Distillation of News Flow into Analysis of Stock Reactions

Junni Zhang Cathy Chen Wolfgang Karl Härdle Elisabeth Bommes

Guanghua School of Management Peking University Chung Hua University Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

News moves Markets...

1 - 1

... but there is a lot of News

Dimensions of News

- Official channel: government, federal reserve bank/central bank, financial institutions
- Internet: blog, social media, message board
- Content of news
 - Signal v.s. noise

Dimension of News ctd

Type of news

- Scheduled v.s. non-scheduled
- Expected v.s. unexpected
- Specific-event v.s. continuous news flows

Challenge

- Interpret news
- ⊡ Evaluate news impact from different news dimensions

Sentiment Projection

Figure 2: Example of Text Numerisization

Many texts are numerisized via lexical projection
 Goal: Accurate values for positive and negative sentiment

Sentiment Lexica

- Opinion Lexicon (BL) Hu and Liu (2004)
- Financial Sentiment Dictionary (LM) Loughran and McDonald (2011)
- Multi-Perspective Question Answering Subjectivity Lexicon (MPQA) Wilson et al. (2005)

Research Questions

- Do opinions of small traders contribute to stock markets and create news-driven stock reactions?
 - Small traders v.s. financial institutions
 - Opinions of small traders v.s. financial analysts
- ☑ Concerns for analyst recommendation
 - Career
 - Compensation scheme
 - Strategic alliance

Research Questions ctd

Are there differences regarding

- 1. stock reaction indicators: volatility, trading volume, returns?
- 2. degree of asymmetric response (leverage effect)?
- 3. high and low attention companies?
- 4. specific sectors?

Outline

- 1. Motivation \checkmark
- 2. Data Collection
- 3. Sentiment Projection
- 4. Panel Regression
- 5. Simulation
- 6. Conclusion

How to gather Sentiment Variables?

Figure 3: Flowchart of Data Gathering Process Distillation of News Flow into Analysis of Stock Reactions —

NASDAQ Articles

- Terms of Service permit web scraping
- 🖸 116,691 articles in total
- 43,459 articles about 100 selected S&P 500 stocks in 9 major GICS sectors Frequency Table: GICS
- ⊡ Time frame: October 2009 October 2014
- Data available at RDC

Sentiment Lexica ctd

○ Number of entries in each lexicon:

Lexicon	Positive	Negative
BL	2,006	4,783
LM	354	2,329
MPQA	2,718	4,911

- Some words appear only in one lexicon
- Other words are only found in two lexica

Sentiment Variables

- I_{i,t} article indicator
- \boxdot $Pos_{i,t}$ average proportion of positive words
- \boxdot $Neg_{i,t}$ average proportion of negative words

for stock *i* on day *t*

Comparison of Lexical Projections

- Average sentiment values are smaller for LM than for BL and MPQA
- BL and MPQA relatively similar
- □ *LM* only contains finance specific words
- BL and MPQA also contain more general words (e.g. "cancer")
 Summary Statistics
 Correlation Sentiment
 Tagging Example
- □ Combination of projections might improve results
 - PCA on sentiment scores
 - Use first principal component of Pos_{i,t} and Neg_{i,t}

How good are the Projections?

- Random selection of 100 articles, manual labeling of polarity and comparison with polarity of lexical projections
- BL and MPQA recognize fewer negative articles but good in detection of positive articles
- LM accurately detects negative articles, recognizes fewer positive articles

Classification Evaluation Table

Stock Reaction Indicators

Range-based measure of volatility by Garman and Klass (1980)

- Notation: σ_{i,t}
- \boxdot Use log $\sigma_{i,t}$
- Based on open-high-low-close prices
- Equivalent results to realized volatility
- ☑ More robust in case of microstructure effects

Detrended log trading volume by Girard and Biswas (2007)

$$V_{i,t} = V_{i,t}^* - (\alpha + \beta_{1,i} (t - t_0) + \beta_{2,i} (t - t_0)^2)$$
(1)

with raw log trading volume $V_{i,t}^*$ and detrended log trading volume $V_{i,t}$ for stock *i* on day *t*, t_0 is starting point of time window (size: 120 days)

Returns

$$R_{i,t} = \log(P_{i,t}^{C}) - \log(P_{i,t-1}^{C})$$
(2)

with $P_{i,t}^{C}$ as closing price of stock *i* on day *t*

Panel Regression

$$\log \sigma_{i,t+1} = \alpha + \beta_1 I_{i,t} + \beta_2 Pos_{i,t} + \beta_3 Neg_{i,t} + \beta_4^\top X_{i,t} + \gamma_i + \varepsilon_{i,t}$$
(3)

$$V_{i,t+1} = \alpha + \beta_1 I_{i,t} + \beta_2 Pos_{i,t} + \beta_3 Neg_{i,t} + \beta_4^\top X_{i,t} + \gamma_i + \varepsilon_{i,t}$$
(4)

 $R_{i,t+1} = \alpha + \beta_1 I_{i,t} + \beta_2 Pos_{i,t} + \beta_3 Neg_{i,t} + \beta_4^\top X_{i,t} + \gamma_i + \varepsilon_{i,t}$ (5)

for stock i on day t with separate estimation of (3) to (5).

 $X_{i,t}$ - control variables γ_i - company specific fixed effect satisfying $\sum_i \gamma_i = 0$

Control Variables

- R_{M,t} S&P 500 index return
- ☑ VIX_t CBOE VIX
- \boxdot log $\sigma_{i,t}$ Range-based volatility
- V_{i,t} Detrended trading volume
- 🖸 R_{i,t} Return

Entire Panel Regression Results

Variable	BL LM		MPQA	PCA				
	Panel A: Future Log Volatility log $\sigma_{i,t+1}$							
$I_{i,t}$	-0.005	-0.019^{***}	-0.004	-0.014				
Pos _{i,t}	-0.396^{*}	0.156	-0.517^{**}	-0.210				
Negi,t	0.905***	0.942***	1.464***	1.041***				
	Panel B. Future Detrended Log Trading Volume $V_{i,t+1}$							
$I_{i,t}$	0.040***	0.027***	0.046***	0.035***				
Pos _{i,t}	-0.496^{***}	0.051	-0.483^{**}	-0.274^{*}				
Negi,t	0.726***	0.563**	0.548*	0.590**				
		Panel C: Futu	re Returns $R_{i,t+1}$					
$I_{i,t}$	0.000	0.000	0.000	-0.000				
Posi,t	0.019***	0.030***	0.014^{*}	0.018***				
Neg _{i,t}	-0.004	-0.000	-0.009	-0.003				

**** p value < 0.01, ** 0.01 \leq p value < 0.05, * 0.05 \leq p value < 0.1

Distillation of News Flow into Analysis of Stock Reactions -

- Antonio V

Does Attention matter?

Number of days with articles differs between firms
 High attention: Faster incorporation of news?

attention ratio
$$\stackrel{def}{=} N_i / T$$
 (6)

with N_i as number of days with at least one article for company i and T as total number of trading days

Distillation of News Flow into Analysis of Stock Reactions -

4-6

Grouping

Use attention ratio quartiles to group firms:

Low	attention ratio $< Q$	1
Median	$Q1 \leq attention \ ratio < Q$	2
High	$Q2 \leq attention\ ratio < Q$	3
Extremely High	$Q3 \leq attention$ ratio	

with Q1, Q2, Q3 as first, second and third quartile

Attention Analysis Regression Results

	E	3L	L	М	MF	MPQA	
Attention	Low	High	Low	High	Low	High	
		Pan	nel A: Future V	/olatility log σ_{i}	t+1		
l _{i,t}	0.020	-0.016	0.010	-0.046^{***}	0.016	-0.019	
$Pos_{i,t}$	-0.736	-0.460	-1.027	0.967	-0.655	-0.636^{**}	
Neg _{i,t}	-0.074	1.324***	-0.195	1.806***	-0.195	2.548***	
	Panel B: Future Detrended Log Trading Volume V _{i,t+1}						
l _{i,t}	0.054**	0.036***	0.044***	0.021*	0.049*	0.046***	
$Pos_{i,t}$	-0.817	-0.198	-0.923	0.815^{*}	0.0433	-0.358	
Neg _{i,t}	0.312	0.554	-0.109	0.447	-0.197	0.419	
	Panel C: Future Returns R _{i.t+1}						
$I_{i,t}$	0.000	0.000	0.000	0.001**	0.000	0.000	
Pos _{i,t}	0.012	0.028**	0.021	0.038*	0.010	0.024**	
Neg _{i,t}	0.009	-0.034^{***}	-0.001	-0.046**	-0.016	-0.044***	

*** p value < 0.01, ** 0.01 \leq p value < 0.05, * 0.05 \leq p value < 0.1

Distillation of News Flow into Analysis of Stock Reactions -

4-8

Sector Analysis

- Compare financials sector with health care sector
- Attention ratio high for financials (0.413) and low for health care (0.287)
- In line with attention analysis:
 - ► Financials: significant parameters
 - Health care: not significant

Simulation

Entire Panel Results

Figure 4: Volatility Simulation for Entire Panel: Mean curve, 95% UniformConfidence BandsImage: Confidence SetupConfidence BandsImage: Confidence Setup

Distillation of News Flow into Analysis of Stock Reactions -

5-1

Entire Panel Results ctd

Asymmetry effect

- LM and MPQA: curve for Neg_{i,t} significantly differs from curve for Pos_{i,t}
 - Range BL: 0.023 0.056
 - Range LM: 0.017 0.039
 - Range MPQA: 0.023 0.05

Simulation

Low Attention Results

Figure 5: Volatility Simulation for Low Attention Group: Mean curve, 95% Uniform Confidence Bands Q TXTSimulationAttention Setup

High Attention Results

Figure 6: Volatility Simulation for High Attention Group: Mean curve, 95% Uniform Confidence Bands Q TXTSimulationAttention Distillation of News Flow into Analysis of Stock Reactions

Attentions Results ctd

■ Low: no asymmetry effect

- High: LM and MPQA: curve for Neg_{i,t} significantly differs from curve for Pos_{i,t}
 - Range BL: 0.022 0.056
 - Range LM: 0.019 0.024
 - Range MPQA: 0.020 0.053

Conclusion

- Sentiment measures: incremental information about future stock reactions
- Asymmetric impact of positive and negative sentiment
- Degree of incremental information and asymmetry is sector and attention specific
- Choice of lexicon matters

Distillation of News Flow into Analysis of Stock Reactions

Junni Zhang Cathy Chen Wolfgang Karl Härdle Elisabeth Bommes

Guanghua School of Management Peking University Chung Hua University Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

Frequency Table: GICS Sectors

GICS Sector	No. Stocks
Consumer Discretionary	21
Consumer Staples	9
Energy	6
Financials	12
Health Care	15
Industrials	10
Information Technology	21
Materials	4
Telecommunication Services	2

Number of unique Words

- ☑ Some words only in one lexicon: "unique words"
- Number of unique words that appear at least three time in the articles:

Lexicon	Positive	Negative
BL	470	918
LM	267	916
MPQA	512	181

Most frequent Words unique to one Lexicon

	21	IM		ΜΡΟΑ		
L					Q.A.	
Positive	Negative	Positive	Negative	Positive	Negative	
Available	Debt	Opportunities	Declined	Just	Low	
(5,836)	(12,540)	(4,720)	(9,809)	(17,769)	(12,739)	
Led	Fell	Strength	Dropped	Help	Division	
(5,774)	(9,274)	(4,393)	(4,894)	(17,334)	(5,594)	
Lead	Fool	Profitability	Late	Profit	Least	
(4,711)	(5,473)	(4,174)	(4,565)	(15,253)	(5,568)	
Recovery	lssues	Highest	Claims	Even	Stake	
(4,357)	(3,945)	(3,409)	(3,785)	(13,780)	(4,445)	
Work	Risks	Greater	Closing	Deal	Slightly	
(3,808)	(2,850)	(3,321)	(3,604)	(13,032)	(3,628)	

Words only appear in one of the lexica and frequencies are given in parentheses.

Number of shared Words

- ☑ Some words are only shared by two lexica
- Number of shared words that appear at least three time in the articles:

Lexicon	Positive	Negative
BL and LM	131	322
BL and MPQA	971	1,164
LM and MPQA	32	30

Most frequent shared Words

BL and	LM	BL and	MPQA	LM and MPQA		
Positive	Negative	Positive Negative		Positive	Negative	
Gains	Losses	Free	Gross	Despite	Against	
(7,604)	(5,938)	(133,395)	(8,228)	(7,413)	(8,877)	
Gained	Missed	Well	Risk	Able	Cut	
(7,493)	(3,165)	(3,0270)	(7,471)	(5,246)	(3,401)	
Improved	Declining	Like	Limited	Opportunity	Challenge	
(7,407)	(3,053)	(24,617)	(5,884)	(4,398)	(1,042)	
Improve	Failed	Тор	Motley	Profitable	Serious	
(5,726)	(2,421)	(14,899)	(5,165)	(3,580)	(1,022)	
Restructuring	Concerned	Guidance	Crude	Efficiency	Contrary	
(3,210)	(1,991)	(11,715)	(5,109)	(2,615)	(401)	

Words are shared by only two lexica and frequencies are given in parentheses.

Comparison of Lexical Projections

Variable	$\widehat{\mu}$	$\widehat{\sigma}$	Max	Q1	Q2	Q3	Polarity
<i>Pos</i> (BL)	0.033	0.012	0.134	0.025	0.032	0.040	88.04%
<i>Neg</i> (BL)	0.015	0.010	0.091	0.008	0.014	0.020	10.51%
<i>Pos</i> (LM)	0.014	0.007	0.074	0.009	0.013	0.018	55.70%
Neg (LM)	0.012	0.009	0.085	0.006	0.011	0.016	40.17%
<i>Pos</i> (MPQA)	0.038	0.012	0.134	0.031	0.038	0.045	96.26%
Neg (MPQA)	0.013	800.0	0.133	0.007	0.012	0.017	2.87%

Sample mean, sample standard deviation, maximum value, 1st, 2nd and 3rd quartiles, and polarity as relative dominance between positive and negative sentiment.

Classification Evaluation

Manua	E	BL Label			oel LM Label			MPQA Labe		
Label	Pos	Neg	Neu	Pos	Neg	Neu	Pos	Neg	Neu	Total
Pos	56	4	1	41	12	8	61	0	0	61
Neg	9	2	1	0	9	3	9	2	1	12
Neu	22	5	0	10	15	2	26	0	1	27
Total	87	11	2	51	36	13	96	2	2	100

Tagging Example - BL

... McDonald's has an obesity **problem** that continues to get **worse**. And that's nothing to do with the food itself, but rather the huge menus that can now double as medieval fortification. For perspective, the chain's menu has grown 70% since 2007. And while more offerings might seem like a **good** thing, large menus result in **slower** service and more flare-ups between franchisees and the corporation. **Bloated** menus raise inventory costs for smaller franchisees and **lead** to lower profit margins. The McDonald's corporate franchise fee is based upon sales instead of profits, making it a smaller **concern** for the

company overall. ...

3 positive words and 5 negative words

Article source

Tagging Example - LM

... McDonald's has an obesity **problem** that continues to get **worse**. And that's nothing to do with the food itself, but rather the huge menus that can now double as medieval fortification. For perspective, the chain's menu has grown 70% since 2007. And while more offerings might seem like a **good** thing, large menus result in **slower** service and more flare-ups between franchisees and the corporation. Bloated menus raise inventory costs for smaller franchisees and lead to lower profit margins. The McDonald's corporate franchise fee is based upon sales instead of profits, making it a smaller **concern** for the company overall. ...

1 positive word and 4 negative words

... McDonald's has an obesity **problem** that continues to get **worse**. And that's nothing to do with the food itself, but rather the huge menus that can now double as medieval fortification. For perspective, the chain's menu has grown 70% since 2007. And while more offerings might seem like a **good** thing, large menus result in **slower** service and more flare-ups between franchisees and the corporation. **Bloated** menus raise inventory costs for smaller franchisees and lead to lower **profit** margins. The McDonald's corporate franchise fee is based upon sales instead of **profits**, making it a smaller **concern** for the

company overall. ...

5 positive words and 5 negative words

Distillation of News Flow into Analysis of Stock Reactions -

7 - 10

Correlation - Positive Sentiment

Figure 7: Monthly correlation between positive sentiment: $\mbox{ BL and LM}$, BL and MPQA, LM and MPQA

Correlation - Negative Sentiment

Figure 8: Monthly correlation between negative sentiment: BL and LM, BL and MPQA, LM and MPQA (Back)

Garman and Klass range-based Measure of Volatility

$$\sigma_{i,t}^{2} = 0.511(u-d)^{2} - 0.019 \{c(u+d) - 2ud\} - 0.383c^{2}$$
(7)
with $u = \log(P_{i,t}^{H}) - \log(P_{i,t}^{C}), \quad d = \log(P_{i,t}^{L}) - \log(P_{i,t}^{O}),$
 $c = \log(P_{i,t}^{C}) - \log(P_{i,t}^{O})$

for company *i* on day *t* with $P_{i,t}^H$, $P_{i,t}^L$, $P_{i,t}^O$, $P_{i,t}^C$ as highest, lowest, opening and closing stock prices, respectively.

Distillation of News Flow into Analysis of Stock Reactions -

Back

Simulation Setup

- Evaluate the asymmetric reaction of volatility to sentiment
- \Box $I_{i,t} \sim B(1,p_i)$
- Model dependence between Pos, Neg and different lexica with firm specific copula Copula definition
- Estimate one copula for $R_{M,t}$ and all firms $R_{i,t}$

Two-Step Approach

- 1. Marginals: ecdf
- 2. Copulae: Gaussian
- Simulation: Conditional inversion method
- *R_{M,t}*, *R_{i,t}*: use standardized residuals after fitting MA(1)-GARCH(1,1) process

Back to Entire Panel

Back to Attention Panel

Multivariate Copula Definition

Definition

The **copula** is a multivariate distribution with all univariate margins being U(0,1).

Theorem (Sklar, 1959)

Let X_1, \ldots, X_k be random variables with marginal distribution functions F_1, \ldots, F_k and joint distribution function F. Then there exists a k-dimensional copula $C : [0,1]^k \to [0,1]$ such that $\forall x_1, \ldots, x_k \in \mathbb{R} = [-\infty, \infty]$

$$F(x_1,...,x_k) = C\{F_1(x_1),...,F_k(x_k)\}$$
(8)

Back to Simulation Setup

Conditional Inversion Method

Frees and Valdez (1998):

 $C = C(u_1, \ldots, u_k), C_i = C(u_1, \ldots, u_i, 1, \ldots, 1)$ and $C_k = C(u_1, \ldots, u_k).$ Conditional distribution of U_i :

$$C_{i}(u_{i}|u_{1},...,u_{i-1}) = P\{U_{i} \leq u_{i}|U_{1} = u_{1}...U_{i-1} = u_{i-1}\}$$

= $\frac{\partial^{i-1}C_{i}(u_{1},...,u_{i})}{\partial u_{1}...\partial u_{i-1}}/\frac{\partial^{i-1}C_{i-1}(u_{1},...,u_{i-1})}{\partial u_{1}...\partial u_{i-1}}$

Conditional Inversion Method

Frees and Valdez (1998):

 $C = C(u_1, \ldots, u_k), C_i = C(u_1, \ldots, u_i, 1, \ldots, 1)$ and $C_k = C(u_1, \ldots, u_k).$ Conditional distribution of U_i :

$$C_{i}(u_{i}|u_{1},...,u_{i-1}) = P\{U_{i} \leq u_{i}|U_{1} = u_{1}...U_{i-1} = u_{i-1}\}$$

= $\frac{\partial^{i-1}C_{i}(u_{1},...,u_{i})}{\partial u_{1}...\partial u_{i-1}}/\frac{\partial^{i-1}C_{i-1}(u_{1},...,u_{i-1})}{\partial u_{1}...\partial u_{i-1}}$

• Generate i.r.v.
$$v_1, ..., v_k \sim U(0, 1)$$

• Set $u_1 = v_1$
• $u_i = C_k^{-1}(v_i | u_1, ..., u_{i-1}) \ \forall i = 2, ..., k$

Back to Simulation Setup

Bibliography I

Chen, Z., Daigler, R. T., and Parhizgari, A. M. *Persistence of volatility in futures markets* J. Futures Markets, 2006

Frees, E. W and Valdez, E. A. Understanding relationships using copulas N, Am. Actuar. J., 1998

Garman, M. and Klass, M. On the Estimation of Security Price Volatilities from Historical Data J. Bus., 1980

Bibliography II

Girard, E. and Biswas, R. *Trading volume and market volatility* Financ. Rev., 2007

Hu, M. and Liu, B. *Mining and Summarizing Customer Reviews* 10th ACM SIGKDD, 2004

Loughran, T. and McDonald, B. *When is a liability not a liability?* J. Financ., 2011

Bibliography III Shu, J. and Zhang, J. E. Testing range estimators of historical volatility J. Futures Markets, 2006 Wilson, T. and Wiebe, J. and Hoffmann, P. Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis HLT-EMNLP. 2005

