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Motivation 1-1

Copula vs Normal Distribution

1. The empirical marginal distributions are skewed and fat tailed.

2. Multivariate normal distribution does not consider the
possibility of extreme joint co-movement of asset returns.
The dependency structure of portfolio asset returns is different
from the Gaussian one.

Applications of Copulae for the calculation of VaR
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Motivation 1-2

Advantages

1. Copulae are useful tools to simulate asset return distributions
in a more realistic way.

2. Copulae allow to model the dependence structure
independently from the marginal distributions

I construct a multivariate distribution with different margins
I the dependence structure is given by the copula.

Applications of Copulae for the calculation of VaR
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Motivation 1-3

Dependency Structures
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Figure 1: Scatter plots of bivariate samples with different dependency struc-

tures and equal correlation coefficient.
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Motivation 1-4

Varying Dependency
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Figure 2: Standardized log returns of Bayer and Siemens 20000103-

20020101 (left) and 20040101-20060102 (right).
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Motivation 1-5

Outline

1. Motivation X

2. Copulae

3. Parameter Estimation

4. Sampling from Copulae

5. Tail Dependence

6. Value-at-Risk with Copulae

7. Application
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Copulae 2-1

Copulae

A copula is a multivariate distribution function defined on the unit
cube [0, 1]d , with uniformly distributed margins.

P(X1 ≤ x1, . . . ,Xn ≤ xd) = C {P(X1 ≤ x1), . . . ,P(Xd ≤ xd)}
= C {F1(x1), . . . ,Fd(xd)}
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Copulae 2-2

Bivariate Copulae

A 2-dimensional copula is a function C : [0, 1]2 → [0, 1] with the
following properties:

1. For every u ∈ [0, 1], C (0, u) = C (u, 0) = 0 (grounded)

2. For every u ∈ [0, 1], C (u, 1) = u and C (1, u) = u

3. For every (u1, u2), (v1, v2) ∈ [0, 1]× [0, 1] with u1 ≤ v1 and
u2 ≤ v2: C (v1, v2)− C (v1, u2)− C (u1, v2) + C (u1, u2) ≥ 0
(2-increasing)
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Copulae 2-3

Multivariate Copula

A d-dimensional copula is a function C : [0, 1]d → [0, 1]:

1. C (u1, ..., ui−1, 0, ui+1, ..., ud) = 0 (at least one ui is 0);

2. u ∈ [0, 1], C (1, ..., 1, ui , 1, ..., 1) = ui (all coordinates except
ui is 1)

3. For each u < v ∈ [0, 1]d (ui < vi )

VC [u, v ] =
∑

a

sgn(a)C (a) ≥ 0

where a is taken over all vertices of [u, v ]. sgn(a) = 1 if
ak = uk for an even number of k ′s and sgn(a) = −1 if
ak = uk for an odd number of k ′s (d-increasing)
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Copulae 2-4

Sklar’s Theorem

For a distribution function F with marginals FX1 . . . ,FXd
. There

exists a copula C : [0, 1]d → [0, 1], such that

F (x1, . . . , xd) = C{FX1(x1), . . . ,FXd
(xd)} (1)

for all xi ∈ R, i = 1, . . . , d . If FX1 , . . . ,FXd
are cts, then C is

unique. If C is a copula and FX1 , . . . ,FXd
are cdfs, then the

function F defined in (1) is a joint cdf with marginals FX1 , . . . ,FXd
.

  

X 1X 2

X 3X 4 X 5X 6

X 7
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Copulae 2-5

� a copula C and marginal distributions can be ”coupled”
together into a distribution function:

FX (x1, . . . , xd) = C{FX1(x1), . . . ,FXd
(xd)}

� a (unique) copula is obtained from ”decoupling” every
(continuous) multivariate distribution function from its
marginal distributions:

C (u1, . . . , ud) = FX{F−1
X1

(u1), . . . ,F
−1
Xd

(ud)}

uj = FXj
(xj), j = 1, . . . , d
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Copulae 2-6

� if C is absolute continuous there exists a copula density

c(u1, . . . , ud) =
∂dC (u1, . . . , ud)

∂u1 . . .∂ud

� the joint density fX is

fX (x1, . . . , xd) = c{FX1(x1), . . . ,FXd
(xd)}

d∏
j=1

fj(xj)
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Copulae 2-7

Fréchet-Hoeffding Bounds, Product Copula

1. every copula C satisfies

W (u1, . . . , ud) ≤ C (u1, . . . , ud) ≤ M(u1, . . . , ud)

2. upper and lower bounds

M(u1, . . . , ud) = min(u1, . . . , ud)

W (u1, . . . , ud) = max

(
d∑

i=1

ui − d + 1, 0

)
3. product copula

Π(u1, . . . , ud) =
d∏

j=1

uj
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Copulae 2-8

Fréchet Copulae

Figure 3: M(u, v) = min(u, v), W (u, v) = max(u + v − 1, 0)

and Π(u, v) = uv

M. Fréchet on BBI:
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Copulae 2-9

Product Copula

Let X1 and X2 be random variables with continuous distribution
functions F1 and F2 and joint distribution function H.
Then X1 and X2 are independent if and only if CX1X2 = Π.
According to Sklar’s Theorem, there exists a unique copula C with

P(X1 ≤ x1,X2 ≤ x2) = H(x1, x2)

= C {F1(x1),F2(x2)}
= F1(x1) · F2(x2)
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Copulae 2-10

Gauss Copula

C(u1, u2) = Φρ{Φ−1(u1), Φ
−1(u2)}

=

Φ−1(u1)Z
−∞

Φ−1(u2)Z
−∞

1

2π
p

1− ρ2
exp

�
−

x2 − 2ρxy + y2

2(1− ρ2)

�
dx dy

Figure 4: Gauss copula density, parameter ρ = 0.4.

C. Gauss on BBI:
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Copulae 2-11

t-Student Copula

C(u1, u2) = tρ,ν{t−1
ν (u1), t

−1
ν (u2)}

=

t−1
ν (u1)Z
−∞

t−1
ν (u2)Z
−∞

1

2π
p

1− ρ2
exp

�
1 +

x2 − 2ρxy + y 2

ν(1− ρ2)

�−(ν+2)/2

dx dy

Figure 5: t-Student copula density, parameters ν = 3 and ρ = 0.4.

W. Gosset on BBI:
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Copulae 2-12

Archimedean Copulae

Archimedean copula:

C (u, v) = ψ[−1]{ψ(u) + ψ(v)}

for a continuous, decreasing and convex ψ, ψ(1) = 0.

ψ[−1](t) =

{
ψ−1(t), 0 ≤ t ≤ ψ(0),
0, ψ(0) < t ≤ ∞.

The function ψ is a generator of the Archimedean copula.
For ψ(0) = ∞: ψ[−1] = ψ−1 and the ψ is called a strict generator.
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Copulae 2-13

Gumbel Copula

C(u, v) = exp
h
−
n

(− log u)θ + (− log v)θ
o 1

θ
i

Figure 6: Gumbel copula density, parameter θ = 2.

E. Gumbel on BBI:
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Copulae 2-14

Clayton Copula

C(u, v) = max
n

(u−θ + v−θ − 1)
1
θ , 0

o

Figure 7: Clayton copula density, parameter θ = 2.
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Copulae 2-15

Frank Copula

C(u, v) = −1

θ
log

�
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

�

Figure 8: Frank copula density, parameter θ = 2.
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Copulae 2-16

Multivariate Elliptical Copulae

� Gauss
Φ−1(u1)∫
−∞

. . .
Φ−1(ud )∫
−∞

(2π)−
d
2 |R|−

1
2 exp

(
−1

2 r>R−1r
)

dr1 . . . drd ,

where r = (r1, . . . , rn)
>

� t-Student
t−1
ν (u1)∫
−∞

. . .
t−1
ν (ud )∫
−∞

(2π)−
d
2 |R|−

1
2

(
1 + r>R−1r

ν

)− v+n
2

dr1 . . . drd

where r = (r1, . . . , rn)
>
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Copulae 2-17

Multivariate Archimedean Copulae

� Gumbel

C (u1, . . . , ud) = exp

[
−
{

(− log u1)
θ + . . .+ (− log ud)θ

} 1
θ

]
� Cook-Johnson

C (u1, . . . , ud) =

 n∑
j=1

u−θ
j − d + 1

− 1
θ

� Frank

C (u1, . . . , ud) = −1

θ
log

{
1 +

(e−θu1 − 1) . . . (e−θud − 1)

(e−θ − 1)d−1

}
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Parameter Estimation 3-1

Dimensionality

In d-dimension

1. Elliptical Copulae: correlation matrix with d(d−1)
2 parameters

2. Archimedean Copulae: 1 parameter
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Parameter Estimation 3-2

Parameter Estimation

� Full Maximum Likelihood (FML)

� Method of Inference Functions for Margins (IFM)

� Canonical Maximum Likelihood (CML) method
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Parameter Estimation 3-3

Copula Estimation

Given observations {xt}T
t=1 the log-likelihood function for a copula

Cθ, marginal distributions Fj(xj) and parameters
α = (δ1, . . . , δd , θ)

> is

`(α; x1, . . . , xT ) =

=
T∑

t=1

log c{FX1(x1,t ; δ1), . . . ,FXd
(xd ,t ; δd); θ}+

T∑
t=1

d∑
j=1

log fj(xj ,t ; δj)
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Parameter Estimation 3-4

Full Maximum Likelihood - FML

The parameters are estimated through

α̃FML = arg max
α

`(α)

The estimates α̃FML = (δ̃1, . . . , δ̃d , θ̃)
> solve

(∂`/∂δ1, . . . , ∂`/∂δd , ∂`/∂θ) = 0
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Parameter Estimation 3-5

Inference Functions for Margins - IFM

1. step:
Estimating the parameters δj , j = 1, . . . , d of the marginal
distributions FXj

using the ML method

δ̂j = arg max
δj

`j(δj) = arg max
δj

T∑
t=1

log fj(xj ,t ; δj),

where `j is the log-likelihood function of the marginal distribution
FXj

with density fj .
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Parameter Estimation 3-6

Inference Functions for Margins - IFM

2. step:
Estimating the copula parameters θ,

θ̂ = arg max
θ

`(θ) = arg max
θ

T∑
t=1

log c(FX1(x1,t ; δ̂1), . . . ,FXd
(xd ,t ; δ̂d); θ),

where ` is the log-likelihood function of the copula.
The estimates α̂IFM = (δ̂1, . . . , δ̂d , θ̂)

> solve

(∂`1/∂δ1, . . . , ∂`d/∂δd , ∂`/∂θ) = 0

Applications of Copulae for the calculation of VaR

X

Y

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5



Parameter Estimation 3-7

Canonical Maximum Likelihood

In the CML method no assumptions are made about the
parametric form of the marginal distributions.
The CML estimator maximizes the pseudo log-likelihood function
with empirical marginal distributions F̂j

`(θ) =
T∑

t=1

log c{F̂1(x1), . . . , F̂d(xd); θ}

θ̂CML = arg maxθ `(θ)

where

F̂j(x) =
1

T + 1

T∑
t=1

I (Xj ,t ≤ x), j = 1, . . . , d
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Sampling from Copulae 4-1

Multivariate Gaussian Copula

Algorithm of simulating pseudo rvs from Gaussian copula with
correlation matrix R

1. Perform a Cholesky decomposition R = A>A.

2. Simulate n independent rvs z = z1, . . . , zn from N(0, 1).

3. Set (x1, . . . , xn) = x = Az.

4. Set ui = Φ(xi ), i = 1, . . . , n.

(u1, . . . , un)
> ∼ CGauss

R .
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Sampling from Copulae 4-2

Multivariate t-Student

Algorithm of simulating pseudo rvs from t-Student copula with
correlation matrix R and ν degrees of freedom

1. Perform a Cholesky decomposition R = A>A.

2. Simulate n independent rvs z = z1, . . . , zn from N(0, 1).

3. Simulate a random variate s from χ2
ν independent of z.

4. Set (y1, . . . , yn) = y = Az.

5. Set x =
√

ν√
s
y.

6. Set ui = tν(xi ), i = 1, . . . , n.

(u1, . . . , un)
> ∼ C t

ν,R .
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Sampling from Copulae 4-3

Conditional Inverse Method

The method is based on the conditional distributions of a random
vector U = (U1, . . . ,Ud).
Let U1, . . . , Ud have joint distribution function C . Then
conditional distribution of Uk given the values of U1, . . . , Uk−1 is
given by

Λ(uk) = C (uk |u1, . . . , uk−1) = P(Uk ≤ uk |U1 = u1, . . . ,Uk−1 = uk−1) =

=

∂k−1

∂u1...∂uk−1
C (u1, . . . , uk , 1, . . . , 1)

∂k−1

∂u1...∂uk−1
C (u1, . . . , uk−1, 1, . . . , 1)

.
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Sampling from Copulae 4-4

Conditional Inverse Method

The generation follows the steps:

1. generate v1, . . . , vd independent and uniformly distributed in
[0, 1].

2. for n = 1, . . . , d generate un = Λ−1(vn).
u1, . . . , ud have uniform marginal distributions in [0, 1] and
dependence structure given by copula C .

3. set xn = F−1
n (un).

x1, . . . , xd have the desired marginal distributions.
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Sampling from Copulae 4-5

Laplace Transform Archimedean Copulae

The considered copulae – Gumbel, Clayton and Frank – fall into
the class of Laplace transform Archimedean copulae.
For this class, the inverse of the generator ψ has a representation
of a Laplace transform Ĝ of some distribution function G :

ψ−1(t) = Ĝ (t) =

∞∫
0

e−txdG (x), t ≥ 0.

We set Ĝ (∞) = 0.
Ĝ (t) is continuous and strictly decreasing function.
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Sampling from Copulae 4-6

Laplace Transform Algorithm
(Marshal-Olkin Method)

1. Generate a pseudo rv V with cdf G
I For a Clayton copula, V is gamma distributed, Ga( 1

θ ), and

Ĝ (t) = (1 + t)−1/θ

I For a Gumbel copula V is stable distributed, St( 1
θ , 1, γ, 0) with

γ = {cos( π
2θ )}θ and Ĝ (t) = exp(−t1/θ)

I For a Frank copula, V is discrete with
P(V = k) = (1− e−θ)k/(kθ) for k = 1, 2, . . .

2. Generate iid uniform pseudo rvs X1, . . . , Xd

3. Return Ui = Ĝ (− lnXi
V ), i = 1, . . . , d .
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Sampling from Copulae 4-7
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Figure 9: Monte Carlo sample of 10.000 realizations of pseudo random

variable with uniform marginals in [0, 1] and dependence structure given

by Clayton (left) and Gumbel (right) copula with θ = 3.
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Tail Dependence 5-1

Tail Dependence

� Risk behavior is determined by tails large losses that can occur
jointly.

� Pearson’s correlation can not capture joint large loss events.

� Tail dependence describes the limiting proportion that one
margin exceeds a certain threshold given that the other
margin has already exceeded that threshold.
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Tail Dependence 5-2

Upper tail Dependence
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Figure 10: UTD for standardized log-returns of BMW vs Volkswagen trans-

formed by t-Student cdf.
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Tail Dependence 5-3

Upper tail Dependence

Let (X1,X2) ∼ F with margins F1 and F2.
Coefficient of upper tail dependence (UTD):

λU = lim
u↗1

P{Y > F−1
2 (u)|X > F−1

1 (u)}.

Asymptotical upper tail dependence: λU ∈ (0, 1].
Asymptotical upper tail independence: λU = 0.
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Tail Dependence 5-4

Lower tail dependence

Let (X1,X2) ∼ F with margins F1 and F2.
Coefficient of lower tail dependence:

λL = lim
u↘0

P{Y ≤ F−1
2 (u)|X ≤ F−1

1 (u)}.

Asymptotical lower tail dependence: λL ∈ (0, 1].
Asymptotical lower tail independence: λU = 0.
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Tail Dependence 5-5

Tail Dependence and Copulae

Tail dependence is a copula property:

λU = lim
v↗1

1− 2v + C (v , v)

1− v
,

λL = lim
v↘0

C (v , v)

v
. (2)
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Tail Dependence 5-6

Copula λU λL

Gauss 0 for ρ < 1 0 for ρ < 1

1 for ρ = 1 1 for ρ = 1

tν 2t̄ν+1

(√
(ν+1)(1−ρ)

1+ρ

)
λU

Gumbel 2− 2
1
θ 0

Clayton 0 2−
1
θ

Frank 0 0

Table 1: TDCs for various selected copulae.
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VaR and Copulae 6-1

Risk Measures

1. Value-at-Risk (negative)

VaRX
1−α = QX

α = −q−X
1−α,

I QX
α = inf {x ∈ R : FX (x) > α},

I qX
α = inf {x ∈ R : FX (x) ≥ α}.

2. Expected Shortfall

ESX
1−α = E (X |X < VaRX

1−α).
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VaR and Copulae 6-2

Value-at-Risk with Copulae

For a sample of log-returns {Xj ,t}T
t=1, j = 1, . . . , d

1. specification of marginal distributions FXj
(xj ; δj)

2. specification of copula C (u1, . . . , ud ; θ) where uj = FXj
(xj)

3. fit of the copula C (estimation the copula parameters)

4. generation of n Monte Carlo data
UT+1∼C{F1(x1), . . . ,Fd(xd); θ̂}

5. generation of a sample of portfolio profits LT+1(XT+1)

6. estimation of V̂aR1−α, the empirical quantile from LT+1.
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VaR and Copulae 6-3

Estimation of VaR

V̂aR
L

1−α = L(bαnc+1):n

where L is Profit and Loss function

Lt+1 =
d∑

j=1

Sj ,t+1 −
d∑

j=1

Sj ,t

=
d∑

j=1

Sj ,t(exp(Xj ,t+1)− 1)

and Xt+1 = log St+1 − log St .
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VaR and Copulae 6-4

Generation of Possible Scenarios

Assume that the standardized returns of margin j , j = 1, . . . , d ,
are modeled with t-Student distribution with νj degrees of freedom.
Generation of possible values of change of the portfolio at time
T + 1 follows the steps:

1. sampling n = 10.000 pseudo rvs for each U1,T+1, . . . , Ud ,T+1

2. generation t-distributed rvs by Vj ,T+1 = tinv(Uj ,T+1, νj)

3. generation of the values of possible log-returns
Xj ,T+1 = Vj ,T+1 · stdj + meanj

4. determinig values of profit and loss function
LT+1 =

∑d
j=1 Sj ,T (exp(Xj ,T+1)− 1)
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VaR and Copulae 6-5

Moving Window

� Specify the subsets of size h = 250: {uj ,t}s
t=s−h+1

for s = h, . . . , T .

� Obtain the sequence {V̂aR
j

1−α}T−h
j=1 and {θj}T−h

j=1 .
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VaR and Copulae 6-6

Moving window

For a sample of log-returns {Xt}T
t=1

1. specification of marginal distributions FXj
(xj ; δj)

2. specification of returns’ subsets of size h: {yj ,t}s
t=s−h+1

for s = h, . . . , T − 1

3. specification of copulae Cs(u1, . . . , ud ; θ) for every subset
{yj ,t}s

t=s−h+1

4. fit of the copulae Cs , s = h, . . . , T − 1

5. generation of Monte Carlo data
Us+1∼Cs{F1(x1), . . . ,Fd(xd); θ̂} for s = h, . . . , T − 1

6. generation of a samples of portfolio profits Ls+1(Xs+1)

7. estimation of {V̂aR
j

1−α}T−h
j=1 .
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VaR and Copulae 6-7

Backtesting

The estimated VaR values are compared with true realizations
{Lt} of the Profit and Loss function.

An exceedance occurs when Lt is smaller than V̂aR
t

1−α.
The ratio of the number of exceedances to the number of
observations gives the exceedances ratio:

p̂ =
1

T − h

T∑
t=h+1

I{Lt<dVaR
t

1−α}
.
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Application 7-1

Application
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Closing Prices for German Companies

Figure 11: Closing prices of stocks: BMW, Bayer, Siemens, Volkswagen.

Time period: 1st January 1999 – 1st September 2006, 2000 data points.
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Application 7-2

Returns

Let P1, . . . , Pn be a time series of stock’s prices.

� Simple return is defined as

Rt =
Pt − Pt−1

Pt−1
.

� Logarithmic return (log-return) is defined as

rt = log
Pt

Pt−1
.
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Application 7-3
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Figure 12: Daily stock standardized log-returns: BMW, Bayer, Siemens,

Volkswagen.
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Application 7-4

Margins
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Figure 13: Standardized margins are modeled with t-Student distribution

with degrees of freedom equal 7 for BMW, 6 for Bayer, 5 for Siemens, 8

for Volkswagen.
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Application 7-5

Value-at-Risk Estimation

Copula BAY - SIE BMW - VOW SIE - VOW

Gauss 0.0320 0.0394 0.0366
t-Student 0.0314 0.0405 0.0371
Gumbel 0.0360 0.0400 0.0394
Clayton 0.0308 0.0348 0.0354
Frank 0.0337 0.0400 0.0366

Normal distribution 0.1216 0.0999 0.1182

Table 2: Backtesting results for Value-at-Risk estimation at 0.05 level for 3

portfolios, w = (1, 1)T , size of moving window 250, Monte Carlo samples

of 10.000 realizations of pseudo random variable. Standardized margins

modeled with t-distribution.
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Application 7-6
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Figure 14: VaR, P&L and exceedances estimated with t-Student copula

(α̂ = 0.0405) and bivariate normal distribution (α̂ = 0.0999) for BMW

and Volkswagen.
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Application 7-7
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Figure 15: VaR, P&L and exceedances estimated with Gumbel copula

(α̂ = 0.0360) and Clayton copula (α̂ = 0.0308) for Bayer and Siemens.
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Application 7-8

Conclusions

Pluses of copulae

� flexible and wide range of dependence

� easy to simulate, estimate, implement

� explicit form of densities of copulae

� modelling of fat tails, assymetries

Minuses of copulae

� Elliptical: correlation matrix, symmetry

� Archimedean: too restrictive, single parameter, exchangable

� selection of copula
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