Textual sentiment and sector-specific reaction

Wolfgang Karl Härdle Cathy Chen Elisabeth Bommes

Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

News moves Markets

- ☑ Zhang et al. (2016): numerisized sentiment provides incremental information about future stock reactions
- ☑ Sectors react differently to sentiment
- □ Unsupervised vs. supervised approach in sentiment projection

But there is alot of news...

Dimensions of News

Source of news

- Official channel: government, federal reserve bank/central bank, financial institutions
- Internet: blog, social media, message board
- Content of news
 - Signal vs. noise

Dimensions of News ctd

⊡ Type of news

- Scheduled vs. non-scheduled
- Expected vs. unexpected
- Specific-event vs. continuous news flows

Challenge

- \boxdot Sector specific interpretation of news
- \boxdot Evaluate news impact from different news dimensions

Sentiment Lexica

- Opinion Lexicon (BL) Hu and Liu (2004)
- Financial Sentiment Dictionary (LM) Loughran and McDonald (2011)
- Multi-Perspective Question Answering Subjectivity Lexicon (MPQA) Wilson et al. (2005)

Lexicon Correlation

Unsupervised Projection

Figure 1: Example of Text Numerisization

- □ Many texts are numerisized via lexical projection
- □ Goal: Accurate values for positive and negative sentiment

Examples

Supervised Projection

□ Training data: Financial Phrase Bank by Malo et al. (2014)

- Sentence-level annotation of financial news
- Manual annotation of 5,000 sentences by 16 annotators

Research Questions

- \boxdot Is the sentiment effect sector specific?
- \boxdot Is supervised learning an effective approach?

Outline

- 1. Motivation \checkmark
- 2. Data Collection
- 3. Sentiment Projection
- 4. Panel Regression
- 5. Outlook

How to gather Sentiment Variables?

Nasdaq Articles

- ⊡ Terms of Service permit web scraping
- Currently > 440k articles between October 2009 and January 2016
- Data available at RDC

Sector-specific articles

Sector	Abbr.	# Articles	# Comp.
Consumer Discretionary	CD	44,454	84
Consumer Staples	CS	19,435	40
Energy	EN	18,069	43
Financials	FI	37,614	85
Health Care	HC	23,838	55
Industrials	IN	24,124	64
Information Technology	IT	44,967	65
Materials	MA	10,947	30
Telecommunication Services	ΤE	5,963	5
Utilities	UT	6,078	30

Table 1: Number of Articles per Sector between 10/2009 and 01/2016

Top Word Frequencies

		Secto	r Freq.
Word	Freq. (in k)	Top 5	Top 10
free	649	10	10
well	238	9	10
gold	235	1	1
best	207	9	10
fool	200	5	8
strong	196	5	10
like	172	5	10
top	167	3	10
better	162	0	9
motley	152	2	7

Table 2: Most frequent words of either BL or LM

Article Timeline

Lexicon-based Sentiment

Consider document *i*, positive sentiment Pos_i , positive lexicon entries W_j (j = 1, ..., J) and count frequency of those entries w_j :

$$Pos_i = n_i^{-1} \sum_{j=1}^J \mathsf{I}\left(W_j \in L\right) w_j \tag{1}$$

with n_i : number of words in document *i* (e.g. sentence)

Equivalent calculation of negative sentiment Negi

Sentence-level Polarity

$$Pol_{i} = \begin{cases} 1, & \text{if } Pos_{i} > Neg_{i} \\ 0, & \text{if } Pos_{i} = Neg_{i} \\ -1, & \text{if } Pos_{i} < Neg_{i} \end{cases}$$

for sentence *i*.

☑ Measure sentiment on sentence-level

(2)

Regularized Linear Models (RLM)

- □ Training data $(X_1, y_1) \dots (X_n, y_n)$ with $X_i \in \mathbb{R}^p$ and $y_i \in \{-1, 1\}$
- \Box Linear scoring function $s(X) = \beta^{\top} X$ with $\beta \in \mathbb{R}^p$

Example

Regularized training error:

with hyperparameter $\lambda \geq 0$.

RLM Estimation

- Optimize via Stochastic Gradient Descent More
- 5-fold cross validation More
- Oversampling More
- \Box Choice of: $L(\cdot), R(\cdot), \lambda, X$ (*n*-gram range, features) ...
- ⊡ Three categories: one vs. all sub-models

Bullishness

$$B = \log[\{1 + n^{-1} \sum_{j=1}^{n} \mathsf{I}(Pol_j = 1)\} / \{1 + n^{-1} \sum_{j=1}^{n} \mathsf{I}(Pol_j = -1)\}]$$
(4)

by Antweiler and Frank (2004) with j = 1, ..., n sentences in document.

B_{i,t} accounts for bullishness of company *i* on day *t* ∴ Consider |*B_{i,t}*| and *BN_{i,t}* = I (*B_{i,t}* < 0)*B_{i,t}*

Model Accuracy - Polarity

Supervised Learning

- \boxdot Chosen model: Hinge loss, L1 norm, $\lambda = 0.0001, \ldots$
- ⊡ Mean accuracy (oversampling): 0.80
- ⊡ Mean accuracy (normal sample): 0.82

Lexicon-based

- ☑ Mean accuracy BL: 0.58
- ☑ Mean accuracy LM: 0.64

Evaluation BL

Pred True	-1	0	1	Total
-1	214	268	32	514
0	203	1,786	546	2,535
1	89	627	452	1,168
Total	506	2,681	1,030	4,217

Table 3: Confusion Matrix - BL Lexicon Q TXTfpblexical

Evaluation LM

Pred True	-1	0	1	Total
-1	213	289	12	514
0	200	2,187	148	2,535
1	111	772	285	1,168
Total	524	3,248	445	4,217

Table 4: Confusion Matrix - LM Lexicon Q TXTfpblexical

Evaluation SM

Pred True	-1	0	1	Total
-1	389	67	58	514
0	96	2,134	305	2,535
1	105	198	916	1,168
Total	539	2,399	1,279	4,217

Table 5: Confusion Matrix - Supervised Learning, estimated with Oversampling and evaluated on total SampleImage: Confusion Control Co

Confusion Matrix with Oversampling

Sectors as Panels

$$\log \sigma_{i,t} = \alpha + \beta_1 |B_{i,t}| + \beta_2 B N_{i,t} + \beta_3^\top X_{i,t} + \gamma_i + \varepsilon_{i,t}$$
(5)

$$R_{i,t} = \alpha + \beta_1 B_{i,t} + \beta_2^\top X_{i,t} + \gamma_i + \varepsilon_{i,t}$$
(6)

for stock i on day t with separate estimation of (5) and (6).

 $X_{i,t}$ - control variables More Information γ_i - company specific fixed effect satisfying $\sum_i \gamma_i = 0$

Stock Reaction Indicators

Range-based measure of volatility by Garman and Klass (1980)

 \odot Notation: $\sigma_{i,t}$

Computation

☑ Based on open-high-low-close prices

□ Equivalent results to realized volatility

Returns

$$R_{i,t} = \log(P_{i,t}^{\mathcal{C}}) - \log(P_{i,t-1}^{\mathcal{C}})$$

with $P_{i,t}^{C}$ as closing price of stock i on day t

(7)

Regression - GK Log Volatility

Regression - Returns

Table 7: Significance codes = 0.01 = 0.05 = 0.1

Abbreviations

What's next?

⊡ Closer look at sectors

 \boxdot Network approach for sentiment

Textual sentiment and sector-specific reaction

Wolfgang Karl Härdle Cathy Chen Elisabeth Bommes

Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

Bibliography

```
Antweiler, W. and Frank, M. Z.
Is All That Talk Just Noise?
J. Fin., 2004
```

Garman, M. and Klass, M. On the Estimation of Security Price Volatilities from Historical Data J. Bus., 1980

Härdle, W. K. and Lee, Y. J. and Schäfer D. and Yeh Y. R. Variable Selection and Oversampling in the Use of Smooth Support Vector Machines for Predicting the Default Risk of Companies J. Forecast., 2009

Loughran, T. and McDonald, B. When is a liability not a liability? J. Financ.. 2011

Hu, M. and Liu, B.

Malo, Pekka and Sinha, Ankur and Korhonen, Pekka and Wallenius, Jyrki and Takala, Pyry Good debt or bad debt Journal of the Association for Information Science and Technology, 2014

Wilson, T. and Wiebe, J. and Hoffmann, P. Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis HLT-EMNLP. 2005

Zhang, J., Chen C. Y., Härdle, W. K. and Bommes, E. *Distillation of News into Analysis of Stock Reactions* JBES, 2016 (Forthcoming)

Appendix

Tagging Example - BL

... McDonald's has an obesity **problem** that continues to get **worse**. And that's nothing to do with the food itself, but rather the huge menus that can now double as medieval fortification. For perspective, the chain's menu has grown 70% since 2007. And while more offerings might seem **like** a **good** thing, large menus result in **slower** service and more flare-ups between franchisees and the corporation. **Bloated** menus raise inventory costs for smaller franchisees and **lead** to lower profit margins. The McDonald's corporate franchise fee is based upon sales instead of profits, making it a smaller **concern** for the company overall. ...

3 positive words and 5 negative words

Q TXTMcDbm Article source

Tagging Example - LM

... McDonald's has an obesity **problem** that continues to get **worse**. And that's nothing to do with the food itself, but rather the huge menus that can now double as medieval fortification. For perspective, the chain's menu has grown 70% since 2007. And while more offerings might seem like a **good** thing, large menus result in **slower** service and more flare-ups between franchisees and the corporation. Bloated menus raise inventory costs for smaller franchisees and lead to lower profit margins. The McDonald's corporate franchise fee is based upon sales instead of profits, making it a smaller **concern** for the

company overall. ...

1 positive word and 4 negative words

Back

Q TXTMcDlm

Correlation - Positive Sentiment

Figure 3: Monthly correlation between positive sentiment: BL and LM , BL and MPQA, LM and MPQA. Source: Zhang et al. (2016)

Sector-specific Sentiment Reaction

Correlation - Negative Sentiment

Figure 4: Monthly correlation between negative sentiment: BL and LM, BL and MPQA, LM and MPQA. Source: Zhang et al. (2016) Back

Web Scraping

- ☑ Databases to buy?
- \boxdot Automatically extract information from web pages
- ⊡ Transform unstructured data (HTML) to structured data
- □ Use HTML tree structure to parse web page
- Legal issues
 - Websites protected by copyright law
 - Prohibition of web scraping possible
 - Comply to Terms of Service (TOS)

Back

Natural Language Processing (NLP)

☑ Text is unstructured data with implicit structure

- ▶ Text, sentences, words, characters
- Nouns, verbs, adjectives, ..
- Grammar
- ⊡ Transform implicit text structure into explicit structure
- ☑ Reduce text variation for further analysis
- ☑ Python Natural Language Toolkit (NLTK)
- 🖸 🖸 TXTnlp

Tokenization

String

"McDonald's has its work cut out for it. Not only are sales falling in the U.S., but the company is now experiencing problems abroad."

Sentences

"McDonald's has its work cut out for it.", "Not only are sales falling in the U.S., but the company is now experiencing problems abroad."

Words

"McDonald", "'s", "has", "its", "work", "cut", "out" ...

Negation Handling

$$\boxdot$$
 "not good" \neq "good"

 \boxdot Reverse polarity of word if negation word is nearby

```
\odot Negation words
```

```
"n't", "not", "never", "no", "neither", "nor", "none"
```


Part of Speech Tagging (POS)

Grammatical tagging of words

- dogs noun, plural (NNS)
- saw verb, past tense (VBD) or noun, singular (NN)
- ☑ Penn Treebank POS tags
- Stochastic model or rule-based

Lemmatization

☑ Determine canonical form of word

- dogs dog
- saw (verb) see and saw (noun) saw
- \boxdot Reduces dimension of text
- Takes POS into account
 - Porter stemmer: saw (verb and noun) saw

Back

Loss Functions for Classification

⊡ Logistic: Logit

 $L\{y, s(X)\} = \log(2)^{-1} \log[1 + \exp\{-s(X)y\}]$ (8)

□ Hinge: Support Vector Machines $L\{y, s(X)\} = \max\{0, 1 - s(X)y\}$ (9)

Back

Regularization Term

🖸 L2 norm

$$R(\beta) = 2^{-1} \sum_{i=1}^{p} \beta_i^2$$
 (10)

$$R(\beta) = \sum_{i=1}^{p} |\beta_i| \tag{11}$$

Back

Sector-specific Sentiment Reaction ——

RLM Example

Sentence 1: "The profit of Apple increased." Sentence 2: "The profit of the company decreased."

$$y = (1, -1) \quad (12) \qquad X = \begin{array}{c} x_1 & x_2 \\ the \\ profit \\ of \\ increased \\ company \\ decreased \end{array} \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right)$$
(13)

Back

k-fold Cross Validation (CV)

- \odot Partition data into k complementary subsets
- \boxdot No loss of information as in conventional validation
- ⊡ Stratified CV: equally distributed response variable in each fold

Figure 5: 3-fold Cross Validation

Oversampling

- Härdle (2009) Trade-off between Type I and Type 2 error in classification Error types
- Balance size of neutral sentences and ones with polarity in sample
- Duplicate sentences within folds of stratified cross validation until the sample is balanced

Back

Classification Error Rates

- \Box Type I error rate = FN/(FN + TP)
- \Box Type II error rate = FP/(FP + TN)

with TP as true positive, TN as true negative, FP as false positive and FN as false negative.

Back

Stochastic Gradient Descent (SGD)

 \boxdot Approximately minimize loss function

$$L(\theta) = \sum_{i=1}^{n} L_i(\theta)$$
(14)

⊡ Iteratively update

$$\theta_i = \theta_{i-1} - \eta \, \frac{\partial L_i(\theta)}{\partial \theta} \tag{15}$$

SGD Algorithm

- 1. Choose learning rate η
- 2. Shuffle data
- 3. For i = 1, ..., n, do:

$$\theta_i = \theta_{i-1} - \eta \; \frac{\partial L_i(\theta)}{\partial \theta}$$

Repeat 2 and 3 until approximate minimum obtained.

SGD Example

 $X \sim \mathsf{N}(\mu, \sigma)$ and $x_1, ..., x_n$ as randomly drawn sample

$$\min_{\theta} n^{-1} \sum_{i=1}^{n} (\theta - x_i)^2$$

Update step

$$\theta_i = \theta_{i-1} - 2\eta(\theta_{i-1} - x_i)$$

Optimal gain

Set $2\eta = 1/i$ and obtain $\theta_n = \bar{x}$ with \bar{x} as sample mean.

Sector-specific Sentiment Reaction ------

SGD Example ctd

Back

Garman and Klass range-based Measure of Volatility

 $\sigma_{i,t}^{2} = 0.511(u-d)^{2} - 0.019 \{c(u+d) - 2ud\} - 0.383c^{2}$ (16) with $u = \log(P_{i,t}^{H}) - \log(P_{i,t}^{O}), \quad d = \log(P_{i,t}^{L}) - \log(P_{i,t}^{O}),$ $c = \log(P_{i,t}^{C}) - \log(P_{i,t}^{O})$

for subindex *i* on day *t* with $P_{i,t}^H$, $P_{i,t}^L$, $P_{i,t}^O$, $P_{i,t}^C$ as highest, lowest, opening and closing stock prices, respectively.

Back

Evaluation Supervised Learning

Pred True	-1	0	1	Total
-1	1,983	298	254	2,535
0	96	2,134	305	2,535
1	105	469	1,961	2,535
Total	2,184	2,901	2,520	7,605

Table 8: Confusion Matrix - Supervised Learning with Oversampling

Back

Abbreviations

Sector	Abbreviation
Consumer Discretionary	CD
Consumer Staples	CS
Energy	EN
Financials	FI
Health Care	HC
Industrials	IN
Information Technology	IT
Materials	MA
Telecommunication	TE
Utilities	UT

Table 9: Sector Abbreviations

Volatility Regression

Returns Regression

Control Variables

- $R_{M,t}$ S&P 500 index return
- $\log VIX_t$ CBOE VIX More Information
- $\log \sigma_{i,t}$ Range-based volatility
- R_{i,t} Return

Back

VIX

- Implied volatility
- ☑ Measures market expectation of S&P 500
- □ Calculated by Chicago Board Options Exchange (CBOE)
- ☑ Measures 30-day expected volatility
- Calculated with put and call options with more than 23 days and less than 37 days to expiration

Back

