $\left\{\widehat{\operatorname{VaR}}_{1-\alpha}^{j}\right\}_{j=1}^{T-h}$ and $\left\{\theta_{j}\right\}_{j=1}^{T-h}$.

Moving window

For a sample of log-returns $\left\{X_{t}\right\}_{t=1}^{T}$

1. specification of marginal distributions $F_{X_{j}}\left(x_{j} ; \delta_{j}\right)$
2. specification of returns' subsets of size h : $\left\{y_{j, t}\right\}_{t=s-h+1}^{s}$ for $s=h, \ldots, T-1$
3. specification of copulae $C_{s}\left(u_{1}, \ldots, u_{d} ; \theta\right)$ for every subset $\left\{y_{j, t}\right\}_{t=s-h+1}^{s}$
4. fit of the copulae $C_{s}, s=h, \ldots, T-1$
5. generation of Monte Carlo data

$$
U_{s+1} \sim C_{s}\left\{F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right) ; \hat{\theta}\right\} \text { for } s=h, \ldots, T-1
$$

6. generation of a samples of portfolio profits $L_{s+1}\left(X_{s+1}\right)$
7. estimation of $\left\{\widehat{V a R}_{1-\alpha}^{j}\right\}_{j=1}^{T-h}$.

Backtesting

The estimated VaR values are compared with true realizations $\left\{L_{t}\right\}$ of the Profit and Loss function.
An exceedance occurs when L_{t} is smaller than $\widehat{V a R}_{1-\alpha}^{t}$. The ratio of the number of exceedances to the number of observations gives the exceedances ratio:

$$
\hat{p}=\frac{1}{T-h} \sum_{t=h+1}^{T} I_{\left\{L_{t}<\widehat{V a R}_{1-\alpha}^{t}\right\}}
$$

Application

Figure 11: Closing prices of stocks: BMW, Bayer, Siemens, Volkswagen. Time period: 1st January 1999 - 1st September 2006, 2000 data points.

Returns

Let P_{1}, \ldots, P_{n} be a time series of stock's prices.
\square Simple return is defined as

$$
R_{t}=\frac{P_{t}-P_{t-1}}{P_{t-1}}
$$

\square Logarithmic return (log-return) is defined as

$$
r_{t}=\log \frac{P_{t}}{P_{t-1}}
$$

Application

Figure 12: Daily stock standardized log-returns: BMW, Bayer, Siemens, Volkswagen.

Applications of Copulae for the calculation of VaR

Application

Margins

Figure 13: Standardized margins are modeled with t-Student distribution with degrees of freedom equal 7 for BMW, 6 for Bayer, 5 for Siemens, 8 for Volkswagen.

Value-at-Risk Estimation

Copula	BAY - SIE	BMW - VOW	SIE - VOW
Gauss	0.0320	0.0394	0.0366
t-Student	0.0314	0.0405	0.0371
Gumbel	0.0360	0.0400	0.0394
Clayton	0.0308	0.0348	0.0354
Frank	0.0337	0.0400	0.0366
Normal distribution	0.1216	0.0999	0.1182

Table 2: Backtesting results for Value-at-Risk estimation at 0.05 level for 3 portfolios, $w=(1,1)^{T}$, size of moving window 250, Monte Carlo samples of 10.000 realizations of pseudo random variable. Standardized margins modeled with t-distribution.

Application

Figure 14: $\mathrm{VaR}, \mathrm{P} \& \mathrm{~L}$ and exceedances estimated with t-Student copula ($\hat{\alpha}=0.0405$) and bivariate normal distribution $(\hat{\alpha}=0.0999)$ for BMW and Volkswagen.

$$
\text { Application } \longrightarrow ~ 7-7
$$

Figure 15: VaR, P\&L and exceedances estimated with Gumbel copula ($\hat{\alpha}=0.0360$) and Clayton copula $(\hat{\alpha}=0.0308)$ for Bayer and Siemens.

Conclusions

Pluses of copulae

\square flexible and wide range of dependence
\square easy to simulate, estimate, implement
\square explicit form of densities of copulae
\square modelling of fat tails, assymetries
Minuses of copulae
\square Elliptical: correlation matrix, symmetry
\square Archimedean: too restrictive, single parameter, exchangable
\square selection of copula

References

P. Embrechts, F. Lindskog, A. McNeil

Modelling dependence with copulas and application to risk management
J. Franke, W. Härdle and C. Hafner

Statistics of Financial Markets
Springer, 2008
(E. Giacomini, W. Härdle, V. Spokoiny
Inhomogeneous Dependency Modelling with Time Varying Copulae
JBES, in print
QR. Nelsen
An Introduction to Copulas
Springer, 1999
雷 O. Okhrin, Y. Okhrin, W. Schmid
On the structure and estimation of hierarchical Archimedean copulas

