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Motivation

� Randomness is subject to certain law (distribution)

� Descriptive measures:
I Moments:

I Location measures: mean, median
I Dispersion measures: variance, range
I Other moments: skewness, kurtosis, etc.

I Quantiles: quartiles, deciles, percentiles...

� Except in some special cases, a distribution can not be
completely characterized by its moments or by a few quantiles

� Mean and median: "average" and "center" of the distribution,
but may provide little info about the tails
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Tail Event Analysis

� Tail analysis is useful in many �elds:
I Banking: Value at Risk
I Meteorology/Agriculture: temperature, rainfall; climate change
I Energy Economy: electricity Demand
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Figure 1: Chinese Meteorology: Shijiazhuang (black), Chengde (red)

and Huailai (green) temperature data in 2009.
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Regression Analysis

Consider regression yt = x>t β + et , where y ∈ R and x ∈ Rp,

� Least squares (LS): Legendre (1805)

I β̂ = argminβ
∑T

t=1(yt − x>t β)2

I x>t β̂ estimates the conditional mean of y given x

� Least squares (LAD): Boscovich (1755)

I β̌ = argminβ
∑T

t=1 |yt − x>t β|
I x>t β̌ estimates the conditional median of y given x

� Both measures only the central tendency of the conditional
distribution
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Quantiles

� The τ th (0 < τ < 1) quantile of FY is

qY (τ)
def
= F−1Y (τ) = inf{y : FY (y) ≥ τ}.

� qY (τ) is an order statistics

� De�ne an asymmetric (linear) loss function:

ρτ (u)
def
=
∣∣τ − 1(u ≤ 0)||u|

� Given that Y is a random variable,

E ρτ (Y − θ) = τ

∫
y>θ
|y − θ|dFY (y) + (1− τ)

∫
y<θ
|y − θ|dFY (y).
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Quantiles

qY (τ) can be obtained via minimizing the expected asymmetric loss
function. By �rst order condition:

0
!

=
∂

∂θ
E ρτ (θ)

⇒ 0 = −τ
∫
y>θ

dFY (y) + (1− τ)

∫
y<θ

dFY (y)

= −τ(1− FY (θ)) + (1− τ)FY (θ)

= −τ + FY (θ),

so θ = F−1Y (τ) = qY (τ) is the minimizer of E ρτ (θ), given the true
distribution of Y is known.
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Sample Quantiles

� FY is in general unknown, the sample counterpart of the
expected asy. linear loss function is

1

T

T∑
t=1

ρτ (yt − θ) =
1

T

τ ∑
t:yt≥θ

|yt − θ|+ (1− τ)
∑
t:yt<θ

|yt − θ|

 ,
(1)

ρτ (yt − θ) is also known as the check function.
� Sample quantile q̂(τ) can be found via an optimization scheme
� FT (q̂(τ)) = τ , where FT is the empirical dist. function and

q̂(τ) is the minimizer of (1)
� Specifying a function f (x t) for the distribution quantile, we

can use the optimization scheme to estimate the function
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Figure 2: Plots of ρτ (u) =
∣∣τ − 1(u ≤ 0)

∣∣|u|.
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Quantile Regression

De�nition (Koenker and Basset (1978))

Given the model yt = x>t β + εt , the τ th QR estimator β̂(τ)
minimizes

VT (β; τ) =
1

T

T∑
t=1

ρτ (yt − x>t β),

where ρτ (u) =
∣∣τ − 1(u ≤ 0)

∣∣|u|.
� For τ = 0.5, VT (β; τ) is symmetric, and β̂(0.5) is the LAD

estimator
� x>t β(τ) gives the estimate for τ th conditional quantile

function qY |X (τ). β̂i (τ) can be viewed as the estimated
marginal e�ect of the ith regressor on qY |X (τ)
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Digression: Treatment E�ect

� Measuring the impact of a treatment (program, policy,
intervention) in the distribution (e.g. income, age)

� Let Y1(Y0) be the treatment(control) group, D is a dummy
varible, the The e�ect can be measured through

I Mean: the average treatment e�ect ∆m = E[Y1 − Y0]
I Quantile: ∆τ = F̂−1

1,n (τ)− F̂−1
0,n (τ), where F1,n,F0,n are

empirical distribution function of treatment and control group,
for 0 < τ < 1

� If the experiment is randomized:
E[Y1 − Y0] = E[Y1|D = 1]− E[Y0|D = 0]

� To measure ∆m, one can run a dummy-variable regression

Yi = α + Diγ + X>i β + ei , i = 1, ..., n,

the LS estimate of γ is the estimated average treatment e�ect
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Quantile Treatment E�ect (QTE)

Doksum (1974): if we de�ne ∆(x) as the "horizontal distance"
between F0 and F1 at x so that

F1(x) = F0
(
x + ∆(x)

)
,

then ∆(x) can be expressed as

∆(x) = F−11

(
F0(x)

)
− x ,

changing variable with τ = F0(x), one gets the quantile treatment
e�ect:

∆τ = ∆(F−10 (τ)) = F−11 (τ)− F−10 (τ).
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Quantile Treatment E�ect (QTE)

� One can run a quantile regression on (Di ,X i ) where Di = 0 if
i is in control group and Di = 1 otherwise,

Yi = α + Diγ + X>i β + ei , i = 1, ..., n,

the γ̂(τ) is the estimated τ -th QTE (location shift)

�
Yi = α + X>i (β + Diγ) + ei , i = 1, ..., n,

the γ̂(τ) is the estimated τ -th QTE (scaling)

� Quantile regression gives a complete look at the change in the
distribution from treatment
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Figure 3: Horizontal distance between the treatment and control distribu-

tion functions.
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Minimizing VT

� Two main di�culties:
I The QR estimator β̂(τ) does not have a closed form
I VT is not everywhere di�erentiable, so that derivative-based

algorithm (Newton method) does not work
� Two ways to solve:

I approximate ρτ (u) with smooth function, and apply the
Newton method

I One can also apply linear programming

� Linear programming: y = Xβ + e can be expressed as

y = X (β+ − β−) + (e+ − e−)
def
= Az ,

where

A =
[
X ,−X , IT ,−IT

]
,

z =
[
(β+)>, (β−)>, (e+)>, (e−)>

]>
Quantile Regression: Primary Techniques
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Minimizing VT

� Let c =
[
0>, 0>, τ1>, (1− τ)1>

]>
. Minimizing VT is

equivalent to the following constrained linear program (cLP):

min
z∈R2p

+ ×R2T
+

1

T
c>z , s.t. y = Az , z ≥ 0.

� This cLP solves on the extreme points(vertices) of the
polyhedral convex set de�ned by the constraint y = Az

(Koenker (2005) Sec. 6.2)
� De�ne basic solution:

β(H) = X (H)−1y(H)

where H ⊂ {1, ...,T} with |H| = dim(β), and y(H)/X (H) are
the subvector/submatrix of y/X with the corresponding
elements/rows identi�ed by index set H
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Minimizing VT

� z(H) =
[
(β(H)+)>, (β(H)−)>, (e(H)+)>, (e(H)−)>

]>
are

the vertices of the constrain set
� VT (β; τ) is a convex function in β. The minimizer β̂(H) of

VT (β; τ) makes the directional derivative of VT in direction w
satisfy

∇VT (β)
def
= − 1

T

T∑
t=1

ψ∗τ (yt − x>t β̂(H),−x>t w)x>t w ≥ 0,

(2)

for all w ∈ Rp with ‖w‖ = 1, and

ψ∗τ (u, v) =

{
τ − 1(u < 0), if u 6= 0
τ − 1(v < 0), if u = 0.
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Minimizing VT

Under the assumption that X is orthonormal, and reparametrize
w = X−1v , where v : elementary vectors. Given that yt − x>t β(H) 6= 0
for any t /∈ H. We have the following interesting result:

Theorem (Koenker (2005), Theorem 2.2.)
Let P, N, and Z denote the proportion of positive, negative, and zero
elements of the residual vector y − X β̂(τ). If X contains an intercept,
that is, if there exists α ∈ Rp such that Xα = 1n, then for any β̂(τ)
minimizing VT (β), we have

N

n
≤ τ ≤ N + Z

n
,

and
P

n
≤ 1− τ ≤ P + Z

n
.
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Remarks

� MLE interpretation: β(τ) is the QMLE based on an
asymmetric Laplace density:

fτ (u) = τ(1− τ) exp
[
− ρτ (u)

]
.

� β(τ) is more robust to outliers

� The estimated hyperplane with normal β̂(τ) must interpolate
dim(β̂) observations in the sample

� QR utilizes all sample data (with di�erent weights)
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DGP and its quantile function

Let εt be i.i.d. with common distribution function Fε.
� DGP1 (location shift): yt = x>t βo + εt = β0 + x̃>t β1 + εt

I qY |X (τ) = x>t βo + F−1ε (τ) = β0 + F−1ε (τ) + x̃>t β1
I Quantile functions di�er only by the "intercept"

� DGP2 (scale): yt = x>t βo + (x>t γo)εt
I qY |X (τ) = x>t βo + (x>t γo)F−1ε (τ) = x>t

[
βo + γoF

−1
ε (τ)

]
I Quantile functions di�er not only by the "intercept" but also

the "slope" term
I The model can be expressed as

yt = x>t
[
βo + γoF

−1
ε (τ)

]︸ ︷︷ ︸
β(τ)

+ε̃t ,

where qε̃t |X = 0. The quantile estimator β̂(τ) converges to
β(τ)
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DGP and its quantile function

DGP3: yt = σtεt , σt = α0 + α1|yt−1|+ β1σt−1. (GARCH(1,1) on
standard deviation).
The quantile function is

qY |Ft−1(τ) =
[
α0 + α1|yt−1|+ β1σt−1

]
qε(τ)

= α0qε(τ)︸ ︷︷ ︸
α̃0

+α1qε(τ)︸ ︷︷ ︸
α̃1

|yt−1|+ β1qY |Ft−2(τ).

� The quantile function has a GARCH(1,1) form too

� This is one of the variation of the famous Conditional
Autoregressive Value at Risk (CAViaR) model
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Algebraic Properties: Equivalence

Let β̂(τ) be the QR estimator of the quantile regression of yt on

x t . Let y
∗
t be a translation of yt and β̂

∗
(τ) be the QR estimator of

y∗t on x t .

� Scale equivariance: For scaled y∗t = cyt :

I For c > 0, β̂
∗
(τ) = cβ̂(τ).

I For c < 0, β̂
∗
(1− τ) = cβ̂(τ).

I β̂
∗
(0.5) = cβ̂(0.5), regardless of the sign of c.

I Example: y=yearly salary, x =age. Divide y by 1000 to
balance the scale.

� Shift equivariance: For y∗t = yt + x>t γ. Then

β̂
∗
(τ) = β̂(τ) + γ.
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Algebraic Properties: Equivalence

� Equivariance to reparameterization of design: Let X ∗ = XA,
for nonsingular A, then β̂

∗
(τ) = A−1β̂(τ).

� For a nondecreasing function h,

P
{
y ≤ a

}
= P

{
h(y) ≤ h(a)

}
= τ,

so that
qh(y)|X (τ) = h

(
qy |X (τ)

)
,

note that the expectation does not have this property

� Example: if x>t β is the τ th conditional quantile of log return,
then exp(x>t β) is the τ th conditional quantile of price ratio
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Illustration: Engel's curve

� Engel's (1857) study of households' expenditure on food
versus annual income. 235 obs.

� Hypothesis: Food expenditure constitutes a declining share of
household income

Table 1: The slopes of Engel's curve.

τ 0.15 0.25 0.5 0.75 0.95 0.99

β̂(τ) 0.832 0.849 0.877 0.916 0.922 0.893
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Figure 4: Engel curves for food. Households' expenditure on food versus

annual income. 235 obs.

Quantile Regression: Primary Techniques



Asymptotic Properties 3-1

Asymptotic Properties: Heuristics

� Consider yt = q + εt , de�ne

gT (q)
def
=

1

T

T∑
t=1

(
1(yt < q)− τ

)
which is the "FOC" of minimizing T−1

∑T
t=1 ρτ (yt − q).

� Obviously gT (q) is non-decreasing in q, so that q̂(τ) > q i�
gT (q) < 0. Thus,

P
[√

T
(
q̂(τ)− q(τ)

)
> c
]

= P
[
gT
(
q(τ) + c/

√
T
)
< 0
]

(3)

Moreover,

E
[
gT

(
q(τ) +

c√
T

)]
= F

(
q(τ) +

c√
T

)
− τ ≈ f

[
q(τ)

] c√
T

Var
[
gT

(
q(τ) +

c√
T

)]
=

1

T
F (1− F ) ≈ 1

T
τ(1− τ).
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Asymptotic Properties: Heuristics

P
[√

T
{
q̂(τ)− q(τ)

}
> c
]

= P

gT
(
q(τ) + c/

√
T
)

√
τ(1− τ)/T

< 0

 (by (3))

= P

gT
(
q(τ) + c/

√
T
)

√
τ(1− τ)/T

− c

λ
< − c

λ


= P

gT
(
q(τ) + c/

√
T
)
− cf

(
q(τ)

)
/
√
T√

τ(1− τ)/T
< − c

λ


L→ 1− Φ(c/λ),

where λ2 = τ(1− τ)/f 2(q(τ)). By CLT. This implies
√
T
{
q̂(τ)− q(τ)

} L→ N(0, λ2).

Quantile Regression: Primary Techniques



Asymptotic Properties 3-3

QR as Extremal Estimator

Theorem (Newey and McFadden (1994), Theorem 2.1.)
Suppose that β̂ minimizes the objective function VT (β) in the
parameter space Θ and βo is the unique solution of
FY |X (x>t β) = τ . V0(β) = E[VT (β)]. If

1. Θ is compact

2. VT (β) converges uniformly to V0(β) in probability

3. V0(β) is continuous

4. V0(β) is uniquely minimized at βo .

Then β̂
P→ βo .

Proof.
(2) follows from LLN and (1). Via FOC of E[ρτ (yt − x>t β)], the
fourth condition follows from FY |X (x>t βo) = τ .
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Asymptotic Normality

� There is no "�rst order condition" for QR (i.e. ∂βVT (β) = 0)
� The QR estimator satis�es "asymptotic FOC":

√
TΨn(β̂(τ))

def
=

1√
T

T∑
t=1

x tψτ (yt − x>t β̂) = OP (1) .

where ψτ (u) = 1(u < 0)− τ .
� Stochastic equicontinuous condition (SEC):

√
T
[
Ψ(β̂)−Ψ(βo)− {Ψn(β̂)−Ψn(βo)}

]
= Op(1).

where Ψ(β) = E[Ψn(β̂)] .
� In particular, Ψ(βo) = 0 and Ψ(β) is di�erentiable
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Digression: some conditions guarantee SEC

Let ψ be the (sub)di�erential of the likelihood function,
qt,T (β) = ∇gt,T (β)ψ(yt − g(x t ,β)), and g is the speci�ed function,

Ψn(β) = T−1
T∑
t=1

qt,T (β),

Φn(β) = E[Ψn(β)]

µt,T (β, d) = sup
γ

{
‖qt,T (γ)− qt,T (β)‖ : ‖β − γ‖ ≤ d

}
.

Huber (1967) gives conditions required for SEC:
N1 For each t, ψt,T (β) is measurable for each β ∈ Θ and is separable

in the sense of Doob(1953)

N2 For each T , there is some βo such that Φn(βo) = 0

Quantile Regression: Primary Techniques
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Digression: some conditions guarantee SEC

N3 There are strictly positive numbers a, b, c , d0 and T0 such that
for all t and T ≥ T0,

1. ‖Φn(β)‖ ≥ a‖β − β̂‖ for ‖β − β̂‖ ≤ d0
2. E ‖µt,T (β, d)‖ ≤ bd for ‖β − βn‖+ d ≤ d0, d ≥ 0
3. E ‖µt,T (β, d)‖r ≤ cd for ‖β − βn‖+ d ≤ d0 for some r > 2

N4 There exists K < 0 such that E
[
‖qt,T (β̂)‖2

]
< K is �nite for

all t,T

For time dependent model (e.g. ARMA, ARCH), Weiss (1991)
adds one more condition:

N5 {x t , εt} is α-mixing with α(L) ≤ ∆L−λ for some
λ > 2r/(r − 2), r > 2

Quantile Regression: Primary Techniques
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Asymptotic Normality

Mean value theorem on Ψ(β) around βo gives
√
TΨ(β̂) =

√
TΨ(βo)︸ ︷︷ ︸

=0 correct dynamic speci�cation

+
√
T∇βΨ(β̃)(β̂ − βo),

for β̃ lies between βo and β̂. With β̂
P→ βo and continuity of ∇βΨ,

∇βΨ(β̃)
P→ ∇βΨ(βo)

def
= Go .

Suppose Go is nonsingular,

√
T (β̂ − βo)

P→ G−1o

√
TΨ(β̂).

Quantile Regression: Primary Techniques
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Asymptotic Normality

Note that by SEC and suppose that G−1o has �nite norm, by Slutzky

theorem Slutzky Thm.

√
T (β̂ − βo)

P→ G−1o

√
T
{

Ψn(βo)−Ψn(β̂)
}
.

Via a CLT,

√
TG−1o Ψn(βo) = G−1o

1√
T

T∑
t=1

x tψ(yt − x>t βo)
L→ N(0,G−1o ΣoG

−1
o )

where
Σo = E

[
x tx
>
t E

[
ψ(yt − x>t βo)2|x t

]]
,

and
√
TΨn(β̂) = Op(1) by "asymptotic FOC". Hence, via Slutzky

theorem, we get
√
T (β̂ − βo)

L→ N(0,G−1o ΣoG
−1
o )
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Slutzky Theorem

Theorem (Slutzky)

If Xn
d→ X and Yn

P→ c, where c is a constant, then:

1. Xn + Yn
d→ X + c

2. XnYn
d→ cX , if c 6= 0

XnYn
P→ 0, if c = 0

3. Xn/Yn
d→ X/c, if c 6= 0

Asymp. Normality

Quantile Regression: Primary Techniques
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Asymptotic Normality

The form of Go and Σo can be explicitly computed under the i.i.d.
error εt :
� Under the interchangeability of di�erentiation and integration,

Go = ∇βΨ(βo) = ∇β E
[
E[x tψ(yt − x>t βo)]|x t

]
= ∇β E

[
x t(FY |X (x>t βo)− τ)

]
= E

[
x tx

>
t fY |X (x>t βo)

]
= E

[
x tx

>
t fε|X (0)

]
.

� ψτ (εt) is i.i.d. Bernoulli with mean 0 and variance τ(1− τ)
given x t (why?),

Σo = E
[
x tx

>
t E
[
{1(yt − x>t βo)− τ}2|x t

]]
= τ(1− τ)E

[
x tx

>
t

]
def
= τ(1− τ)MXX
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Asymptotic Normality

Theorem

√
T (β̂ − βo)

L→ N(0, τ (1− τ )G−1
o
MXXG

−1
o

),

where Go = E
[
x tx

>
t fε|X ,t(0)

]
and MXX = E

[
x tx

>
t

]
.

Remarks:

� Conditional heterogeneityis characterized by the conditional
density fε|X (0) in Go , which is not limited to
heteroskedasticity. This theorem applies to independently but
not identically distributed data, e.g. DGP2, but not DGP3.

� If fε|X (0) = fε(0), i.e. conditional homoskedasticity, then

√
T (β̂ − βo)

L→ N

(
0,
τ(1− τ)

fε(0)2
M−1

XX

)
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Estimation of Asymptotic Covariance Matrix

Goal: Consistently estimate D̂(βo) = G−1o MXXG
−1
o ,

� MXX :MT = T−1
∑T

t=1 x tx
>
t

� It is suggested by Powell in his lecture notes that

GT =
1

T

T∑
t=1

1

h
K

{
yt − x>t β̂

h

}
x tx

>
t ,

where K is a kernel function satis�es
∫
K (u)du = 1, the

bandwidth h sastis�es h→ 0 and nh→∞. In practice h can
be chosen by standard methods like cross-validation, plug-in
method.

� Both estimators are robust to non i.i.d. data
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Wald Test

H0 : Rβ(τ) = r , where R is q × p and r is q × 1. Let
D(β) = G−1o MXXG

−1
o ,

�
√
T (β̂ − βo)

L→ N(0, τ (1− τ )D(βo)),

� Under the null,
√
TR(β̂ − βo) =

√
T (Rβ̂ − r)

L→ N(0, τ (1− τ )Γ(βo)),

where Γ(βo) = RD(βo)R>.

Theorem (The Null Distribution of the Wald Test)

WT = T
[
Rβ̂ − r

]>
Γ̂
−1[

Rβ̂ − r
]
/
[
τ(1− τ)

] L→ χ2(q),

where Γ̂ = RD̂(βo)R>.
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Sup Wald Test

� H0 : Rβ(τ) = r for all τ ∈ S ⊂ (0, 1) a compact set, R : q× p

� De�ne the Brownian bridge: Bq
d
= [τ(1− τ)]1/2N(0, Iq), for

0 < τ < 1, and hence

Γ̂
−1/2√

T [Rβ̂(τ)− r ]
L→ Bq(τ).

Thus, WT (τ)
L→ ‖Bq(τ)/

√
τ(1− τ)‖2, for all τ

Theorem

sup
τ∈S
WT (τ)

L→ sup
τ∈S

∥∥∥∥∥ Bq(τ)√
τ(1− τ)

∥∥∥∥∥
2

,

where S ⊂ (0, 1) is a compact set.
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Sup Wald Test

� If S = [a, b], select a = τ1 < ... < τn = b, and compute

sup
τ∈S
WT (τ) ≈ sup

i=1,..,n
WT (τi )

� For s = τ/(1− τ), B(τ)/
√
τ(1− τ)

d
= W (s)/

√
s, where W :

Wiener process, so that:

P

 sup
τ∈[a,b]

∥∥∥∥∥ Bq(τ)√
τ(1− τ)

∥∥∥∥∥
2

< c

 = P

{
sup

s∈[1,s2/s1]

∥∥∥∥W q(s)√
s

∥∥∥∥2 < c

}
,

(4)

for all c > 0 with s1 = a/(1− a), s2 = b/(1− b)
� Critical values of (4) can be obtained via simulations; some

special cases were tabulated in in DeLong (1981) and Andrews
(1993)
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Likelihood Ratio Test

� Let β̂(τ) and β̃(τ) be the constrained and unconstrained
estimators and V̂T (τ) = VT (β̂(τ); τ) and
ṼT (τ) = VT (β̃(τ); τ) be the corresponding objective functions

� Given the asymmetric Laplace density:
fτ (u) = τ(1− τ) exp

[
− ρτ (u)

]
, the log-likelihood is

LT (β; τ) = T log(τ(1− τ))−
T∑
t=1

ρτ (yt − x>t β).

� -2 times the log-likelihood ratio is

−2
[
LT (β̂(τ); τ)− LT (β̃(τ); τ)

]
= 2
[
ṼT (τ)− V̂T (τ)

]
.

Quantile Regression: Primary Techniques



Asymptotic Properties 3-17

Likelihood Ratio Test

� Koenker and Machado (1999):

LRT (τ) =
2
[
ṼT (τ)− V̂T (τ)

]
τ(1− τ)

[
fε(0)

]−1 L→ χ2(q).

where q is the number of restrictions. The test is also known
as the quantile ρ test
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Nonlinear Quantile Regression

� The quantile speci�cation can be nonlinear, i.e.

qY |X (τ |x) = g(x ,βo(τ)),

where g is nonlinear in β.

� De�ne the nonlinear quantile regression estimator

β̂(τ) = argmin
β

T∑
t=1

ρτ
(
yt − g(x t ,β)

)
.

� Replace the "asymptotic FOC" in the linear case by

√
TΨn(β̂(τ))

def
=

1√
T

T∑
t=1

∇βg(x t , β̂)ψτ
(
yt−g(x t , β̂)

)
= OP (1) .
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Nonlinear Quantile Regression

The following theorem can be proved by imitating that of linear QR:

Theorem
Let Ψn(β)

def
= T−1

∑T
t=1∇βg(x t , β̂)ψτ

(
yt − g(x t , β̂)

)
and

Ψ(β) = E[Ψn(β)]. Suppose that

1. ∇βg(x t , β̂) is continuous in β

2. The stochastic equicontinuous condition holds for Ψn and Ψ

3.
√
TΨn(βo)

L→ N(0,Σo) where

Σo = τ(1− τ)E
[
∇βg(x t ,βo)∇βg(x t ,βo)>

]
Then, √

T (β̂ − βo)
L→ N(0,G−1o ΣoG

−1
o )

where Go = −E
[
∇βg(x t ,βo)∇βg(x t ,βo)>fε|X (0)

]
.
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Nonlinear Quantile Regression

� Koenker (2005) Sec. 4.4 states the same limiting theorem
under somewhat weaker condition

� The estimator

MT =
1

T

T∑
t=1

∇βg(x t , β̂)∇βg(x t , β̂)>

P→ E
[
∇βg(x t ,βo)∇βg(x t ,βo)>

]
def
= MXX .

� The estimator

GT =
1

T

T∑
t=1

1

h
K

{
yt − g(x t , β̂)

h

}
∇βg(x t ,βo)∇βg(x t ,βo)>

is again consistent for Go
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QR as M-estimator

De�nition (Ser�ing (1980))
For any function ψ(x ,β), the M-functional is de�ned by the
solution of ∫

ψ(x ,β)dF (x) = 0,

and the associate M-estimator is de�ned by the solution of∫
ψ(x ,β)dFT (x) =

1

T

T∑
t=1

ψ(Xt ,β) = 0,

where FT (x) = T−1
∑T

t=1 1(Xt ≤ x).

� Example: ψ(u) = u − β, the M-functional is the mean of X ;
the M-estimator is the sample mean
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QR as M-estimator

� Fix 0 < τ < 1, let ψτ (u, q) = 1(u < q)− τ , the M-functional is the
τ th quantile of X , as we have shown before; the so-called
"asymtotic M-estimator" satis�es instead

T∑
t=1

ψ(Xt , q) = O(δT ),

where δT →∞.

� This corresponds to the "asymptotic FOC" in the previous section
on asymptotic normality of QR
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QR as M-estimator

� Fix 0 < τ < 1, nonlinear τ th QR M-functional can be de�ned
by the solution of∫

∇βg(x t ,β)ψτ
(
y − g(x ,β)

)
dFY |X (y) = 0,

which exactly corresponds to Ψ(βo) = 0 in the previous
discussion for asymp. normality, and β̂(τ) is the "asymptotic
M-estimator"

� QR satis�es δT =
√
T , for dim(β) = p �xed and bounded

∇βg(x ,β)

� Huber (1967) shows consistency with δT = T and asymptotic
normality with δT =

√
T
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Bahadur Representation

Theorem
Under the same conditions for proving the asymptotic normality of
nonlinear quantile estimator, we have

√
T
(
β̂(τ)− βo(τ)

)
= G−1o

1√
T

T∑
t=1

∇βg(x t ,βo)ψτ
(
ut(τ)

)
+ RT ,

where ut(τ) = yt − g(x t ,βo(τ)) and RT = OP(1).

� ut(τ) = yt − g(x t ,βo(τ)) = εt in additive error model
� The asymptotic normality easily follows from the Bahadur

representation
� For dim(x) = 1, i.i.d. error, the rate of Rn

RT = O(T−1/4(log logT )3/4)

which is the sharpest possible rate achieved by Kiefer (1967).
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Bahadur Representation

� Bahadur representation can be derived for "asymptotic
M-estimator"

� He and Shao (1996) prove Bahadur representation under
weaker conditions and non identically distributed errors
√
T
(
β̂(τ)− βo(τ)

)
= G−1o

1√
T

T∑
t=1

∇βg(x t ,βo)ψτ
(
ut(τ)

)
+ RT ,1 + RT ,2,

where RT ,1 relates to the accumulated error of non identical
distribution and RT ,2 relates to Taylor approximation error of
Ψ and δT

� Wu (2007) proves Bahadur representation under a version of
dependent errors
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Inversion of Empirical Distribution

� Suppose the data {(Yt ,X t); t = 1, ...,T} are i.i.d. and we
would like to estimate the τ th conditional quantile function of
the response Y , given X = x :

g(x) = qY |X (τ |x)

� The �rst idea: �nd

qY |X (τ |x) = inf
{
y : F̂Y |X (y |x) ≥ τ

}
,

where F̂Y |X (y |x) is an estimate for FY |X (y |x). Such approach
is proposed by Li and Racine (2007)
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Conditional CDF estimator

Li and Racine (2007) propose two estimators:

F̃ (y |x) =
T−1

∑T
t=1 1(Yi ≤ y)KH(X t − x)

f̂X (x)

and

F̂ (y |x) =
T−1

∑T
t=1 G

{
(y − Yi )/h0

}
KH(X t − x)

f̂X (x)

where G (·) is a kernel CDF (e.g. standard normal CDF),
KH(·) = Kh1(·)...Khp(·) is a product kernel function
withKhj (x) = K (x/hj), H = (h1, ..., hp) bandwidthes and

f̂X (x) =
1

T

T∑
t=1

KH(x − X t).
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Asymptotic Normality

Assumptions:

(A1) Both fX (x) and F (y |x) have continuous second order
derivative with respect to x .

(A2) nh1...hp →∞ and hj → 0 for j = 1, ..., p
(A3) K (·) is symmetric, bounded, compactly supported and

integrated to 1.

Let

M̃(y , x) = f̂X (x)
[
F̃ (y |x)− F (y |x)

]
M̂(y , x) = f̂X (x)

[
F̂ (y |x)− F (y |x)

]
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Asymptotic Normality of F̃ (y |x)

Theorem (A)
Under (A1)-(A3) and fX (x) > 0 and F (y |x) > 0, we have

1. E[M̃(y , x)] = fX (x)
[∑p

j=1 h
2

j Bj(y , x)
]

+ O(
∑p

j=1 h
2

j ), where

Bj(y , x) = (1/2)κ2
[
Fjj(y |x) + 2fX ,j(x)Fj(y |x)/fX (x)

]
.

2. Var[M̃(y , x)] = (nh1...hp)−1fX (x)2Σy |x + O((nh1...hp)−1), where

Σy |x = ‖K‖2p
2
F (y |x)

[
1− F (y |x)

]
/fX (x)

3. If (nh1...hp)−1/2
∑p

j=1 h
3

j = O(1), then

(nh1...hp)−1/2

F̃ (y |x)− F (y |x)−
p∑
j=1

h2j Bj(y , x)

 L→ N(0,Σy |x )
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Asymptotic Normality of F̂ (y |x)

Theorem (B)
De�ne B0(y , x) = (1/2)κ2Fyy (y |x) and let

Ω(y , x) = ‖K‖2p
2
Fy (y |x)/fX (x). Letting |h̄|2 =

∑p

j=0 h
2

j , then under
conditions similar to the last theorem,

1. E[M̂(y , x)] = fX (x)
[∑p

j=0 h
2

j Bj(y , x)
]

+ O(|h|2), where

Bj(y , x) = (1/2)κ2
[
Fjj(y |x) + 2fX ,j(x)Fj(y |x)/fX (x)

]
.

2. Var[M̂(y , x)] =
(nh1...hp)−1fX (x)2

[
Σy |x − h0CKΩ(y , x)

]
+ O((nh1...hp)−1), where

CK = 2
∫
G (v)K (v)vdv

3. If (nh1...hp)−1/2
∑p

j=1 h
3

j = O(1), then

(nh1...hp)−1/2

F̂ (y |x)− F (y |x)−
p∑
j=1

h2j Bj(y , x)

 L→ N(0,Σy |x )
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Asymptotic normality of conditional quantile
estimator

De�ne

q̃Y |X (τ |x)
def
= argmin

q
|τ − F̂ (q|x)|

q̂Y |X (τ |x)
def
= argmin

q
|τ − F̂ (q|x)|

and

Bτ,j(y , x)
def
=

Bj(y , x)

fY |X (qY |X (τ |x))
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Asymptotic normality of conditional quantile
estimator

Theorem
Assume that the density of F (y |x) exists. Under similar condition

as in Theorem (A),

(nh1...hp)−1/2

q̃Y |X (τ |x)− qY |X (τ |x)−
p∑

j=1

h2j Bτ,j(y , x)


L→ N(0,Vτ (x)),

where Vτ (x) = τ(1− τ)‖K‖2p2 /
[
f 2
Y |X
(
qY |X (τ |x)|x

)
fX (x)

]
Quantile Regression: Primary Techniques



Nonparametric Quantile Regression 4-8

Asymptotic normality of conditional quantile
estimator

Theorem
Assume that the density of F (y |x) exists. Under similar condition

as in Theorem (B),

(nh1...hp)−1/2

q̃Y |X (τ |x)− qY |X (τ |x)−
p∑

j=0

h2j Bτ,j(y , x)


L→ N(0,Vτ (x)),

where Vτ (x) is similar to the last theorem
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Kernel Functions

Kernel K (u) ‖K‖22 κ2(K )

Uniform 1
2
1(|u| ≤ 1) 1/2 1/3

Epanechnikov 3
4

(1− u2)1(|u| ≤ 1) 3/5 1/5
Quartic 15

16
(1− u2)21(|u| ≤ 1) 5/7 1/7

Triweight 35
32

(1− u2)31(|u| ≤ 1) 350/429 1/9
Gaussian 1√

2π
exp(−1

2
u2) 1/2

√
π 1

Table 2: Common Second-Order kernels (symmetric)
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Choice of Bandwidth

� The MSE of F̃ (y |x) is

MSE(h1, ..., hp) ∼
[ p∑
j=1

h2j Bj(y , x)
]2

+
Σy |x

nh1...hp

minimizing the MSE suggests that the bandwidth
hj ∼ n1/(4+p)

� The MSE of F̂ (y |x) is

MSE(h1, ..., hp) ∼
[ p∑
j=0

h2j Bj(y , x)
]2

+
Σy |x − h0CKΩ(y , x)

nh1...hp

minimizing the MSE suggests hj ∼ n1/(4+p) while h0 = O(hj).
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Cross Validation

� Li, Lin and Racine (2013) propose the following
cross-validation function:

CV(γ) =
1

T

T∑
t=1

∫ {
1(Yt ≤ y)− F̂−t(y |X t)

}2M(X t)M(y)dy ,

where F̂−t(y |X t) is the leave-one-out estimator of F (y |X t),
de�ned by

F̂−t(y |X t) =

 1

T

∑
s 6=t

1(Ys ≤ y)KH(x − X s)

 /f̂−t(X t).

� One can apply R package "np"
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Local Polynomial Quantile Regression

De�nition
Consider dim(x) = 1, for �x x , the local polynomial quantile
regression problem with order p is

min
β∈Rp+1

T∑
t=1

Kh(xi − x)ρτ
{
yi − β0 − β1(xi − x)− ...− βp(xi − x)p

}
where Kh(x) = h−1K (x/h) and K is a kernel function, h→ 0 and
nh→∞

� The most popular type is p = 1, which avoids boundary e�ect

� βj/j! is the estimator for jth derivative of the true function g
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Asymptotic Normality

Theorem (Theorem 3 of Fan, Hu and Truong (1994))

1. (Interior property) Under regularity conditions and

nh→∞ and h→ 0. The local linear estimator l̂τ

l̂τ (x)− lτ (x)
L→ N

(
β(x)h2,

r(x)

nh

)
,

where

β(x) =
l ′′τ (x)

2

∫
u2K (u)du,

r 2(x) =

∫
K 2(u)du

fX (x)

τ(1− τ)
fY |X (lτ (x)|x)2

.
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Asymptotic Normality

2 (Boundary behavior) Under regularity conditions,

l̂τ (x)− lτ (x)
L→ N

(
βh2,

r2

nh

)
,

where xn = ch, β = 0.5α(c)l ′′τ (0),

r2 =
β(c)τ(1− τ)

fY |X (lτ (0)|0)2fX (0)
.

Remarks:
� Boundary e�ect: the convergence rate is of low order on the

end points ← local linear estimator resolves this problem
� The bias of local linear QR does not depend on the design

(fX (x))
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Choice of bandwidth

� The MSE follows from the theorem

MSE(h) ' 1

4
h4µ2(K )2l ′′τ (x)2 +

‖K‖22τ(1− τ)

nhfX (x)fY |X (lτ (x)|x)2
,

where µ2(K ) =
∫
u2K (u)du.

� The h minimizes the MSE satis�es

hτ =
‖K‖22τ(1− τ)

nµ2(K )2l ′′τ (x)2fX (x)fY |X (lτ (x)|x)2

� Suppose fY |X is normal with fY |X (lτ (x)|x) = σ−1X φ(Φ−1(τ))(
hτ1
hτ2

)5

=
τ1(1− τ1)φ(Φ−1(τ1))2

τ2(1− τ2)φ(Φ−1(τ2))2
,
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Choice of bandwidth

� Hence, Yu and Jones (1998) suggest the rule-of-thumb:

hτ =
[
4τ(1− τ)φ(Φ−1(τ))−2

]1/5
h1/2,

where h1/2 is chosen by some standard method for mean

� Cross-validation: quantile estimator can be viewed as a
by-product of CDF estimation, it seems reasonable to se- lect
bandwidths by a method optimal for CDF estimation
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Illustration: motorcycle data

� Experimental measurements of the acceleration of the head in
simulated motorcycle accident

� Two variables:
I times: in milliseconds after impact
I accel: in "g"

� Note the crossing of the estimated quantile curves beyond
about 55 milliseconds

� For the �rst few milliseconds, variability is almost negligible
and gradually increases thereafter
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Figure 5: Motorcycle data. Red line: τ = 0.5. Blue line: τ = 0.3. Green

line: τ = 0.7. h = 2.
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Penalty Method

� To penalize the roughness of the �tted function

� Bosch, Ye and Woodworth (1995) consider the problem:

min
g∈G

T∑
t=1

ρτ (yt − g(x)) + λ

∫
(g ′′(x))2dx

where G is the Sobolev space of C 2 function with square
integrable second derivatives

� Koenker, Ng and Portnoy (1994) consider the Lp penalties:

J(g) = ‖g ′′‖p =

[∫
|g ′′(x)|pdx

]1/p
,

and focus on p = 1 and p =∞
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The impact of the subprime crisis
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Value at Risk (VaR)

Value at risk (VaR) has become the standard measure of market

risk used by �nancial institutions and their regulators.

- R. Engle and S. Manganelli (2004)

� VaR is a measure of how much a certain portfolio can lose
within a given time period, for a given con�dence level
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VaR and Basel Accords

� Basel accords: a set of recommendations on banking law and
regulation that applies to all banks

� Basel committee on banking supervision: formed by central
bankers from G10 countries (now 27) in 1975, in response to
the subsequent international �nancial turmoil followed by the
liquidation of Herstatt Bank
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VaR and Basel Accords

� Banks are allowed to use internal risk measures on their
trading book, but certain rules should be ful�lled

� Backtesting is a technique used to compare the predicted
losses from VaR with the actual losses realised at the end of
the period of time.

� Key points on backtesting:
1. Data sets should be updated at least once every 3 months
2. VaR must be calculated on a daily basis 99th percentile

one-tailed con�dence interval is to be used
3. A 10 day movement in prices should be used as the instant

price shock
4. 1 year is classi�ed as a minimum period for "historical"

observations
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Basel III modi�cations

� Basel III: commencing on Jan. 1, 2011, with most changes
becoming e�ective within the next six years

� Additional requirement: Banks will be subject to new
"stressed" value-at-risk(SVaR) models, increased counterparty
risk charges, more restricted netting of o�setting positions,
increased charges for exposures to other �nancial institutions
and increased charges for securitisation exposures

� On a daily basis, a bank must meet the capital requirement
expressed as the higher of its latest SVaR number and an
average of SVaR numbers calculated over the preceding 60
business days multiplied by the multiplication factor
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Stressed VaR key points

1. The stressed VaR is computed on a 10-day 99% con�dence
basis, but with inputs taken from times of signi�cant �nancial
stress relevant to the �rm½s portfolio. Therefore, altogether, in
addition to the current requirement of between three to four
timesthe 10-day 99% VaR, three times the 10-day 99% SVaR
will be required

2. Model inputs are calibrated to historical data from a
continuous 12-month period of signi�cant �nancial stress
(equivalent to a VaR measure calculated over a dataset
including 2008 and 2009)

3. Data sets update every month and reassess whenever a
material change in market prices takes place

4. Risk factors incorporated in pricing models should also be
included in VaR calculations and omissions must be justi�ed
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De�nition (Value-at-Risk)
If yt is the asset return and τ ∈ (0, 1), the VaRt,τ is de�ned by

P(yt < −VaRt,τ |Ft−1) = τ.

De�nition (Coherent risk measure, Artzner et al. (1999))
A risk measure R is said to be coherent if for portfolios P,P1,P2,
the followings are satis�ed:

1. Translation invariance: for any constant c ,
R(P + c) = R(P)− c

2. Linear homogeneity: for any constant λ > 0, R(λP) = λR(P)

3. Monotonicity: If P1 stochastically dominates P2, i.e.
FP1

(y) ≤ FP2
(y), then R(P1) ≤ R(P2)

4. Subadditivity: R(P1 + P2) ≤ R(P1) + R(P2)
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VaR violates subadditivity

Consider εi and ηi are independent,

Xi = εi + ηi , εi
iid∼ N(0, 1), ηi

iid∼
{

0, p = 0.991;
−10, p = 0.009.

i = 1, 2.

The 1% VaR for X1 is 3.1(why?), which is only slightly higher than
the VaR if the shocks η = 0 (z0.01 = −2.3). X2 follows the same
distribution as asset X1. Compare

P1 = X1 + X2, P2 = 2X1.

In the former case, the 1% portfolio VaR is 9.8, because for
(X1 + X2) the probability of getting the -10 draw for either X1 or
X2 is higher than 1% (0.991 ∗ 0.009 ∗ 2 ≈ 0.018)

VaR(P1) = VaR(X1 + X2) = 9.8 > VaR(P2) = 2VaR(X1) = 6.2.
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VaR violates subadditivity

� Artzner et al. (1999): "a merger does not create extra risk",
usually it should reduce the risk

� Special case: VaR is globally (∀τ) subadditive when asset
returns are normally distributed, or more generally, log-concave
distributed

� Daníelsson et al.(2013) suggests that
I if the asset returns distribution has jointly fat tail (e.g.

student-t with df> 1), with very small τ , VaRτ is subadditive
I the occurrence of subadditivity depends on the estimation

method, sample size

� Despite of non-subadditivity, VaR still prevails because:
I smaller data requirement
I ease for backtesting
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Stylized facts of asset returns

� What is a stylized fact? Nontrivial statistical properties
commonly shared by random variations of asset prices in
di�erent markets and instruments

� stylized facts are usually formulated in terms of qualitative
properties of asset returns and may not be precise enough to
distinguish among di�erent parametric models

� It is not easy to exhibit even an (ad hoc) stochastic process
which possesses the same set of properties and one has to go
to great lengths to reproduce them with a model
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Stylized facts of asset returns

Some common stylized facts of asset returns (Cont (2001)):

1. Absence of autocorrelations: except for intraday data
2. Heavy tails: the (unconditional) distribution of returns seems

to display a power-law
3. Gain/loss asymmetry: large losses are observed but no

equally large gain
4. Aggregational Gaussianity: as the time scale ∆t increases,

the calculated returns look more normally distributed
5. Intermittency: at any time scale one observes high degree of

variability
6. Volatility clustering: volatility shows a positive

autocorrelation over several days, high volatility events tend to
cluster in time
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Stylized facts of asset returns

7 Conditional heavy tails: even correcting returns for volatility
clustering, the residual time series still exhibit heavy tails

8 Slow decay of autocorrelation in absolute returns: the
autocorrelation function of absolute returns decays slowly as a
function of the time lag, roughly as a power law with an
exponent [0.2, 0.4]

9 Leverage e�ect: volatility negatively correlated with the
(previous) returns

10 Volume/volatility correlation: trading volume is correlated
with all measures of volatility

11 Asymmetry in time scales: volatility measure with ∆t large
predicts ∆t small volatility better than the other way around

Quantile Regression: Primary Techniques



CAViaR Model 5-13

ARCH review

The AutoRegressive Conditional Heteroskedasticity (ARCH) model
for asset return modeling of Engle (1982):

� yt =
√
htεt , where εt are i.i.d. with mean 0 and variance 1,

ht = α0 + α1y
2
t−1, α0 > 1, α1 ≥ 0.

� E[yt |Ft−1] = 0 and E[y2t |Ft−1] = ht
� E[ytys ] = 0 for t 6= s (why?)

� y2t are serially correlated with AR(1):

y2t = ht + (y2t − ht) = α0 + α1y
2
t−1 + ε̃t ,

where ε̃t = htε
2
t − 1 are innovations with mean and covariance

zero
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ARCH review

� Assume that εt ∼ N(0, 1), E[y4t |Ft−1] = 3h2t , and

m4
def
= E[y4t ] = 3

[
α2
0 + 2α0α1 E[ht ] + α2

1 E(y4t−1)
]

= 3α2
0

(
1 +

2α0

1− α1

)
+ 3α1m4,

hence,

m4 =
3α2

0(1 + α1)

(1− α1)(1− 3α2
1)
.

In order to make m4 well-de�ned, it is required that
0 ≤ α2

1 < 1/3
� yt are leptokurtic because the kurtosis of yt is

m4

Var(yt)2
= 3

1− α2
1

1− 3α2
1

> 3, if α1 6= 0.
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GARCH review

The Generalized ARCH (GARCH) model of Bollerslev (1986):

� GARCH(1,1): yt =
√
htεt , with

ht = α0 + α1y
2
t−1 + β1ht−1, α0 > 0, α1, β1 ≥ 0.

� y2t have an ARMA(1,1) representation:

y2t = ht + (y2t − ht)

= α0 + (α1 + β1)y2t−1 + ht(ε
2
t − 1)− β1ht−1(ε2t−1 − 1),

where ht(ε
2
t − 1) can be viewed as serially uncorrelated

innovations
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GARCH review

� yt has mean zero, and since εt is independent of ht ,

Var(yt) = E[y2t ] = E[htε
2
t ] = E[ht ]E[ε2t ] = E[ht ].

Suppose ht is stationary,

E[ht ] = Var(yt) =
α0

1− (α1 + β1)
.

� yt and ys are uncorrelated for t 6= s

� If εt ∼ N(0, 1),

m4

Var(yt)2
= 3

1− (α1 + β1)2

1− (α1 + β1)2 − 2α2
1

> 3,

provided that 1− (α1 + β1)2 − 2α2
1 > 0
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EGARCH

Exponential GARCH (EGARCH) model of Nelson (1992)

� yt =
√
htεt , with

ht = exp

[
α0 + β1 log(ht−1) +

(
θ1

yt−1√
ht−1

+ γ1

∣∣∣∣∣ yt−1√
ht−1

∣∣∣∣∣
)]

.

� θ1 is interpreted as a measure of "leverage" e�ect, while γ1 is
interpreted as the "magnitude" e�ect. θ1 tends to be negative
empirically, while γ1 tends to be positive. ⇒ Negative shock
has more impact on valitility than positive shock

� Due to the exponential transform, there is no constraint on the
coe�cients in ht
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News Impact Curve

Figure 6: News impact curve. Source: Engle and Ng (1993) Figure 1,

p.1754
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CAViaR model

The Conditional Autoregressive Value at Risk (CAViaR) of Engle and
Manganelli (2004): a family of time series models for quantile

(a) Symmetric absolute value:

qτ,t(β) = β1 + β2qτ,t−1(β) + β3|yt−1|.
(b) Asymmetric slope:

qτ,t(β) = β1 + β2qτ,t−1(β) + β3(yt−1)+ + β4(yt−1)−.

(c) Indirect GARCH(1,1):

qτ,t(β) =
[
β1 + β2qτ,t−1(β)2 + β3(yt−1)2

]1/2
.

(d) Adaptive: for 0 < G <∞,

qτ,t(β1) = qτ,t−1(β1) + β1

{
1

1 + exp
(
G [yt−1 − qτ,t−1(β1)]

) − τ}
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CAViaR model

(a) Symmetric absolute value:

qτ,t(β) = β1 + β2qτ,t−1(β) + β3|yt−1|.
(b) Asymmetric slope:

qτ,t(β) = β1 + β2qτ,t−1(β) + β3(yt−1)+ + β4(yt−1)−.

Symmetric absolute value and asymmetric slope are induced from
GARCH with standard deviation is modeled symmetrically or
asymmetrically.
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CAViaR model

(c) Indirect GARCH(1, 1) :

qτ,t(β) =
[
β1 + β2qτ,t−1(β)2 + β3(yt−1)2

]1/2
.

Indirect GARCH is correctly speci�ed if the DGP is GARCH(1,1)
with an i.i.d. error distribution. To see this, note that yt =

√
htεt ,

so

qτ,t =
√
htqε,τ =

√
α0 + α1y2t−1 + β1ht−1qε,τ

=
√
α0 + α1y2t−1 + β1q2τ,t−1
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CAViaR model

(d) Adaptive: for 0 < G <∞,

qτ,t(β1) = qτ,t−1(β1) + β1

{ 1

1 + exp
(
G [yt−1 − qτ,t−1(β1)]

)︸ ︷︷ ︸
(∗)

−τ
}

When G →∞, (∗)→ 1{yt−1 ≤ qτ,t−1(β1)}, given that τ is small:

� When yt−1 ≤ qτ,t−1(β1), qτ,t(β1) = qτ,t−1(β1) + β1(1− τ)

� When yt−1 > qτ,t−1(β1), qτ,t(β1) = qτ,t−1(β1)− β1τ
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CAViaR news impact

source: Engle and Manganelli (2004) Figure 2
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Estimation

� The objective function is:

QT (β) =
1

T

T∑
t=1

ρτ
{
yt − qt(β)

}
,

β̂
def
= argmin

β
QT (β).

� Di�culty: this is a dynamic model. qt(β) depends on qt−1(β).

� Manganelli provides the code on his website
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Asymptotic Theory

Consider the model

yt = f (yt−1, x t−1, ..., y1, x1;β0) + εt
def
= ft(β

0) + εt , t = 1, ...,T , (5)

where qτ (εt |Ft) = 0.

Theorem (C)

In model (5), under assumption C0-C7, β̂ → β0, where β̂ is the

solution minβ QT (β). C0-C7
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Asymtptic Theory

Theorem (AN)
In model (5), under assumptions AN1-AN4 and the conditions of
Theorem C, AN1-AN4

√
TA

1/2
T DT (β̂ − β0)

d→ N(0, 1),

where

AT = E

[
T−1τ(1− τ)

T∑
t=1

∇ft(β0)>∇ft(β0)

]
,

DT = E

[
T−1τ(1− τ)

T∑
t=1

∇gt(0|Ft)ft(β0)>∇ft(β0)

]
,

and β̂ is computed as in Theorem C.
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Need to show two things:

Asymptotc FOC: Let Hitt(β
0)

def
= 1

{
yt < ft(β

0)
}
− τ ,

Qj(δ)
def
= −T−1/2

∑T
t=1 ρτ

{
yt − ft(β + δe j)

}
and

Gj(δ)
def
= −T−1/2

∑T
t=1∇j ft(β̂ + δe j)Hitt(β̂ + δe j), where e j are

standard basis of Rp. Because Qj(δ) is continuous in δ and
achieves a maximum at 0,

|Gj(0)| ≤ Gj(δ)− Gj(δ)

=
1√
T

T∑
t=1

[
∇j ft(β̂ + δe j)Hitt(β̂ + δe j) +∇j ft(β̂ − δe j)Hitt(β̂ − δe j)

]
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Letting δ → 0,

|Gj(0)| ≤ 1√
T

T∑
t=1

∣∣∇j ft(β̂)
∣∣1{yt = ft(β̂)

}
≤ 1√

T

[
max

1≤t≤T
H(Ft)

] T∑
t=1

1
(
yt = ft(β̂)

)
.

Assumption AN1 implies T−1/2[max1≤t≤T H(Ft)] =P (1) and C2

implies
∑T

t=1 1(yt = ft(β̂)) = O(1) a.s. because the {εt = 0} has
probability 0.
Stochastic equicontinuous condition: SEC

N2 : AN1 implies β0 lies in the interior of B .
E[qt(β

0)] = E
[
E[Hitt(β

0)|Ft ]∇ft(β0)>
]

= 0.

N3 : too technical
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Asymtptic Theory

Theorem (VC)
Under assumptions VC1-VC3 and the conditions of Theorems C and AN,

ÂT − AT
P→ 0 and D̂T −DT

P→ 0, where VC1-VC3

ÂT = T−1τ(1− τ)∇ft(β̂)>∇ft(β̂)

D̂T = (2TĉT )−1
T∑
t=1

1(|yt − ft(β̂)| < ĉT )∇ft(β̂)>∇ft(β̂),

AT and DT are de�ned in Theorem AN, and ĉT is a bandwidth de�ned
in assumption VC1.
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Backtesting

� De�ne the hit sequence

Hitt(β
0)

def
= 1

(
yt < ft(β

0)
)
− τ

� A natural way to test the validity of the forecast model is to
check whether the sequence Hitt is i.i.d.

� This concept has a drawback: de�ne a i.i.d. sequence (like
�ipping a coin)

zt =

{
1, with probability τ ;
−1, with probability 1− τ.

Setting ft(β
0) = Kzt−1 for K large. Once zt−1 is observed,

the probability of yt exceeding ft(β) is almost 0 or 1
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Testing in-sample �t

De�ne

X t(β̂) ∈ Rq : the typical row of X t(β̂) ∈ Ft ,

Hitt(β̂)
def
= (Hit1(β̂), ...,HitT (β̂))>

MT
def
= X>(β0)− E

[
T−1X>(β0)H∇f (β0)

]
D−1T ∇

>f (β0),

H = diag
(
g1(0|F1), ..., gT (0|FT )

)
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Theorem (In-sample dynamic quantile test)
Under the asuumption of Theorem C and AN and assumptions
DQ1-DQ6, DQ1-DQ7[

τ(1− τ)E[T−1MTM
>
T ]
]−1/2

T−1/2X>(β̂)X (β̂)
d∼ N(0, I ).

If assumption DQ7 and the conditions of Theorem VC also hold,
then

DQIS
def
=

Hit>(β̂)X (β̂)(M̂TM̂
>
T )−1X>(β̂)Hit>(β̂)

τ(1− τ)
d∼ χ2q, T →∞,

where

M̂T
def
=

X>(β̂)−

{
(2TĉT )−1

T∑
t=1

1
(
|yt − ft(β̂)| < ĉT

)
X>t (β̂)∇ft(β̂)

}
D̂
−1
T ∇f (β̂)>.
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Out-of-sample test

De�ne

TR : no. in-sample obs

NR : no. out-of-sample obs.

X n(β̂TR
) ∈ Rq : the typical row of X t(β̂TR

) ∈ Ft ,

n = TR + 1, ...,TR + NR

Hitt(β̂TR
)
def
=
(
HitTR+1(β̂TR

), ...,HitTR+NR
(β̂TR

)
)>
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Theorem (Out-of-sample dynamic quantile test)
Under the assumption of Theorem C and AN and assumptions
DQ1-DQ3, DQ8 and DQ9, DQ8-DQ9

DQOOS
def
=N−1R Hit>(β̂TR

)X (β̂TR
)
[
X (β̂TR

)>X (β̂TR
)
]−1

X>(β̂TR
)

Hit>(β̂TR
)/[τ(1− τ)]

d∼ χ2q, R →∞

� The In-sample DQ test is useful for model selection

� The out-of-sample DQ test is useful for regulators to check
whether the VaR estimates satisfy basic requirements, such as
unbiasedeness, independent hits, and independence of the
quantile estimates
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Application

� 3392 daily prices (April 7, 1986-April 7, 1999) of GM, IBM
and S&P500

� Estimation: �rst 2892 obs. last 500 for backtesting

� G = 10 in adaptive model
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Appendix 6-1

A1:Convex Analysis

De�nition (Subdi�eretial/subgradient)

g is called a subdi�eretial/subgradient of a convex function f at
x ∈ domf if

f (y) ≥ f (x) + g>(y − x).

Remark: if f is di�erentiable, then its subdi�erential is unique.

Theorem
If f is convex. Its composition with an a�ne function is again

convex; namely, f (α + β>x) is convex.

Remark: composition with arbitrary function may lose convexity.

Theorem
The subgradient obeys chain rule.
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A1:Convex Analysis

Figure 7: g1 is the unique subgradient at x1. g2 and g3 are subgradients

at x2.
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C0 (Ω,F ,P) is acomplete probability space, and
{εt , x t : t = 1, ...} are random vectors on this space

C1 ft(β) : Rkt × B → R is such that for each β ∈ B , a compact
subset of Rp, ft(β) is measurable with respect to the
information set Ft and ft(β) is continuous in B , t = 1, 2, ...,
for a given choice of explanatory variables
{yt−1, x t−1, ..., y1, x1}

C2 Conditional on all the past information Ft , the error terms εt
form a stationary process, with continuous conditional density
gt(ε|Ft)

C3 There exists h > 0 such that for all t, gt(0|Ft) ≥ h

C4 |ft(β)| < K (Ft) for each β ∈ B and for all t, where K (Ft) is
some (possibly) stochastic function of variables that belong to
the information set, such that E[|K (Ft)|] ≤ K0 <∞
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C5 E[|K (Ft)|] <∞ for all t

C6 ρτ
(
yt − ft(β)

)
obeys the unifrom law of large numbers

C7 ∀ξ > 0, there exists a δ > 0, such that if ‖β − β0‖ ≥ ξ, then

lim inf
T→∞

T−1
∑

P
[
|ft(β)− ft(β

0)| > δ
]
> 0

Consistency
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AN1 ft(β) is di�erentiable in B and ∀β and γ in a neighborhood ν0
of β0, such ‖β − γ‖ ≤ d for d su�ciently small and for all t:

a ‖∇ft(β)‖ ≤ H(Ft), where H(Ft) is some (possibly) stochastic
function of variables that belong to the information set and
E
[
H(Ft)3

]
≤ H0 <∞, for some constant H0.

b ‖∇ft(β)−∇ft(γ)‖ ≤ M(Ft ,β,γ) = O(‖β − γ‖), where
M(Ft ,β,γ) is some function such that
E[M(Ft ,β,γ)]2 ≤ M0‖β − γ‖ <∞ and
E[M(Ft ,β,γ)H(Ft)] ≤ M1‖β − γ‖ <∞ for some constants
M0 and M1

AN2 a gt(ε|Ft) ≤ N <∞ ∀t, for some constant N
b gt(ε|Ft) satis�es the Lipschitz condition
|gt(λ1|Ft)− gt(λ2|Ft)| ≤ L|λ1 − λ2| for some constant
L <∞ ∀t
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AN3 The matrices AT and DT have the smallest eigenvalues
bounded below by a positive constant for T su�ciently large

AN4 The sequence

1√
T

T∑
t=1

[
τ − 1(yt < ft(β

0))
]
∇ft(β0)>

obeys the central limit theorem. Asym. Normality
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VC1 ĉT/cT
P→ 1, where the nonstochastic positive sequence cT

satis�es cT = (1) and c−1T = (T 1/2).

VC2 E
[
|H(Ft)|4

]
≤ H1 <∞ for all t and for some constant H1,

where H(Ft) has been de�ned in assumption AN1(a)

VC3

T−1τ(1− τ)∇ft(β0)>∇ft(β0)− AT
P→ 0

T−1
T∑
t=1

gt(0|Ft)∇ft(β0)>∇ft(β0)−DT
P→ 0.

VC
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Appendix 6-8

DQ1 X t(β) is di�erent element wise from ∇ft(β), is measurable
Ft , ‖X t(β)‖ ≤W (Ft), where W (Ft) is some (possibly)
stochastic function of variables that belong to the information
set, such that E

[
W (Ft)M(Ft ,β,γ)

]
≤W0‖β − γ‖ <∞ and

E
[
{W (Ft)H(Ft)

}2]
<W1 <∞ for some �nite constant W1,

and H(Ft) and M(Ft ,β,γ) are de�ned in AN1.

DQ2 ‖X t(β)− X t(γ)‖ ≤ S(Ft ,β,γ), where
E[S(Ft ,β,γ)] ≤ S0‖β − γ‖ <∞,
E
[
W (Ft)S(Ft ,β,γ)

]
≤ S1‖β − γ‖ <∞, and for some

constant S0, S1.
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Appendix 6-9

DQ3 Let {ε1t , ..., εJit } be the set of values for which X t(β) is not

di�erentiable. Then P(εt = εjt) = 0 for j = 1, ..., Ji . Whenever
the derivative exists, ‖∇X t(β)‖ ≤ Z (Ft), where Z (Ft) is
some (possibly) stochastic function of variables that belong to
the information set, such that E[Z (Ft)r ] < Z0 <∞, r = 1, 2,
for some constant Z0

DQ4 T−1X>t (β0)H∇f (β0)− E
[
T−1X>(β0)H∇f (β0)

] P→ 0.

DQ5 T−1MTM
> − T−1 E[MTM

>
T ]

P→ 0

DQ6 The sequence {T−1/2MTHit(β
0)} obeys the central limit

theorem
DQ7 T−1 E[MTM

>
T ] is a nonsingular matrix

DQ8 limR→∞ TR =∞, limR→∞ NR =∞, and limR→∞ NR/TR = 0

DQ9 The sequence {N−1/2R X>(β0)Hit(β0)} obeys the central limit
theorem.

In-sample test Out-of-sample test
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