Quantile Regression: Primary Techniques

Shih-Kang Chao

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics

Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

Outline

1. Introduction

- Tail event analysis
- Theoretical quantiles and sample quantiles

2. Quantile Regression (QR)

- Definition
- Digression: treatment effect
- Numerical properties
- DGP and quantile function
- Algebraic properties
- Illustration: Engel's curve

3. Asmptotic Properties

- Consistency
- Asymptotic normality

4. Nonparametric QR
5. CAViaR model

Motivation

\square Randomness is subject to certain law (distribution)
\square Descriptive measures:

- Moments:
- Location measures: mean, median
- Dispersion measures: variance, range
- Other moments: skewness, kurtosis, etc.
- Quantiles: quartiles, deciles, percentiles...
\square Except in some special cases, a distribution can not be completely characterized by its moments or by a few quantiles
\checkmark Mean and median: "average" and "center" of the distribution, but may provide little info about the tails

Tail Event Analysis

\square Tail analysis is useful in many fields:

- Banking: Value at Risk
- Meteorology/Agriculture: temperature, rainfall; climate change
- Energy Economy: electricity Demand

Figure 1: Chinese Meteorology: Shifiazianuang (black), Chengde (red) and Huailai (green) temperature data in 2009.

Regression Analysis

Consider regression $y_{t}=\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}+e_{t}$, where $y \in \mathbb{R}$ and $\boldsymbol{x} \in \mathbb{R}^{p}$,
\square Least squares (LS): Legendre (1805)

- $\hat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}} \sum_{t=1}^{T}\left(y_{t}-\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}\right)^{2}$
- $\boldsymbol{x}_{t}^{\top} \hat{\boldsymbol{\beta}}$ estimates the conditional mean of \boldsymbol{y} given \boldsymbol{x}
\square Least squares (LAD): Boscovich (1755)
- $\check{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}} \sum_{t=1}^{T}\left|y_{t}-\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}\right|$
- $\boldsymbol{x}_{t}^{\top} \check{\boldsymbol{\beta}}$ estimates the conditional median of y given \boldsymbol{x}
\square Both measures only the central tendency of the conditional distribution

Quantiles

\square The τ th $(0<\tau<1)$ quantile of F_{Y} is

$$
q_{Y}(\tau) \stackrel{\text { def }}{=} F_{Y}^{-1}(\tau)=\inf \left\{y: F_{Y}(y) \geq \tau\right\}
$$

$\square q_{Y}(\tau)$ is an order statistics
\checkmark Define an asymmetric (linear) loss function:

$$
\rho_{\tau}(u) \stackrel{\text { def }}{=}|\tau-\mathbf{1}(u \leq 0)||u|
$$

\square Given that Y is a random variable,

$$
\mathrm{E} \rho_{\tau}(Y-\theta)=\tau \int_{y>\theta}|y-\theta| d F_{Y}(y)+(1-\tau) \int_{y<\theta}|y-\theta| d F_{Y}(y)
$$

Quantiles

$q_{Y}(\tau)$ can be obtained via minimizing the expected asymmetric loss function. By first order condition:

$$
\begin{aligned}
0 & \stackrel{!}{=} \frac{\partial}{\partial \theta} \mathrm{E} \rho_{\tau}(\theta) \\
\Rightarrow 0 & =-\tau \int_{y>\theta} d F_{Y}(y)+(1-\tau) \int_{y<\theta} d F_{Y}(y) \\
& =-\tau\left(1-F_{Y}(\theta)\right)+(1-\tau) F_{Y}(\theta) \\
& =-\tau+F_{Y}(\theta),
\end{aligned}
$$

so $\theta=F_{Y}^{-1}(\tau)=q_{Y}(\tau)$ is the minimizer of $\mathrm{E} \rho_{\tau}(\theta)$, given the true distribution of Y is known.

Quantile Regression: Primary Techniques

Sample Quantiles

$\square F_{Y}$ is in general unknown, the sample counterpart of the expected asy. linear loss function is

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T} \rho_{\tau}\left(y_{t}-\theta\right)=\frac{1}{T}\left[\tau \sum_{t: y_{t} \geq \theta}\left|y_{t}-\theta\right|+(1-\tau) \sum_{t: y_{t}<\theta}\left|y_{t}-\theta\right|\right] \tag{1}
\end{equation*}
$$

$\rho_{\tau}\left(y_{t}-\theta\right)$ is also known as the check function.
\square Sample quantile $\hat{q}(\tau)$ can be found via an optimization scheme
$\square F_{T}(\hat{q}(\tau))=\tau$, where F_{T} is the empirical dist. function and $\hat{q}(\tau)$ is the minimizer of (1)
\square Specifying a function $f\left(x_{t}\right)$ for the distribution quantile, we can use the optimization scheme to estimate the function

Figure 2: Plots of $\rho_{\tau}(u)=|\tau-\mathbf{1}(u \leq 0)||u|$.

Quantile Regression

Definition (Koenker and Basset (1978))
Given the model $y_{t}=\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}+\varepsilon_{t}$, the τ th QR estimator $\hat{\boldsymbol{\beta}}(\tau)$ minimizes

$$
V_{T}(\boldsymbol{\beta} ; \tau)=\frac{1}{T} \sum_{t=1}^{T} \rho_{\tau}\left(y_{t}-\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}\right)
$$

where $\rho_{\tau}(u)=|\tau-\mathbf{1}(u \leq 0)||u|$.
\square For $\tau=0.5, V_{T}(\boldsymbol{\beta} ; \tau)$ is symmetric, and $\hat{\boldsymbol{\beta}}(0.5)$ is the LAD estimator
$\square \boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}(\tau)$ gives the estimate for τ th conditional quantile function $q_{Y \mid \boldsymbol{X}}(\tau) . \hat{\beta}_{i}(\tau)$ can be viewed as the estimated marginal effect of the i th regressor on $q_{Y \mid X}(\tau)$

Digression: Treatment Effect

\square Measuring the impact of a treatment (program, policy, intervention) in the distribution (e.g. income, age)
\square Let $Y_{1}\left(Y_{0}\right)$ be the treatment(control) group, D is a dummy varible, the The effect can be measured through

- Mean: the average treatment effect $\Delta_{m}=\mathrm{E}\left[Y_{1}-Y_{0}\right]$
- Quantile: $\Delta_{\tau}=\hat{F}_{1, n}^{-1}(\tau)-\hat{F}_{0, n}^{-1}(\tau)$, where $F_{1, n}, F_{0, n}$ are empirical distribution function of treatment and control group, for $0<\tau<1$
\checkmark If the experiment is randomized:
$\mathrm{E}\left[Y_{1}-Y_{0}\right]=\mathrm{E}\left[Y_{1} \mid D=1\right]-\mathrm{E}\left[Y_{0} \mid D=0\right]$
\square To measure Δ_{m}, one can run a dummy-variable regression

$$
Y_{i}=\alpha+D_{i} \gamma+\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+e_{i}, \quad i=1, \ldots, n
$$

the LS estimate of γ is the estimated average treatment effect

Quantile Treatment Effect (QTE)

Doksum (1974): if we define $\Delta(x)$ as the "horizontal distance" between F_{0} and F_{1} at x so that

$$
F_{1}(x)=F_{0}(x+\Delta(x))
$$

then $\Delta(x)$ can be expressed as

$$
\Delta(x)=F_{1}^{-1}\left(F_{0}(x)\right)-x,
$$

changing variable with $\tau=F_{0}(x)$, one gets the quantile treatment effect:

$$
\Delta_{\tau}=\Delta\left(F_{0}^{-1}(\tau)\right)=F_{1}^{-1}(\tau)-F_{0}^{-1}(\tau)
$$

Quantile Treatment Effect (QTE)

\square One can run a quantile regression on $\left(D_{i}, \boldsymbol{X}_{i}\right)$ where $D_{i}=0$ if i is in control group and $D_{i}=1$ otherwise,

$$
Y_{i}=\alpha+D_{i} \gamma+\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+e_{i}, \quad i=1, \ldots, n
$$

the $\hat{\gamma}(\tau)$ is the estimated τ-th QTE (location shift)
\checkmark

$$
Y_{i}=\alpha+\boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}+D_{i} \gamma\right)+e_{i}, \quad i=1, \ldots, n
$$

the $\hat{\gamma}(\tau)$ is the estimated τ-th QTE (scaling)
\square Quantile regression gives a complete look at the change in the distribution from treatment

Figure 3: Horizontal distance between the treatment and control distribution functions.

Minimizing V_{T}

\square Two main difficulties:

- The QR estimator $\hat{\boldsymbol{\beta}}(\tau)$ does not have a closed form
- V_{T} is not everywhere differentiable, so that derivative-based algorithm (Newton method) does not work
\square Two ways to solve:
- approximate $\rho_{\tau}(u)$ with smooth function, and apply the Newton method
- One can also apply linear programming
\square Linear programming: $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$ can be expressed as

$$
y=X\left(\beta^{+}-\beta^{-}\right)+\left(e^{+}-e^{-}\right) \stackrel{\text { def }}{=} A z
$$

where

$$
\begin{aligned}
& \boldsymbol{A}=\left[\boldsymbol{X},-\boldsymbol{X}, \boldsymbol{I}_{T},-\boldsymbol{I}_{\boldsymbol{T}}\right], \\
& \boldsymbol{z}_{\text {Primary }}=\left[\left(\boldsymbol{\beta}_{\text {Techniques }}^{+}\right)^{\top}\left(\boldsymbol{\beta}^{-}\right)^{\top},\left(\boldsymbol{e}^{+}\right)^{\top},\left(\boldsymbol{e}^{-}\right)^{\top}\right]^{\top}
\end{aligned}
$$

Minimizing V_{T}

\checkmark Let $\boldsymbol{c}=\left[0^{\top}, 0^{\top}, \tau 1^{\top},(1-\tau) 1^{\top}\right]^{\top}$. Minimizing V_{T} is equivalent to the following constrained linear program (cLP):

$$
\min _{z \in \mathbb{R}_{+}^{2 P} \times \mathbb{R}_{+}^{2 T}} \frac{1}{T} c^{\top} z, \quad \text { s.t. } y=A z, z \geq 0
$$

\square This cLP solves on the extreme points(vertices) of the polyhedral convex set defined by the constraint $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{z}$ (Koenker (2005) Sec. 6.2)
\square Define basic solution:

$$
\boldsymbol{\beta}(H)=\boldsymbol{X}(H)^{-1} \boldsymbol{y}(H)
$$

where $H \subset\{1, \ldots, T\}$ with $|H|=\operatorname{dim}(\beta)$, and $\boldsymbol{y}(H) / \boldsymbol{X}(H)$ are the subvector/submatrix of $\boldsymbol{y} / \boldsymbol{X}$ with the corresponding elements/rows identified by index set H

Minimizing V_{T}

$\square z(H)=\left[\left(\boldsymbol{\beta}(H)^{+}\right)^{\top},\left(\boldsymbol{\beta}(H)^{-}\right)^{\top},\left(\boldsymbol{e}(H)^{+}\right)^{\top},\left(\boldsymbol{e}(H)^{-}\right)^{\top}\right]^{\top}$ are the vertices of the constrain set
$\square V_{T}(\boldsymbol{\beta} ; \tau)$ is a convex function in $\boldsymbol{\beta}$. The minimizer $\hat{\boldsymbol{\beta}}(H)$ of $V_{T}(\boldsymbol{\beta} ; \tau)$ makes the directional derivative of V_{T} in direction w satisfy

$$
\begin{equation*}
\nabla V_{T}(\boldsymbol{\beta}) \stackrel{\text { def }}{=}-\frac{1}{T} \sum_{t=1}^{T} \psi_{\tau}^{*}\left(y_{t}-\boldsymbol{x}_{t}^{\top} \hat{\boldsymbol{\beta}}(H),-\boldsymbol{x}_{t}^{\top} \boldsymbol{w}\right) \boldsymbol{x}_{t}^{\top} \boldsymbol{w} \geq 0 \tag{2}
\end{equation*}
$$

for all $\boldsymbol{w} \in \mathbb{R}^{p}$ with $\|\boldsymbol{w}\|=1$, and

$$
\psi_{\tau}^{*}(u, v)= \begin{cases}\tau-\mathbf{1}(u<0), & \text { if } u \neq 0 \\ \tau-\mathbf{1}(v<0), & \text { if } u=0\end{cases}
$$

Minimizing V_{T}

Under the assumption that \boldsymbol{X} is orthonormal, and reparametrize $\boldsymbol{w}=\boldsymbol{X}^{-1} \boldsymbol{v}$, where \boldsymbol{v} : elementary vectors. Given that $y_{t}-\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}(H) \neq 0$ for any $t \notin H$. We have the following interesting result:
Theorem (Koenker (2005), Theorem 2.2.)
Let P, N, and Z denote the proportion of positive, negative, and zero elements of the residual vector $\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}(\tau)$. If \boldsymbol{X} contains an intercept, that is, if there exists $\alpha \in \mathbb{R}^{p}$ such that $\boldsymbol{X} \alpha=1_{n}$, then for any $\hat{\boldsymbol{\beta}}(\tau)$ minimizing $V_{T}(\beta)$, we have

$$
\frac{N}{n} \leq \tau \leq \frac{N+Z}{n}
$$

and

$$
\frac{P}{n} \leq 1-\tau \leq \frac{P+Z}{n}
$$

Remarks

\square MLE interpretation: $\boldsymbol{\beta}(\tau)$ is the QMLE based on an asymmetric Laplace density:

$$
f_{\tau}(u)=\tau(1-\tau) \exp \left[-\rho_{\tau}(u)\right]
$$

$\square \boldsymbol{\beta}(\tau)$ is more robust to outliers
\square The estimated hyperplane with normal $\hat{\boldsymbol{\beta}}(\tau)$ must interpolate $\operatorname{dim}(\hat{\boldsymbol{\beta}})$ observations in the sample
\square QR utilizes all sample data (with different weights)

DGP and its quantile function

Let ε_{t} be i.i.d. with common distribution function F_{ε}.
\square DGP1 (location shift): $y_{t}=\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}_{o}+\varepsilon_{t}=\beta_{0}+\tilde{\boldsymbol{x}}_{t}^{\top} \boldsymbol{\beta}_{1}+\varepsilon_{t}$

- $q_{Y \mid \boldsymbol{X}}(\tau)=\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}_{o}+F_{\varepsilon}^{-1}(\tau)=\beta_{0}+F_{\varepsilon}^{-1}(\tau)+\tilde{\boldsymbol{x}}_{t}^{\top} \boldsymbol{\beta}_{1}$
- Quantile functions differ only by the "intercept"
\square DGP2 (scale): $y_{t}=\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}_{o}+\left(\boldsymbol{x}_{t}^{\top} \gamma_{o}\right) \varepsilon_{t}$
- $q_{\boldsymbol{Y} \mid \boldsymbol{X}}(\tau)=\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}_{o}+\left(\boldsymbol{x}_{t}^{\top} \gamma_{o}\right) F_{\varepsilon}^{-1}(\tau)=\boldsymbol{x}_{t}^{\top}\left[\boldsymbol{\beta}_{o}+\gamma_{o} F_{\varepsilon}^{-1}(\tau)\right]$
- Quantile functions differ not only by the "intercept" but also the "slope" term
- The model can be expressed as

$$
y_{t}=\boldsymbol{x}_{t}^{\top} \underbrace{\left[\boldsymbol{\beta}_{o}+\gamma_{o} F_{\varepsilon}^{-1}(\tau)\right]}_{\boldsymbol{\beta}_{(\tau)}}+\tilde{\varepsilon}_{t}
$$

where $q_{\tilde{\tilde{t}}_{\boldsymbol{t}} \mid \boldsymbol{X}}=0$. The quantile estimator $\hat{\boldsymbol{\beta}}(\tau)$ converges to $\boldsymbol{\beta}(\tau)$

DGP and its quantile function

DGP3: $y_{t}=\sigma_{t} \varepsilon_{t}, \sigma_{t}=\alpha_{0}+\alpha_{1}\left|y_{t-1}\right|+\beta_{1} \sigma_{t-1} .(\operatorname{GARCH}(1,1)$ on standard deviation).
The quantile function is

$$
\begin{aligned}
q_{Y \mid \mathcal{F}_{t-1}}(\tau) & =\left[\alpha_{0}+\alpha_{1}\left|y_{t-1}\right|+\beta_{1} \sigma_{t-1}\right] q_{\varepsilon}(\tau) \\
& =\underbrace{\alpha_{0} q_{\varepsilon}(\tau)}_{\tilde{\alpha}_{0}}+\underbrace{\alpha_{1} q_{\varepsilon}(\tau)}_{\tilde{\alpha}_{1}}\left|y_{t-1}\right|+\beta_{1} q_{Y \mid \mathcal{F}_{t-2}}(\tau) .
\end{aligned}
$$

\square The quantile function has a $\operatorname{GARCH}(1,1)$ form too
\square This is one of the variation of the famous Conditional Autoregressive Value at Risk (CAViaR) model

Algebraic Properties: Equivalence

Let $\hat{\boldsymbol{\beta}}(\tau)$ be the QR estimator of the quantile regression of y_{t} on \boldsymbol{x}_{t}. Let y_{t}^{*} be a translation of y_{t} and $\hat{\boldsymbol{\beta}}^{*}(\tau)$ be the QR estimator of y_{t}^{*} on x_{t}.
\square Scale equivariance: For scaled $y_{t}^{*}=c y_{t}$:

- For $c>0, \hat{\boldsymbol{\beta}}^{*}(\tau)=c \hat{\boldsymbol{\beta}}(\tau)$.
- For $c<0, \hat{\boldsymbol{\beta}}^{*}(1-\tau)=c \hat{\boldsymbol{\beta}}(\tau)$.
- $\hat{\boldsymbol{\beta}}^{*}(0.5)=c \hat{\boldsymbol{\beta}}(0.5)$, regardless of the sign of c.
- Example: $y=y e a r l y ~ s a l a r y, ~ x=a g e . ~ D i v i d e ~ y ~ b y ~ 1000 ~ t o ~$ balance the scale.
\square Shift equivariance: For $y_{t}^{*}=y_{t}+\boldsymbol{x}_{t}^{\top} \gamma$. Then

$$
\hat{\boldsymbol{\beta}}^{*}(\tau)=\hat{\boldsymbol{\beta}}(\tau)+\gamma
$$

Algebraic Properties: Equivalence

\square Equivariance to reparameterization of design: Let $\boldsymbol{X}^{*}=\boldsymbol{X A}$, for nonsingular \boldsymbol{A}, then $\hat{\boldsymbol{\beta}}^{*}(\tau)=\boldsymbol{A}^{-1} \hat{\boldsymbol{\beta}}(\tau)$.
\square For a nondecreasing function h,

$$
\mathrm{P}\{y \leq a\}=\mathrm{P}\{h(y) \leq h(a)\}=\tau
$$

so that

$$
q_{h(y) \mid \boldsymbol{x}}(\tau)=h\left(q_{y \mid \boldsymbol{x}}(\tau)\right),
$$

note that the expectation does not have this property
\square Example: if $\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}$ is the τ th conditional quantile of log return, then $\exp \left(\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}\right)$ is the τ th conditional quantile of price ratio

Illustration: Engel's curve

\square Engel's (1857) study of households' expenditure on food versus annual income. 235 obs.
\square Hypothesis: Food expenditure constitutes a declining share of household income

Table 1: The slopes of Engel's curve.

τ	0.15	0.25	0.5	0.75	0.95	0.99
$\hat{\beta}(\tau)$	0.832	0.849	0.877	0.916	0.922	0.893

'engel' data (log10 - transformed)

Figure 4: Engel curves for food. Households' expenditure on food versus annual income. 235 obs.

Asymptotic Properties: Heuristics

\square Consider $y_{t}=q+\varepsilon_{t}$, define

$$
g_{T}(q) \stackrel{\text { def }}{=} \frac{1}{T} \sum_{t=1}^{T}\left(\mathbf{1}\left(y_{t}<q\right)-\tau\right)
$$

which is the "FOC" of minimizing $T^{-1} \sum_{t=1}^{T} \rho_{\tau}\left(y_{t}-q\right)$.
\bullet Obviously $g_{T}(q)$ is non-decreasing in q, so that $\hat{q}(\tau)>q$ iff $g_{T}(q)<0$. Thus,

$$
\begin{equation*}
\mathrm{P}[\sqrt{T}(\hat{q}(\tau)-q(\tau))>c]=\mathrm{P}\left[g_{T}(q(\tau)+c / \sqrt{T})<0\right] \tag{3}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
\mathrm{E}\left[g_{T}\left(q(\tau)+\frac{c}{\sqrt{T}}\right)\right] & =F\left(q(\tau)+\frac{c}{\sqrt{T}}\right)-\tau \approx f[q(\tau)] \frac{c}{\sqrt{T}} \\
\operatorname{Var}\left[g_{T}\left(q(\tau)+\frac{c}{\sqrt{T}}\right)\right] & =\frac{1}{T} F(1-F) \approx \frac{1}{T} \tau(1-\tau) .
\end{aligned}
$$

Asymptotic Properties: Heuristics

$$
\begin{align*}
\mathrm{P}[\sqrt{T} & \{\hat{q}(\tau)-q(\tau)\}>c]=\mathrm{P}\left[\frac{g_{T}(q(\tau)+c / \sqrt{T})}{\sqrt{\tau(1-\tau) / T}}<0\right] \tag{3}\\
& =\mathrm{P}\left[\frac{g_{T}(q(\tau)+c / \sqrt{T})}{\sqrt{\tau(1-\tau) / T}}-\frac{c}{\lambda}<-\frac{c}{\lambda}\right] \\
& =\mathrm{P}\left[\frac{g_{T}(q(\tau)+c / \sqrt{T})-c f(q(\tau)) / \sqrt{T}}{\sqrt{\tau(1-\tau) / T}}<-\frac{c}{\lambda}\right] \\
& \xrightarrow{\mathcal{L}} 1-\Phi(c / \lambda),
\end{align*}
$$

where $\lambda^{2}=\tau(1-\tau) / f^{2}(q(\tau))$. By CLT. This implies

$$
\sqrt{T}\{\hat{q}(\tau)-q(\tau)\} \stackrel{\mathcal{L}}{\rightarrow} N\left(0, \lambda^{2}\right) .
$$

Quantile Regression: Primary Techniques

QR as Extremal Estimator

Theorem (Newey and McFadden (1994), Theorem 2.1.)
Suppose that $\hat{\boldsymbol{\beta}}$ minimizes the objective function $V_{T}(\boldsymbol{\beta})$ in the parameter space Θ and $\boldsymbol{\beta}_{o}$ is the unique solution of
$F_{Y \mid \boldsymbol{X}}\left(\boldsymbol{x}_{\boldsymbol{t}}^{\top} \boldsymbol{\beta}\right)=\tau . \quad V_{0}(\boldsymbol{\beta})=\mathrm{E}\left[V_{T}(\boldsymbol{\beta})\right]$. If

1. Θ is compact
2. $V_{T}(\boldsymbol{\beta})$ converges uniformly to $V_{0}(\boldsymbol{\beta})$ in probability
3. $V_{0}(\boldsymbol{\beta})$ is continuous
4. $V_{0}(\boldsymbol{\beta})$ is uniquely minimized at $\boldsymbol{\beta}_{0}$.

Then $\hat{\boldsymbol{\beta}} \xrightarrow{\mathrm{P}} \boldsymbol{\beta}_{o}$.
Proof.
(2) follows from LLN and (1). Via FOC of $\mathrm{E}\left[\rho_{\tau}\left(y_{t}-\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}\right)\right]$, the fourth condition follows from $F_{Y \mid \boldsymbol{X}}\left(\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}_{o}\right)=\tau$.

Asymptotic Normality

\square There is no "first order condition" for QR (i.e. $\partial_{\boldsymbol{\beta}} V_{T}(\boldsymbol{\beta})=0$)
\square The QR estimator satisfies "asymptotic FOC":

$$
\sqrt{T} \Psi_{n}(\hat{\boldsymbol{\beta}}(\tau)) \stackrel{\text { def }}{=} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \boldsymbol{x}_{t} \psi_{\tau}\left(y_{t}-\boldsymbol{x}_{t}^{\top} \hat{\boldsymbol{\beta}}\right)=\mathcal{O}_{P}(1)
$$

where $\psi_{\tau}(u)=\mathbf{1}(u<0)-\tau$.
\square Stochastic equicontinuous condition (SEC):

$$
\sqrt{T}\left[\Psi(\hat{\boldsymbol{\beta}})-\Psi\left(\boldsymbol{\beta}_{o}\right)-\left\{\Psi_{n}(\hat{\boldsymbol{\beta}})-\Psi_{n}\left(\boldsymbol{\beta}_{o}\right)\right\}\right]=\mathcal{O}_{p}(1)
$$

where $\Psi(\boldsymbol{\beta})=\mathrm{E}\left[\Psi_{n}(\hat{\boldsymbol{\beta}})\right]$.
\square In particular, $\Psi\left(\boldsymbol{\beta}_{o}\right)=0$ and $\Psi(\boldsymbol{\beta})$ is differentiable

Digression: some conditions guarantee SEC

Let ψ be the (sub)differential of the likelihood function, $q_{t, T}(\boldsymbol{\beta})=\nabla g_{t, T}(\boldsymbol{\beta}) \psi\left(y_{t}-g\left(\boldsymbol{x}_{t}, \boldsymbol{\beta}\right)\right)$, and g is the specified function,

$$
\Psi_{n}(\boldsymbol{\beta})=T^{-1} \sum_{t=1}^{T} q_{t, T}(\boldsymbol{\beta})
$$

$\Phi_{n}(\boldsymbol{\beta})=\mathrm{E}\left[\Psi_{n}(\boldsymbol{\beta})\right]$

$$
\mu_{t, T}(\boldsymbol{\beta}, d)=\sup _{\gamma}\left\{\left\|q_{t, T}(\gamma)-q_{t, T}(\boldsymbol{\beta})\right\|:\|\boldsymbol{\beta}-\gamma\| \leq d\right\} .
$$

Huber (1967) gives conditions required for SEC:
N1 For each $t, \psi_{t, T}(\boldsymbol{\beta})$ is measurable for each $\boldsymbol{\beta} \in \Theta$ and is separable in the sense of $\operatorname{Doob}(1953)$
N 2 For each T, there is some $\boldsymbol{\beta}_{o}$ such that $\Phi_{n}\left(\boldsymbol{\beta}_{o}\right)=0$

Digression: some conditions guarantee SEC

N3 There are strictly positive numbers a, b, c, d_{0} and T_{0} such that for all t and $T \geq T_{0}$,

1. $\left\|\Phi_{n}(\boldsymbol{\beta})\right\| \geq a\|\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}\|$ for $\|\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}\| \leq d_{0}$
2. $\mathrm{E}\left\|\mu_{t, T}(\boldsymbol{\beta}, d)\right\| \leq b d$ for $\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{n}\right\|+d \leq d_{0}, d \geq 0$
3. $\mathrm{E}\left\|\mu_{t, \boldsymbol{T}}(\boldsymbol{\beta}, d)\right\|^{r} \leq c d$ for $\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{n}\right\|+d \leq d_{0}$ for some $r>2$

N4 There exists $K<0$ such that $\mathrm{E}\left[\left\|q_{t, T}(\hat{\boldsymbol{\beta}})\right\|^{2}\right]<K$ is finite for all t, T

For time dependent model (e.g. ARMA, ARCH), Weiss (1991) adds one more condition:
N5 $\left\{x_{t}, \varepsilon_{t}\right\}$ is α-mixing with $\alpha(L) \leq \Delta L^{-\lambda}$ for some
$\lambda>2 r /(r-2), r>2$

Asymptotic Normality

Mean value theorem on $\boldsymbol{\Psi}(\boldsymbol{\beta})$ around $\boldsymbol{\beta}_{o}$ gives

$$
\sqrt{T} \Psi(\hat{\boldsymbol{\beta}})=\underbrace{\sqrt{T} \Psi\left(\boldsymbol{\beta}_{o}\right)}_{=0 \text { correct dynamic specification }}+\sqrt{T} \nabla_{\boldsymbol{\beta}} \Psi(\tilde{\boldsymbol{\beta}})\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{o}\right)
$$

for $\tilde{\boldsymbol{\beta}}$ lies between $\boldsymbol{\beta}_{o}$ and $\hat{\boldsymbol{\beta}}$. With $\hat{\boldsymbol{\beta}} \xrightarrow{\mathrm{P}} \boldsymbol{\beta}_{o}$ and continuity of $\nabla_{\boldsymbol{\beta}} \Psi$,

$$
\nabla_{\boldsymbol{\beta}} \Psi(\tilde{\boldsymbol{\beta}}) \xrightarrow{\mathrm{P}} \nabla_{\boldsymbol{\beta}} \Psi\left(\boldsymbol{\beta}_{o}\right) \stackrel{\text { def }}{=} G_{o}
$$

Suppose G_{o} is nonsingular,

$$
\sqrt{T}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{o}\right) \xrightarrow{\mathrm{P}} G_{o}^{-1} \sqrt{T} \Psi(\hat{\boldsymbol{\beta}}) .
$$

Asymptotic Normality

Note that by SEC and suppose that G_{o}^{-1} has finite norm, by Slutzky theorem

$$
\sqrt{T}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{o}\right) \xrightarrow{\mathrm{P}} G_{o}^{-1} \sqrt{T}\left\{\Psi_{n}\left(\boldsymbol{\beta}_{o}\right)-\Psi_{n}(\hat{\boldsymbol{\beta}})\right\} .
$$

Via a CLT,

$$
\sqrt{T} G_{o}^{-1} \Psi_{n}\left(\boldsymbol{\beta}_{o}\right)=G_{o}^{-1} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} x_{t} \psi\left(y_{t}-\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}_{o}\right) \xrightarrow{\mathcal{L}} N\left(0, G_{o}^{-1} \Sigma_{o} G_{o}^{-1}\right)
$$

where

$$
\Sigma_{o}=\mathrm{E}\left[\boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top} \mathrm{E}\left[\psi\left(y_{t}-\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}_{o}\right)^{2} \mid \boldsymbol{x}_{t}\right]\right],
$$

and $\sqrt{T} \Psi_{n}(\hat{\boldsymbol{\beta}})=\mathcal{O}_{p}(1)$ by "asymptotic FOC". Hence, via Slutzky theorem, we get

$$
\sqrt{T}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{o}\right) \xrightarrow{\mathcal{L}} N\left(0, G_{o}^{-1} \Sigma_{o} G_{o}^{-1}\right)
$$

Quantile Regression: Primary Techniques

Slutzky Theorem

Theorem (Slutzky)
If $X_{n} \xrightarrow{\mathrm{~d}} X$ and $Y_{n} \xrightarrow{\mathrm{P}} c$, where c is a constant, then:

1. $X_{n}+Y_{n} \xrightarrow{\mathrm{~d}} X+c$
2. $X_{n} Y_{n} \xrightarrow{d} c X$, if $c \neq 0$
$X_{n} Y_{n} \xrightarrow{P} 0$, if $c=0$
3. $X_{n} / Y_{n} \xrightarrow{d} X / c$, if $c \neq 0$

Asymptotic Normality

The form of G_{0} and Σ_{0} can be explicitly computed under the i.i.d. error ε_{t} :
\square Under the interchangeability of differentiation and integration,

$$
\begin{aligned}
G_{o} & =\nabla_{\boldsymbol{\beta}} \Psi\left(\boldsymbol{\beta}_{o}\right)=\nabla_{\boldsymbol{\beta}} \mathrm{E}\left[\mathrm{E}\left[\boldsymbol{x}_{t} \psi\left(y_{t}-\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}_{o}\right)\right] \mid \boldsymbol{x}_{t}\right] \\
& =\nabla_{\boldsymbol{\beta}} \mathrm{E}\left[\boldsymbol{x}_{t}\left(F_{\boldsymbol{Y} \mid \boldsymbol{X}}\left(\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}_{o}\right)-\tau\right)\right] \\
& =\mathrm{E}\left[\boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top} f_{\boldsymbol{Y} \mid \boldsymbol{X}}\left(\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}_{o}\right)\right] \\
& =\mathrm{E}\left[\boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top} f_{\varepsilon \mid \boldsymbol{X}}(0)\right] .
\end{aligned}
$$

$\square \psi_{\tau}\left(\varepsilon_{t}\right)$ is i.i.d. Bernoulli with mean 0 and variance $\tau(1-\tau)$ given x_{t} (why?),

$$
\begin{aligned}
\boldsymbol{\Sigma}_{o} & =\mathrm{E}\left[\boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top} \mathrm{E}\left[\left\{\mathbf{1}\left(y_{t}-\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}_{o}\right)-\tau\right\}^{2} \mid \boldsymbol{x}_{t}\right]\right] \\
& =\tau(1-\tau) \mathrm{E}\left[\boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top}\right] \stackrel{\text { def }}{=} \tau(1-\tau) \boldsymbol{M}_{\boldsymbol{x} \boldsymbol{x}}
\end{aligned}
$$

Quantile Regression: Primary Techniques

Asymptotic Normality

Theorem

$$
\sqrt{T}\left(\hat{\beta}-\beta_{o}\right) \xrightarrow{\mathcal{L}} N\left(0, \tau(1-\tau) G_{o}^{-1} M_{X X} G_{o}^{-1}\right)
$$

where $G_{o}=\mathrm{E}\left[\boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top} f_{\varepsilon \mid \boldsymbol{X}, t}(0)\right]$ and $\mathrm{M}_{\boldsymbol{x} \boldsymbol{x}}=\mathrm{E}\left[\boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top}\right]$.

Remarks:

\square Conditional heterogeneityis characterized by the conditional density $f_{\varepsilon \mid \boldsymbol{X}}(0)$ in G_{0}, which is not limited to heteroskedasticity. This theorem applies to independently but not identically distributed data, e.g. DGP2, but not DGP3.
\square If $f_{\varepsilon \mid \boldsymbol{X}}(0)=f_{\varepsilon}(0)$, i.e. conditional homoskedasticity, then

$$
\sqrt{T}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{o}\right) \xrightarrow{\mathcal{L}} N\left(0, \frac{\tau(1-\tau)}{f_{\varepsilon}(0)^{2}} \boldsymbol{M}_{\boldsymbol{X} \boldsymbol{X}}^{-1}\right)
$$

Estimation of Asymptotic Covariance Matrix

Goal: Consistently estimate $\hat{D}\left(\boldsymbol{\beta}_{o}\right)=G_{o}^{-1} M_{\boldsymbol{X} \boldsymbol{X}} G_{o}^{-1}$,
$\bullet M_{X X}: M_{T}=T^{-1} \sum_{t=1}^{T} x_{t} x_{t}^{\top}$
\square It is suggested by Powell in his lecture notes that

$$
G_{T}=\frac{1}{T} \sum_{t=1}^{T} \frac{1}{h} K\left\{\frac{y_{t}-\boldsymbol{x}_{t}^{\top} \hat{\boldsymbol{\beta}}}{h}\right\} \boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top}
$$

where K is a kernel function satisfies $\int K(u) d u=1$, the bandwidth h sastisfies $h \rightarrow 0$ and $n h \rightarrow \infty$. In practice h can be chosen by standard methods like cross-validation, plug-in method.
\square Both estimators are robust to non i.i.d. data

Wald Test

$H_{0}: \boldsymbol{R} \boldsymbol{\beta}(\tau)=\boldsymbol{r}$, where \boldsymbol{R} is $q \times p$ and \boldsymbol{r} is $q \times 1$. Let
$\boldsymbol{D}(\boldsymbol{\beta})=G_{o}^{-1} M_{X X} G_{o}^{-1}$,
$\downarrow \sqrt{T}\left(\hat{\beta}-\beta_{o}\right) \xrightarrow{\mathcal{L}} N\left(0, \tau(1-\tau) D\left(\beta_{o}\right)\right)$,
\bullet Under the null,

$$
\begin{aligned}
& \sqrt{\mathbf{T}} R\left(\hat{\beta}-\beta_{o}\right)=\sqrt{T}(R \hat{\beta}-r) \xrightarrow{\mathcal{L}} N\left(0, \tau(1-\tau) \Gamma\left(\beta_{o}\right)\right), \\
& \text { where } \Gamma\left(\beta_{o}\right)=R D\left(\beta_{o}\right) R^{\top} .
\end{aligned}
$$

Theorem (The Null Distribution of the Wald Test)

$$
\mathcal{W}_{T}=T[\boldsymbol{R} \hat{\boldsymbol{\beta}}-\boldsymbol{r}]^{\top} \hat{\boldsymbol{\Gamma}}^{-1}[\boldsymbol{R} \hat{\boldsymbol{\beta}}-\boldsymbol{r}] /[\tau(1-\tau)] \xrightarrow{\mathcal{L}} \chi^{2}(q),
$$

where $\hat{\boldsymbol{\Gamma}}=R \hat{\boldsymbol{D}}\left(\boldsymbol{\beta}_{o}\right) \boldsymbol{R}^{\top}$.
Quantile Regression: Primary Techniques

Sup Wald Test

$\square H_{0}: \boldsymbol{R} \boldsymbol{\beta}(\tau)=\boldsymbol{r}$ for all $\tau \in \mathcal{S} \subset(0,1)$ a compact set, $\boldsymbol{R}: q \times p$
\checkmark Define the Brownian bridge: $\boldsymbol{B}_{q} \stackrel{\mathrm{~d}}{=}[\tau(1-\tau)]^{1 / 2} N\left(0, I_{q}\right)$, for $0<\tau<1$, and hence

$$
\hat{\boldsymbol{\Gamma}}^{-1 / 2} \sqrt{T}[\boldsymbol{R} \hat{\boldsymbol{\beta}}(\tau)-\boldsymbol{r}] \xrightarrow{\mathcal{L}} \boldsymbol{B}_{q}(\tau) .
$$

Thus, $\mathcal{W}_{T}(\tau) \xrightarrow{\mathcal{L}}\left\|\boldsymbol{B}_{q}(\tau) / \sqrt{\tau(1-\tau)}\right\|^{2}$, for all τ
Theorem

$$
\sup _{\tau \in \mathcal{S}} \mathcal{W}_{T}(\tau) \stackrel{\mathcal{L}}{\rightarrow} \sup _{\tau \in \mathcal{S}}\left\|\frac{\boldsymbol{B}_{q}(\tau)}{\sqrt{\tau(1-\tau)}}\right\|^{2},
$$

where $S \subset(0,1)$ is a compact set.

Sup Wald Test

\square If $\mathcal{S}=[a, b]$, select $a=\tau_{1}<\ldots<\tau_{n}=b$, and compute

$$
\sup _{\tau \in \mathcal{S}} \mathcal{W}_{T}(\tau) \approx \sup _{i=1, . ., n} \mathcal{W}_{T}\left(\tau_{i}\right)
$$

\square For $s=\tau /(1-\tau), B(\tau) / \sqrt{\tau(1-\tau)} \stackrel{\mathrm{d}}{=} W(s) / \sqrt{s}$, where W : Wiener process, so that:

$$
\begin{equation*}
\mathrm{P}\left\{\sup _{\tau \in[a, b]}\left\|\frac{B_{q}(\tau)}{\sqrt{\tau(1-\tau)}}\right\|^{2}<c\right\}=\mathrm{P}\left\{\sup _{s \in\left[1, s_{2} / s_{1}\right]}\left\|\frac{W_{q}(s)}{\sqrt{s}}\right\|^{2}<c\right\} \tag{4}
\end{equation*}
$$

for all $c>0$ with $s_{1}=a /(1-a), s_{2}=b /(1-b)$
\square Critical values of (4) can be obtained via simulations; some special cases were tabulated in in DeLong (1981) and Andrews (1993)

Likelihood Ratio Test

\square Let $\hat{\boldsymbol{\beta}}(\tau)$ and $\tilde{\boldsymbol{\beta}}(\tau)$ be the constrained and unconstrained estimators and $\hat{V}_{T}(\tau)=V_{T}(\hat{\boldsymbol{\beta}}(\tau) ; \tau)$ and $\tilde{V}_{T}(\tau)=V_{T}(\tilde{\boldsymbol{\beta}}(\tau) ; \tau)$ be the corresponding objective functions
\square Given the asymmetric Laplace density: $f_{\tau}(u)=\tau(1-\tau) \exp \left[-\rho_{\tau}(u)\right]$, the log-likelihood is

$$
L_{T}(\boldsymbol{\beta} ; \tau)=T \log (\tau(1-\tau))-\sum_{t=1}^{T} \rho_{\tau}\left(y_{t}-\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}\right)
$$

$\square-2$ times the log-likelihood ratio is

$$
-2\left[L_{T}(\hat{\boldsymbol{\beta}}(\tau) ; \tau)-L_{T}(\tilde{\boldsymbol{\beta}}(\tau) ; \tau)\right]=2\left[\tilde{V}_{T}(\tau)-\hat{V}_{T}(\tau)\right]
$$

Likelihood Ratio Test

\square Koenker and Machado (1999):

$$
\mathcal{L R}_{T}(\tau)=\frac{2\left[\tilde{V}_{T}(\tau)-\hat{V}_{T}(\tau)\right]}{\tau(1-\tau)\left[f_{\varepsilon}(0)\right]^{-1}} \stackrel{\mathcal{L}}{\rightarrow} \chi^{2}(q) .
$$

where q is the number of restrictions. The test is also known as the quantile ρ test

Nonlinear Quantile Regression

\square The quantile specification can be nonlinear, i.e.

$$
q_{Y \mid X}(\tau \mid \boldsymbol{x})=g\left(\boldsymbol{x}, \boldsymbol{\beta}_{o}(\tau)\right)
$$

where g is nonlinear in $\boldsymbol{\beta}$.
\square Define the nonlinear quantile regression estimator

$$
\hat{\boldsymbol{\beta}}(\tau)=\underset{\boldsymbol{\beta}}{\arg \min } \sum_{t=1}^{T} \rho_{\tau}\left(y_{t}-g\left(\boldsymbol{x}_{t}, \boldsymbol{\beta}\right)\right)
$$

\square Replace the "asymptotic FOC" in the linear case by

$$
\sqrt{T} \Psi_{n}(\hat{\boldsymbol{\beta}}(\tau)) \stackrel{\text { def }}{=} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \hat{\boldsymbol{\beta}}\right) \psi_{\tau}\left(y_{t}-g\left(\boldsymbol{x}_{t}, \hat{\boldsymbol{\beta}}\right)\right)=\mathcal{O}_{P}(1)
$$

Nonlinear Quantile Regression

The following theorem can be proved by imitating that of linear QR :
Theorem
Let $\Psi_{n}(\boldsymbol{\beta}) \stackrel{\text { def }}{=} T^{-1} \sum_{t=1}^{T} \nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \hat{\boldsymbol{\beta}}\right) \psi_{\tau}\left(y_{t}-g\left(\boldsymbol{x}_{t}, \hat{\boldsymbol{\beta}}\right)\right)$ and $\Psi(\boldsymbol{\beta})=\mathrm{E}\left[\Psi_{n}(\boldsymbol{\beta})\right]$. Suppose that

1. $\nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \hat{\boldsymbol{\beta}}\right)$ is continuous in $\boldsymbol{\beta}$
2. The stochastic equicontinuous condition holds for Ψ_{n} and Ψ
3. $\sqrt{T} \Psi_{n}\left(\boldsymbol{\beta}_{o}\right) \xrightarrow{\mathcal{L}} N\left(0, \Sigma_{o}\right)$ where

$$
\Sigma_{o}=\tau(1-\tau) \mathrm{E}\left[\nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \boldsymbol{\beta}_{o}\right) \nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \boldsymbol{\beta}_{o}\right)^{\top}\right]
$$

Then,

$$
\sqrt{T}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{o}\right) \xrightarrow{\mathcal{L}} N\left(0, G_{o}^{-1} \Sigma_{o} G_{o}^{-1}\right)
$$

where $G_{o}=-\mathrm{E}\left[\nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \boldsymbol{\beta}_{o}\right) \nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \boldsymbol{\beta}_{o}\right)^{\top} f_{\varepsilon \mid \boldsymbol{X}}(0)\right]$.

Nonlinear Quantile Regression

\square Koenker (2005) Sec. 4.4 states the same limiting theorem under somewhat weaker condition
\square The estimator

$$
\begin{aligned}
M_{T} & =\frac{1}{T} \sum_{t=1}^{T} \nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \hat{\boldsymbol{\beta}}\right) \nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \hat{\boldsymbol{\beta}}\right)^{\top} \\
& \xrightarrow{\mathrm{P}} \mathrm{E}\left[\nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \boldsymbol{\beta}_{o}\right) \nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \boldsymbol{\beta}_{o}\right)^{\top}\right] \stackrel{\text { def }}{=} \boldsymbol{M}_{\boldsymbol{x} \boldsymbol{x}}
\end{aligned}
$$

\square The estimator

$$
G_{T}=\frac{1}{T} \sum_{t=1}^{T} \frac{1}{h} K\left\{\frac{y_{t}-g\left(\boldsymbol{x}_{t}, \hat{\boldsymbol{\beta}}\right)}{h}\right\} \nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \boldsymbol{\beta}_{o}\right) \nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \boldsymbol{\beta}_{o}\right)^{\top}
$$

is again consistent for G_{0}

QR as M-estimator

Definition (Serfling (1980))
For any function $\psi(x, \boldsymbol{\beta})$, the M-functional is defined by the solution of

$$
\int \psi(x, \boldsymbol{\beta}) d F(x)=0
$$

and the associate M-estimator is defined by the solution of

$$
\int \psi(x, \boldsymbol{\beta}) d F_{T}(x)=\frac{1}{T} \sum_{t=1}^{T} \psi\left(X_{t}, \boldsymbol{\beta}\right)=0
$$

where $F_{T}(x)=T^{-1} \sum_{t=1}^{T} \mathbf{1}\left(X_{t} \leq x\right)$.
\square Example: $\psi(u)=u-\beta$, the M-functional is the mean of X; the M-estimator is the sample mean

QR as M-estimator

\square Fix $0<\tau<1$, let $\psi_{\tau}(u, q)=\mathbf{1}(u<q)-\tau$, the M-functional is the τ th quantile of X, as we have shown before; the so-called "asymtotic M-estimator" satisfies instead

$$
\sum_{t=1}^{T} \psi\left(X_{t}, q\right)=\mathcal{O}\left(\delta_{T}\right)
$$

where $\delta_{T} \rightarrow \infty$.
\square This corresponds to the "asymptotic FOC" in the previous section on asymptotic normality of QR

QR as M-estimator

\square Fix $0<\tau<1$, nonlinear τ th QR M-functional can be defined by the solution of

$$
\int \nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \boldsymbol{\beta}\right) \psi_{\tau}(y-g(\boldsymbol{x}, \boldsymbol{\beta})) d F_{\boldsymbol{Y} \mid \boldsymbol{X}}(y)=0
$$

which exactly corresponds to $\Psi\left(\boldsymbol{\beta}_{o}\right)=0$ in the previous discussion for asymp. normality, and $\hat{\boldsymbol{\beta}}(\tau)$ is the "asymptotic M-estimator"
\square QR satisfies $\delta_{T}=\sqrt{T}$, for $\operatorname{dim}(\beta)=p$ fixed and bounded $\nabla_{\boldsymbol{\beta}} g(\boldsymbol{x}, \boldsymbol{\beta})$
\square Huber (1967) shows consistency with $\delta_{T}=T$ and asymptotic normality with $\delta_{T}=\sqrt{T}$

Bahadur Representation

Theorem
Under the same conditions for proving the asymptotic normality of nonlinear quantile estimator, we have

$$
\sqrt{T}\left(\hat{\boldsymbol{\beta}}(\tau)-\boldsymbol{\beta}_{o}(\tau)\right)=G_{o}^{-1} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \boldsymbol{\beta}_{o}\right) \psi_{\tau}\left(u_{t}(\tau)\right)+R_{T},
$$

where $u_{t}(\tau)=y_{t}-g\left(\boldsymbol{x}_{t}, \boldsymbol{\beta}_{o}(\tau)\right)$ and $R_{T}=\mathcal{O}_{P}(1)$.
$\square u_{t}(\tau)=y_{t}-g\left(\boldsymbol{x}_{t}, \boldsymbol{\beta}_{o}(\tau)\right)=\varepsilon_{t}$ in additive error model
\square The asymptotic normality easily follows from the Bahadur representation
\square For $\operatorname{dim}(x)=1$, i.i.d. error, the rate of R_{n}

$$
R_{T}=\mathcal{O}\left(T^{-1 / 4}(\log \log T)^{3 / 4}\right)
$$

which is the sharpest possible rate achieved by Kiefer (1967). Quantile Regression: Primary Techniques

Bahadur Representation

\square Bahadur representation can be derived for "asymptotic M-estimator"
\square He and Shao (1996) prove Bahadur representation under weaker conditions and non identically distributed errors

$$
\begin{aligned}
& \sqrt{T}\left(\hat{\boldsymbol{\beta}}(\tau)-\boldsymbol{\beta}_{o}(\tau)\right) \\
& \quad=G_{o}^{-1} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \nabla_{\boldsymbol{\beta}} g\left(\boldsymbol{x}_{t}, \boldsymbol{\beta}_{o}\right) \psi_{\tau}\left(u_{t}(\tau)\right)+R_{T, 1}+R_{T, 2}
\end{aligned}
$$

where $R_{T, 1}$ relates to the accumulated error of non identical distribution and $R_{T, 2}$ relates to Taylor approximation error of ψ and δ_{T}
$\square \mathrm{Wu}(2007)$ proves Bahadur representation under a version of dependent errors

Inversion of Empirical Distribution

\checkmark Suppose the data $\left\{\left(Y_{t}, \boldsymbol{X}_{t}\right) ; t=1, \ldots, T\right\}$ are i.i.d. and we would like to estimate the τ th conditional quantile function of the response Y, given $X=\boldsymbol{x}$:

$$
g(x)=q_{Y \mid X}(\tau \mid x)
$$

\square The first idea: find

$$
q_{\boldsymbol{Y} \mid \boldsymbol{X}}(\tau \mid \boldsymbol{x})=\inf \left\{y: \hat{F}_{\boldsymbol{Y} \mid \boldsymbol{X}}(y \mid \boldsymbol{x}) \geq \tau\right\}
$$

where $\hat{F}_{\boldsymbol{Y} \mid \boldsymbol{X}}(y \mid \boldsymbol{x})$ is an estimate for $F_{\boldsymbol{Y} \mid \boldsymbol{X}}(y \mid \boldsymbol{x})$. Such approach is proposed by Li and Racine (2007)

Conditional CDF estimator

Li and Racine (2007) propose two estimators:

$$
\tilde{F}(y \mid x)=\frac{T^{-1} \sum_{t=1}^{T} \mathbf{1}\left(Y_{i} \leq y\right) K_{H}\left(X_{t}-x\right)}{\hat{f}_{X}(x)}
$$

and

$$
\hat{F}(y \mid x)=\frac{T^{-1} \sum_{t=1}^{T} G\left\{\left(y-Y_{i}\right) / h_{0}\right\} K_{H}\left(X_{t}-x\right)}{\hat{f}_{X}(x)}
$$

where $G(\cdot)$ is a kernel CDF (e.g. standard normal CDF), $K_{H}(\cdot)=K_{h_{1}}(\cdot) \ldots K_{h_{p}}(\cdot)$ is a product kernel function with $K_{h_{j}}(x)=K\left(x / h_{j}\right), H=\left(h_{1}, \ldots, h_{p}\right)$ bandwidthes and

$$
\hat{f}_{X}(x)=\frac{1}{T} \sum_{t=1}^{T} K_{H}\left(x-X_{t}\right)
$$

Quantile Regression: Primary Techniques

Asymptotic Normality

Assumptions:
(A1) Both $f_{\boldsymbol{X}}(\boldsymbol{x})$ and $F(y \mid x)$ have continuous second order derivative with respect to x.
(A2) $n h_{1} \ldots h_{p} \rightarrow \infty$ and $h_{j} \rightarrow 0$ for $j=1, \ldots, p$
(A3) $K(\cdot)$ is symmetric, bounded, compactly supported and integrated to 1.
Let

$$
\begin{aligned}
& \tilde{M}(y, x)=\hat{f}_{\boldsymbol{X}}(x)[\tilde{F}(y \mid x)-F(y \mid x)] \\
& \hat{M}(y, x)=\hat{f}_{\boldsymbol{X}}(x)[\hat{F}(y \mid x)-F(y \mid x)]
\end{aligned}
$$

Asymptotic Normality of $\tilde{F}(y \mid x)$

Theorem (A)
Under (A1)-(A3) and $f_{\boldsymbol{X}}(\boldsymbol{x})>0$ and $F(y \mid x)>0$, we have

1. $\mathrm{E}[\tilde{M}(y, \boldsymbol{x})]=f_{\boldsymbol{X}}(\boldsymbol{x})\left[\sum_{j=1}^{p} h_{j}^{2} B_{j}(y, \boldsymbol{x})\right]+\mathcal{O}\left(\sum_{j=1}^{p} h_{j}^{2}\right)$, where $B_{j}(y, \boldsymbol{x})=(1 / 2) \kappa_{2}\left[F_{j j}(y \mid \boldsymbol{x})+2 f_{\boldsymbol{X}, j}(\boldsymbol{x}) F_{j}(y \mid \boldsymbol{x}) / f_{\boldsymbol{X}}(\boldsymbol{x})\right]$.
2. $\operatorname{Var}[\tilde{M}(y, x)]=\left(n h_{1} \ldots h_{p}\right)^{-1} f_{\boldsymbol{X}}(\boldsymbol{x})^{2} \Sigma_{y \mid \boldsymbol{X}}+\mathcal{O}\left(\left(n h_{1} \ldots h_{p}\right)^{-1}\right)$, where $\Sigma_{y \mid \boldsymbol{x}}=\|K\|_{2}^{2 p} F(y \mid \boldsymbol{x})[1-F(y \mid \boldsymbol{x})] / f_{\boldsymbol{X}}(\boldsymbol{x})$
3. If $\left(n h_{1} \ldots h_{p}\right)^{-1 / 2} \sum_{j=1}^{p} h_{j}^{3}=\mathcal{O}(1)$, then

$$
\left(n h_{1} \ldots h_{p}\right)^{-1 / 2}\left[\tilde{F}(y \mid \boldsymbol{x})-F(y \mid \boldsymbol{x})-\sum_{j=1}^{p} h_{j}^{2} B_{j}(y, \boldsymbol{x})\right] \xrightarrow{\mathcal{L}} N\left(0, \Sigma_{y \mid \boldsymbol{x}}\right)
$$

Asymptotic Normality of $\hat{F}(y \mid x)$

Theorem (B)
Define $B_{0}(y, \boldsymbol{x})=(1 / 2) \kappa_{2} F_{y y}(y \mid \boldsymbol{x})$ and let $\Omega(y, \boldsymbol{x})=\|K\|_{2}^{2 p} F_{y}(y \mid \boldsymbol{x}) / f_{\boldsymbol{X}}(\boldsymbol{x})$. Letting $|\bar{h}|^{2}=\sum_{j=0}^{p} h_{j}^{2}$, then under conditions similar to the last theorem,

1. $\mathrm{E}[\hat{M}(\boldsymbol{y}, \boldsymbol{x})]=f_{\boldsymbol{X}}(\boldsymbol{x})\left[\sum_{j=0}^{p} h_{j}^{2} B_{j}(y, x)\right]+\mathcal{O}\left(|h|^{2}\right)$, where

$$
B_{j}(y, \boldsymbol{x})=(1 / 2) \kappa_{2}\left[F_{j j}(y \mid \boldsymbol{x})+2 f_{\boldsymbol{X}, j}(\boldsymbol{x}) F_{j}(y \mid \boldsymbol{x}) / f_{\boldsymbol{X}}(\boldsymbol{x})\right] .
$$

2. $\operatorname{Var}[\hat{M}(y, x)]=$

$$
\left(n h_{1} \ldots h_{p}\right)^{-1} f_{\boldsymbol{X}}(\boldsymbol{x})^{2}\left[\Sigma_{\boldsymbol{y} \mid \boldsymbol{X}}-h_{0} C_{K} \Omega(y, x)\right]+\mathcal{O}\left(\left(n h_{1} \ldots h_{p}\right)^{-1}\right), \text { where }
$$

$$
C_{K}=2 \int G(v) K(v) v d v
$$

3. If $\left(n h_{1} \ldots h_{p}\right)^{-1 / 2} \sum_{j=1}^{p} h_{j}^{3}=\mathcal{O}(1)$, then
$\quad\left(n h_{1} \ldots h_{p}\right)^{-1 / 2}\left[\hat{F}(y \mid \boldsymbol{x})-F(y \mid \boldsymbol{x})-\sum_{j=1}^{p} h_{j}^{2} B_{j}(y, \boldsymbol{x})\right] \xrightarrow{\mathcal{L}} N\left(0, \Sigma_{y \mid \boldsymbol{x}}\right)$
Quantile Regression: Ptimary Techniques

Asymptotic normality of conditional quantile estimator

Define

$$
\begin{aligned}
& \tilde{q}_{Y \mid X}(\tau \mid x) \stackrel{\text { def }}{=} \underset{q}{\arg \min }|\tau-\hat{F}(q \mid x)| \\
& \hat{q}_{Y \mid X}(\tau \mid x) \stackrel{\text { def }}{=} \underset{q}{\arg \min }|\tau-\hat{F}(q \mid x)|
\end{aligned}
$$

and

$$
B_{\tau, j}(y, \boldsymbol{x}) \stackrel{\text { def }}{=} \frac{B_{j}(y, \boldsymbol{x})}{f_{Y \mid \boldsymbol{X}}\left(q_{\boldsymbol{Y} \mid \boldsymbol{X}}(\tau \mid \boldsymbol{x})\right)}
$$

Asymptotic normality of conditional quantile estimator

Theorem
Assume that the density of $F(y \mid x)$ exists. Under similar condition as in Theorem (A),

$$
\begin{aligned}
\left(n h_{1} \ldots h_{p}\right)^{-1 / 2} & {\left[\tilde{q}_{Y \mid \boldsymbol{X}}(\tau \mid \boldsymbol{x})-q_{Y \mid \boldsymbol{X}}(\tau \mid \boldsymbol{x})-\sum_{j=1}^{p} h_{j}^{2} B_{\tau, j}(y, \boldsymbol{x})\right] } \\
& \stackrel{\mathcal{L}}{\rightarrow} N\left(0, V_{\tau}(\boldsymbol{x})\right),
\end{aligned}
$$

where $V_{\tau}(\boldsymbol{x})=\tau(1-\tau)\|K\|_{2}^{2 p} /\left[f_{Y \mid \boldsymbol{X}}^{2}\left(q_{Y \mid \boldsymbol{X}}(\tau \mid \boldsymbol{x}) \mid \boldsymbol{x}\right) f_{\boldsymbol{X}}(\boldsymbol{x})\right]$

Asymptotic normality of conditional quantile estimator

Theorem
Assume that the density of $F(y \mid \boldsymbol{x})$ exists. Under similar condition as in Theorem (B),

$$
\begin{aligned}
\left(n h_{1} \ldots h_{p}\right)^{-1 / 2} & {\left[\tilde{q}_{Y \mid \boldsymbol{X}}(\tau \mid \boldsymbol{x})-q_{Y \mid \boldsymbol{X}}(\tau \mid \boldsymbol{x})-\sum_{j=0}^{p} h_{j}^{2} B_{\tau, j}(y, \boldsymbol{x})\right] } \\
& \stackrel{\mathcal{L}}{\rightarrow} N\left(0, V_{\tau}(\boldsymbol{x})\right),
\end{aligned}
$$

where $V_{\tau}(x)$ is similar to the last theorem

Kernel Functions

Kernel	$K(u)$	$\\|K\\|_{2}^{2}$	$\kappa_{2}(K)$
Uniform	$\frac{1}{2} \mathbf{1}(\|u\| \leq 1)$	$1 / 2$	$1 / 3$
Epanechnikov	$\frac{3}{4}\left(1-u^{2}\right) \mathbf{1}(\|u\| \leq 1)$	$3 / 5$	$1 / 5$
Quartic	$\frac{15}{16}\left(1-u^{2}\right)^{2} \mathbf{1}(\|u\| \leq 1)$	$5 / 7$	$1 / 7$
Triweight	$\frac{35}{32}\left(1-u^{2}\right)^{3} \mathbf{1}(\|u\| \leq 1)$	$350 / 429$	$1 / 9$
Gaussian	$\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} u^{2}\right)$	$1 / 2 \sqrt{\pi}$	1

Table 2: Common Second-Order kernels (symmetric)

Choice of Bandwidth

\checkmark The MSE of $\tilde{F}(y \mid x)$ is

$$
\operatorname{MSE}\left(h_{1}, \ldots, h_{p}\right) \sim\left[\sum_{j=1}^{p} h_{j}^{2} B_{j}(y, x)\right]^{2}+\frac{\Sigma_{y \mid x}}{n h_{1} \ldots h_{p}}
$$

minimizing the MSE suggests that the bandwidth $h_{j} \sim n^{1 /(4+p)}$
\square The MSE of $\hat{F}(y \mid x)$ is
$\operatorname{MSE}\left(h_{1}, \ldots, h_{p}\right) \sim\left[\sum_{j=0}^{p} h_{j}^{2} B_{j}(y, x)\right]^{2}+\frac{\Sigma_{y \mid \boldsymbol{x}}-h_{0} C_{K} \Omega(y, x)}{n h_{1} \ldots h_{p}}$
minimizing the MSE suggests $h_{j} \sim n^{1 /(4+p)}$ while $h_{0}=\mathcal{O}\left(h_{j}\right)$.

Cross Validation

$\square \mathrm{Li}$, Lin and Racine (2013) propose the following cross-validation function:

$$
\mathrm{CV}(\gamma)=\frac{1}{T} \sum_{t=1}^{T} \int\left\{\mathbf{1}\left(Y_{t} \leq y\right)-\hat{F}_{-t}\left(y \mid \boldsymbol{X}_{t}\right)\right\}^{2} \mathcal{M}\left(\boldsymbol{X}_{t}\right) M(y) d y
$$

where $\hat{F}_{-t}\left(y \mid \boldsymbol{X}_{t}\right)$ is the leave-one-out estimator of $F\left(y \mid \boldsymbol{X}_{t}\right)$, defined by

$$
\hat{F}_{-t}\left(y \mid \boldsymbol{X}_{t}\right)=\left\{\frac{1}{T} \sum_{s \neq t} \mathbf{1}\left(Y_{s} \leq y\right) K_{H}\left(\boldsymbol{x}-\boldsymbol{X}_{s}\right)\right\} / \hat{f}_{-t}\left(\boldsymbol{X}_{t}\right)
$$

\checkmark One can apply R package "np"

Local Polynomial Quantile Regression

Definition

Consider $\operatorname{dim}(x)=1$, for fix x, the local polynomial quantile regression problem with order p is
$\min _{\beta \in \mathbb{R}^{p+1}} \sum_{t=1}^{T} K_{h}\left(x_{i}-x\right) \rho_{\tau}\left\{y_{i}-\beta_{0}-\beta_{1}\left(x_{i}-x\right)-\ldots-\beta_{p}\left(x_{i}-x\right)^{p}\right\}$
where $K_{h}(x)=h^{-1} K(x / h)$ and K is a kernel function, $h \rightarrow 0$ and $n h \rightarrow \infty$
\square The most popular type is $p=1$, which avoids boundary effect
$\square \beta_{j} / j$! is the estimator for j th derivative of the true function g

Asymptotic Normality

Theorem (Theorem 3 of Fan, Hu and Truong (1994))

1. (Interior property) Under regularity conditions and $n h \rightarrow \infty$ and $h \rightarrow 0$. The local linear estimator \hat{l}_{τ}

$$
\hat{l}_{\tau}(x)-I_{\tau}(x) \xrightarrow{\mathcal{L}} N\left(\beta(x) h^{2}, \frac{r(x)}{n h}\right),
$$

where

$$
\begin{aligned}
& \beta(x)=\frac{l_{\tau}^{\prime \prime}(x)}{2} \int u^{2} K(u) d u, \\
& r^{2}(x)=\frac{\int K^{2}(u) d u}{f_{X}(x)} \frac{\tau(1-\tau)}{f_{Y \mid X}\left(I_{\tau}(x) \mid x\right)^{2}} .
\end{aligned}
$$

Quantile Regression: Primary Techniques

Asymptotic Normality

2 (Boundary behavior) Under regularity conditions,

$$
\hat{I}_{\tau}(x)-I_{\tau}(x) \xrightarrow{\mathcal{L}} N\left(\beta h^{2}, \frac{r^{2}}{n h}\right),
$$

where $x_{n}=c h, \beta=0.5 \alpha(c) l_{\tau}^{\prime \prime}(0)$,

$$
r^{2}=\frac{\beta(c) \tau(1-\tau)}{f_{Y \mid X}\left(l_{\tau}(0) \mid 0\right)^{2} f_{X}(0)}
$$

Remarks:
\checkmark Boundary effect: the convergence rate is of low order on the end points \leftarrow local linear estimator resolves this problem
\square The bias of local linear QR does not depend on the design $\left(f_{X}(x)\right)$

Choice of bandwidth

\square The MSE follows from the theorem

$$
\operatorname{MSE}(h) \simeq \frac{1}{4} h^{4} \mu_{2}(K)^{2} I_{\tau}^{\prime \prime}(x)^{2}+\frac{\|K\|_{2}^{2} \tau(1-\tau)}{n h f_{X}(x) f_{Y \mid X}\left(I_{\tau}(x) \mid x\right)^{2}},
$$

where $\mu_{2}(K)=\int u^{2} K(u) d u$.
\square The h minimizes the MSE satisfies

$$
h_{\tau}=\frac{\|K\|_{2}^{2} \tau(1-\tau)}{n \mu_{2}(K)^{2} I_{\tau}^{\prime \prime}(x)^{2} f_{X}(x) f_{Y \mid X}\left(I_{\tau}(x) \mid x\right)^{2}}
$$

\square Suppose $f_{Y \mid X}$ is normal with $f_{Y \mid X}\left(I_{\tau}(x) \mid x\right)=\sigma_{X}^{-1} \phi\left(\Phi^{-1}(\tau)\right)$

$$
\left(\frac{h_{\tau_{1}}}{h_{\tau_{2}}}\right)^{5}=\frac{\tau_{1}\left(1-\tau_{1}\right) \phi\left(\Phi^{-1}\left(\tau_{1}\right)\right)^{2}}{\tau_{2}\left(1-\tau_{2}\right) \phi\left(\Phi^{-1}\left(\tau_{2}\right)\right)^{2}}
$$

Choice of bandwidth

\square Hence, Yu and Jones (1998) suggest the rule-of-thumb:

$$
h_{\tau}=\left[4 \tau(1-\tau) \phi\left(\Phi^{-1}(\tau)\right)^{-2}\right]^{1 / 5} h_{1 / 2}
$$

where $h_{1 / 2}$ is chosen by some standard method for mean
\square Cross-validation: quantile estimator can be viewed as a by-product of CDF estimation, it seems reasonable to se- lect bandwidths by a method optimal for CDF estimation

Illustration: motorcycle data

\square Experimental measurements of the acceleration of the head in simulated motorcycle accident
\square Two variables:

- times: in milliseconds after impact
- accel: in "g"
\square Note the crossing of the estimated quantile curves beyond about 55 milliseconds
\square For the first few milliseconds, variability is almost negligible and gradually increases thereafter

Figure 5: Motorcycle data. Red line: $\tau=0.5$. Blue line: $\tau=0.3$. Green line: $\tau=0.7$. $h=2$.

Penalty Method

\checkmark To penalize the roughness of the fitted function
\checkmark Bosch, Ye and Woodworth (1995) consider the problem:

$$
\min _{g \in \mathcal{G}} \sum_{t=1}^{T} \rho_{\tau}\left(y_{t}-g(x)\right)+\lambda \int\left(g^{\prime \prime}(x)\right)^{2} d x
$$

where \mathcal{G} is the Sobolev space of C^{2} function with square integrable second derivatives
\square Koenker, Ng and Portnoy (1994) consider the L_{p} penalties:

$$
J(g)=\left\|g^{\prime \prime}\right\|_{p}=\left[\int\left|g^{\prime \prime}(x)\right|^{p} d x\right]^{1 / p}
$$

and focus on $p=1$ and $p=\infty$

The impact of the subprime crisis

Lehman Lehman collapse sends shockwave round world

Financial तurd dollar weakens waly Downturin slumplatiane wol CARRYING DANGERS THAT, WHILE NOW LATENT, ARE POTENTIALLY LETHAL. Co Economic disast
 anxiety daepenbse asse
nirvinalindorbet
Interi isl RECESSIONFC Mompate Murrenciobal tend

THE WALLSMRELI JOURNAL

 risis on Wall Street as Lehman Totters, mon-acoromins Lomic recession
 economic breakdown vorld markets breakdownt.

Value at Risk (VaR)

Value at risk ($V a R$) has become the standard measure of market risk used by financial institutions and their regulators.

- R. Engle and S. Manganelli (2004)
$\square \mathrm{VaR}$ is a measure of how much a certain portfolio can lose within a given time period, for a given confidence level

VaR and Basel Accords

\square Basel accords: a set of recommendations on banking law and regulation that applies to all banks
\square Basel committee on banking supervision: formed by central bankers from G10 countries (now 27) in 1975, in response to the subsequent international financial turmoil followed by the liquidation of Herstatt Bank

VaR and Basel Accords

\square Banks are allowed to use internal risk measures on their trading book, but certain rules should be fulfilled
\square Backtesting is a technique used to compare the predicted losses from VaR with the actual losses realised at the end of the period of time.
\square Key points on backtesting:

1. Data sets should be updated at least once every 3 months
2. VaR must be calculated on a daily basis 99th percentile one-tailed confidence interval is to be used
3. A 10 day movement in prices should be used as the instant price shock
4. 1 year is classified as a minimum period for "historical" observations

Basel III modifications

\square Basel III: commencing on Jan. 1, 2011, with most changes becoming effective within the next six years
\square Additional requirement: Banks will be subject to new "stressed" value-at-risk(SVaR) models, increased counterparty risk charges, more restricted netting of offsetting positions, increased charges for exposures to other financial institutions and increased charges for securitisation exposures
\square On a daily basis, a bank must meet the capital requirement expressed as the higher of its latest SVaR number and an average of SVaR numbers calculated over the preceding 60 business days multiplied by the multiplication factor

Stressed VaR key points

1. The stressed VaR is computed on a 10 -day 99% confidence basis, but with inputs taken from times of significant financial stress relevant to the firmis portfolio. Therefore, altogether, in addition to the current requirement of between three to four timesthe 10-day $99 \% \mathrm{VaR}$, three times the 10-day 99% SVaR will be required
2. Model inputs are calibrated to historical data from a continuous 12 -month period of significant financial stress (equivalent to a VaR measure calculated over a dataset including 2008 and 2009)
3. Data sets update every month and reassess whenever a material change in market prices takes place
4. Risk factors incorporated in pricing models should also be included in VaR calculations and omissions must be justified

Definition (Value-at-Risk)
If y_{t} is the asset return and $\tau \in(0,1)$, the $\mathrm{VaR}_{t, \tau}$ is defined by

$$
\mathrm{P}\left(y_{t}<-\mathrm{VaR}_{t, \tau} \mid \mathcal{F}_{t-1}\right)=\tau .
$$

Definition (Coherent risk measure, Artzner et al. (1999))
A risk measure R is said to be coherent if for portfolios P, P_{1}, P_{2}, the followings are satisfied:

1. Translation invariance: for any constant c, $R(P+c)=R(P)-c$
2. Linear homogeneity: for any constant $\lambda>0, R(\lambda P)=\lambda R(P)$
3. Monotonicity: If P_{1} stochastically dominates P_{2}, i.e. $F_{P_{1}}(y) \leq F_{P_{2}}(y)$, then $R\left(P_{1}\right) \leq R\left(P_{2}\right)$
4. Subadditivity: $R\left(P_{1}+P_{2}\right) \leq R\left(P_{1}\right)+R\left(P_{2}\right)$

VaR violates subadditivity

Consider ε_{i} and η_{i} are independent,

$$
X_{i}=\varepsilon_{i}+\eta_{i}, \varepsilon_{i} \stackrel{\mathrm{iid}}{\sim} N(0,1), \eta_{i} \stackrel{\mathrm{iid}}{\sim}\left\{\begin{array}{rr}
0, & p=0.991 ; \\
-10, & p=0.009 .
\end{array} \quad i=1,2 .\right.
$$

The $1 \% \operatorname{VaR}$ for X_{1} is 3.1 (why?), which is only slightly higher than the VaR if the shocks $\eta=0\left(z_{0.01}=-2.3\right) . X_{2}$ follows the same distribution as asset X_{1}. Compare

$$
P_{1}=X_{1}+X_{2}, \quad P_{2}=2 X_{1} .
$$

In the former case, the 1% portfolio VaR is 9.8 , because for $(X 1+X 2)$ the probability of getting the -10 draw for either X_{1} or X_{2} is higher than $1 \%(0.991 * 0.009 * 2 \approx 0.018)$

$$
\operatorname{VaR}\left(P_{1}\right)=\operatorname{VaR}\left(X_{1}+X_{2}\right)=9.8>\operatorname{VaR}\left(P_{2}\right)=2 \operatorname{VaR}\left(X_{1}\right)=6.2
$$

VaR violates subadditivity

\checkmark Artzner et al. (1999): "a merger does not create extra risk", usually it should reduce the risk
\square Special case: VaR is globally $(\forall \tau)$ subadditive when asset returns are normally distributed, or more generally, log-concave distributed
\checkmark Daníelsson et al.(2013) suggests that

- if the asset returns distribution has jointly fat tail (e.g. student-t with df >1), with very small $\tau, \mathrm{VaR}_{\tau}$ is subadditive
- the occurrence of subadditivity depends on the estimation method, sample size
\square Despite of non-subadditivity, VaR still prevails because:
- smaller data requirement
- ease for backtesting

Stylized facts of asset returns

\checkmark What is a stylized fact? Nontrivial statistical properties commonly shared by random variations of asset prices in different markets and instruments
\square stylized facts are usually formulated in terms of qualitative properties of asset returns and may not be precise enough to distinguish among different parametric models
\square It is not easy to exhibit even an (ad hoc) stochastic process which possesses the same set of properties and one has to go to great lengths to reproduce them with a model

Stylized facts of asset returns

Some common stylized facts of asset returns (Cont (2001)):

1. Absence of autocorrelations: except for intraday data
2. Heavy tails: the (unconditional) distribution of returns seems to display a power-law
3. Gain/loss asymmetry: large losses are observed but no equally large gain
4. Aggregational Gaussianity: as the time scale Δt increases, the calculated returns look more normally distributed
5. Intermittency: at any time scale one observes high degree of variability
6. Volatility clustering: volatility shows a positive autocorrelation over several days, high volatility events tend to cluster in time

Stylized facts of asset returns

7 Conditional heavy tails: even correcting returns for volatility clustering, the residual time series still exhibit heavy tails
8 Slow decay of autocorrelation in absolute returns: the autocorrelation function of absolute returns decays slowly as a function of the time lag, roughly as a power law with an exponent [0.2, 0.4]
9 Leverage effect: volatility negatively correlated with the (previous) returns
10 Volume/volatility correlation: trading volume is correlated with all measures of volatility
11 Asymmetry in time scales: volatility measure with Δt large predicts Δt small volatility better than the other way around

ARCH review

The AutoRegressive Conditional Heteroskedasticity (ARCH) model for asset return modeling of Engle (1982):
$\square y_{t}=\sqrt{h_{t}} \varepsilon_{t}$, where ε_{t} are i.i.d. with mean 0 and variance 1 ,

$$
h_{t}=\alpha_{0}+\alpha_{1} y_{t-1}^{2}, \quad \alpha_{0}>1, \alpha_{1} \geq 0
$$

$\square \mathrm{E}\left[y_{t} \mid \mathcal{F}_{t-1}\right]=0$ and $\mathrm{E}\left[y_{t}^{2} \mid \mathcal{F}_{t-1}\right]=h_{t}$
$\square \mathrm{E}\left[y_{t} y_{s}\right]=0$ for $t \neq s$ (why?)
$\square y_{t}^{2}$ are serially correlated with $\operatorname{AR}(1)$:

$$
y_{t}^{2}=h_{t}+\left(y_{t}^{2}-h_{t}\right)=\alpha_{0}+\alpha_{1} y_{t-1}^{2}+\tilde{\varepsilon}_{t}
$$

where $\tilde{\varepsilon}_{t}=h_{t} \varepsilon_{t}^{2}-1$ are innovations with mean and covariance zero

ARCH review

\square Assume that $\varepsilon_{t} \sim N(0,1), \mathrm{E}\left[y_{t}^{4} \mid \mathcal{F}_{t-1}\right]=3 h_{t}^{2}$, and

$$
\begin{aligned}
m_{4} & \stackrel{\text { def }}{=} \mathrm{E}\left[y_{t}^{4}\right]=3\left[\alpha_{0}^{2}+2 \alpha_{0} \alpha_{1} \mathrm{E}\left[h_{t}\right]+\alpha_{1}^{2} \mathrm{E}\left(y_{t-1}^{4}\right)\right] \\
& =3 \alpha_{0}^{2}\left(1+\frac{2 \alpha_{0}}{1-\alpha_{1}}\right)+3 \alpha_{1} m_{4}
\end{aligned}
$$

hence,

$$
m_{4}=\frac{3 \alpha_{0}^{2}\left(1+\alpha_{1}\right)}{\left(1-\alpha_{1}\right)\left(1-3 \alpha_{1}^{2}\right)}
$$

In order to make m_{4} well-defined, it is required that $0 \leq \alpha_{1}^{2}<1 / 3$
$\square y_{t}$ are leptokurtic because the kurtosis of y_{t} is

$$
\frac{m_{4}}{\operatorname{Var}\left(y_{t}\right)^{2}}=3 \frac{1-\alpha_{1}^{2}}{1-3 \alpha_{1}^{2}}>3, \text { if } \alpha_{1} \neq 0
$$

GARCH review

The Generalized ARCH (GARCH) model of Bollerslev (1986):
$\square \operatorname{GARCH}(1,1): y_{t}=\sqrt{h_{t}} \varepsilon_{t}$, with

$$
h_{t}=\alpha_{0}+\alpha_{1} y_{t-1}^{2}+\beta_{1} h_{t-1}, \quad \alpha_{0}>0, \alpha_{1}, \beta_{1} \geq 0
$$

$\checkmark y_{t}^{2}$ have an $\operatorname{ARMA}(1,1)$ representation:

$$
\begin{aligned}
y_{t}^{2} & =h_{t}+\left(y_{t}^{2}-h_{t}\right) \\
& =\alpha_{0}+\left(\alpha_{1}+\beta_{1}\right) y_{t-1}^{2}+h_{t}\left(\varepsilon_{t}^{2}-1\right)-\beta_{1} h_{t-1}\left(\varepsilon_{t-1}^{2}-1\right)
\end{aligned}
$$

where $h_{t}\left(\varepsilon_{t}^{2}-1\right)$ can be viewed as serially uncorrelated innovations

GARCH review

$\square y_{t}$ has mean zero, and since ε_{t} is independent of h_{t},

$$
\operatorname{Var}\left(y_{t}\right)=\mathrm{E}\left[y_{t}^{2}\right]=\mathrm{E}\left[h_{t} \varepsilon_{t}^{2}\right]=\mathrm{E}\left[h_{t}\right] \mathrm{E}\left[\varepsilon_{t}^{2}\right]=\mathrm{E}\left[h_{t}\right] .
$$

Suppose h_{t} is stationary,

$$
\mathrm{E}\left[h_{t}\right]=\operatorname{Var}\left(y_{t}\right)=\frac{\alpha_{0}}{1-\left(\alpha_{1}+\beta_{1}\right)} .
$$

$\square y_{t}$ and y_{s} are uncorrelated for $t \neq s$
\square If $\varepsilon_{t} \sim N(0,1)$,

$$
\frac{m_{4}}{\operatorname{Var}\left(y_{t}\right)^{2}}=3 \frac{1-\left(\alpha_{1}+\beta_{1}\right)^{2}}{1-\left(\alpha_{1}+\beta_{1}\right)^{2}-2 \alpha_{1}^{2}}>3
$$

provided that $1-\left(\alpha_{1}+\beta_{1}\right)^{2}-2 \alpha_{1}^{2}>0$

EGARCH

Exponential GARCH (EGARCH) model of Nelson (1992)
$\bullet y_{t}=\sqrt{h_{t}} \varepsilon_{t}$, with

$$
h_{t}=\exp \left[\alpha_{0}+\beta_{1} \log \left(h_{t-1}\right)+\left(\theta_{1} \frac{y_{t-1}}{\sqrt{h_{t-1}}}+\gamma_{1}\left|\frac{y_{t-1}}{\sqrt{h_{t-1}}}\right|\right)\right] .
$$

$\square \theta_{1}$ is interpreted as a measure of "leverage" effect, while γ_{1} is interpreted as the "magnitude" effect. θ_{1} tends to be negative empirically, while γ_{1} tends to be positive. \Rightarrow Negative shock has more impact on valitility than positive shock
\checkmark Due to the exponential transform, there is no constraint on the coefficients in h_{t}

News Impact Curve

Figure 6: News impact curve. Source: Engle and Ng (1993) Figure 1, p. 1754

CAViaR model

The Conditional Autoregressive Value at Risk (CAViaR) of Engle and Manganelli (2004): a family of time series models for quantile
(a) Symmetric absolute value:

$$
q_{\tau, t}(\boldsymbol{\beta})=\beta_{1}+\beta_{2} q_{\tau, t-1}(\boldsymbol{\beta})+\beta_{3}\left|y_{t-1}\right| .
$$

(b) Asymmetric slope:

$$
q_{\tau, t}(\boldsymbol{\beta})=\beta_{1}+\beta_{2} q_{\tau, t-1}(\boldsymbol{\beta})+\beta_{3}\left(y_{t-1}\right)^{+}+\beta_{4}\left(y_{t-1}\right)^{-} .
$$

(c) Indirect $\operatorname{GARCH}(1,1)$:

$$
q_{\tau, t}(\boldsymbol{\beta})=\left[\beta_{1}+\beta_{2} q_{\tau, t-1}(\boldsymbol{\beta})^{2}+\beta_{3}\left(y_{t-1}\right)^{2}\right]^{1 / 2}
$$

(d) Adaptive: for $0<G<\infty$,

$$
q_{\tau, t}\left(\beta_{1}\right)=q_{\tau, t-1}\left(\beta_{1}\right)+\beta_{1}\left\{\frac{1}{1+\exp \left(G\left[y_{t-1}-q_{\tau, t-1}\left(\beta_{1}\right)\right]\right)}-\tau\right\}
$$

CAViaR model

(a) Symmetric absolute value:

$$
q_{\tau, t}(\boldsymbol{\beta})=\beta_{1}+\beta_{2} q_{\tau, t-1}(\boldsymbol{\beta})+\beta_{3}\left|y_{t-1}\right|
$$

(b) Asymmetric slope:

$$
q_{\tau, t}(\boldsymbol{\beta})=\beta_{1}+\beta_{2} q_{\tau, t-1}(\boldsymbol{\beta})+\beta_{3}\left(y_{t-1}\right)^{+}+\beta_{4}\left(y_{t-1}\right)^{-} .
$$

Symmetric absolute value and asymmetric slope are induced from GARCH with standard deviation is modeled symmetrically or asymmetrically.

CAViaR model

(c) Indirect $\operatorname{GARCH}(1,1)$:

$$
q_{\tau, t}(\boldsymbol{\beta})=\left[\beta_{1}+\beta_{2} q_{\tau, t-1}(\boldsymbol{\beta})^{2}+\beta_{3}\left(y_{t-1}\right)^{2}\right]^{1 / 2}
$$

Indirect GARCH is correctly specified if the DGP is $\operatorname{GARCH}(1,1)$ with an i.i.d. error distribution. To see this, note that $y_{t}=\sqrt{h_{t}} \varepsilon_{t}$, so

$$
\begin{aligned}
q_{\tau, t} & =\sqrt{h_{t}} q_{\varepsilon, \tau}=\sqrt{\alpha_{0}+\alpha_{1} y_{t-1}^{2}+\beta_{1} h_{t-1}} q_{\varepsilon, \tau} \\
& =\sqrt{\alpha_{0}+\alpha_{1} y_{t-1}^{2}+\beta_{1} q_{\tau, t-1}^{2}}
\end{aligned}
$$

CAViaR model

(d) Adaptive: for $0<G<\infty$,

$$
\boldsymbol{q}_{\tau, t}\left(\beta_{1}\right)=\boldsymbol{q}_{\tau, t-1}\left(\beta_{1}\right)+\beta_{1}\{\underbrace{\frac{1}{1+\exp \left(G\left[y_{t-1}-q_{\tau, t-1}\left(\beta_{1}\right)\right]\right)}}_{(*)}-\tau\}
$$

When $G \rightarrow \infty,(*) \rightarrow \mathbf{1}\left\{y_{t-1} \leq q_{\tau, t-1}\left(\beta_{1}\right)\right\}$, given that τ is small:
\square When $y_{t-1} \leq q_{\tau, t-1}\left(\beta_{1}\right), q_{\tau, t}\left(\beta_{1}\right)=q_{\tau, t-1}\left(\beta_{1}\right)+\beta_{1}(1-\tau)$
\boxtimes When $y_{t-1}>q_{\tau, t-1}\left(\beta_{1}\right), q_{\tau, t}\left(\beta_{1}\right)=q_{\tau, t-1}\left(\beta_{1}\right)-\beta_{1} \tau$

CAViaR news impact

source: Engle and Manganelli (2004) Figure 2
Quantile Regression: Primary Techniques

Estimation

\square The objective function is:

$$
\begin{aligned}
Q_{T}(\boldsymbol{\beta}) & =\frac{1}{T} \sum_{t=1}^{T} \rho_{\tau}\left\{y_{t}-q_{t}(\boldsymbol{\beta})\right\} \\
\hat{\boldsymbol{\beta}} & \stackrel{\text { def }}{=} \underset{\boldsymbol{\beta}}{\arg \min } Q_{T}(\boldsymbol{\beta})
\end{aligned}
$$

\square Difficulty: this is a dynamic model. $q_{t}(\boldsymbol{\beta})$ depends on $q_{t-1}(\boldsymbol{\beta})$.
\square Manganelli provides the code on his website

Asymptotic Theory

Consider the model

$$
\begin{align*}
y_{t} & =f\left(y_{t-1}, x_{t-1}, \ldots, y_{1}, \boldsymbol{x}_{1} ; \beta^{0}\right)+\varepsilon_{t} \\
& \stackrel{\text { def }}{=} f_{t}\left(\beta^{0}\right)+\varepsilon_{t}, \quad t=1, \ldots, T \tag{5}
\end{align*}
$$

where $q_{\tau}\left(\varepsilon_{t} \mid \mathcal{F}_{t}\right)=0$.
Theorem (C)
In model (5), under assumption $C 0-C 7, \hat{\boldsymbol{\beta}} \rightarrow \boldsymbol{\beta}^{0}$, where $\hat{\boldsymbol{\beta}}$ is the solution $\min _{\beta} Q_{T}(\boldsymbol{\beta})$.

Asymtptic Theory

Theorem (AN)
In model (5), under assumptions AN1-AN4 and the conditions of
Theorem C,

$$
\sqrt{T} \boldsymbol{A}_{T}^{1 / 2} \boldsymbol{D}_{T}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{0}\right) \xrightarrow{\mathrm{d}} N(0,1)
$$

where

$$
\begin{aligned}
& \boldsymbol{A}_{T}=\mathrm{E}\left[T^{-1} \tau(1-\tau) \sum_{t=1}^{T} \nabla f_{t}\left(\boldsymbol{\beta}^{0}\right)^{\top} \nabla f_{t}\left(\boldsymbol{\beta}^{0}\right)\right], \\
& \boldsymbol{D}_{T}=\mathrm{E}\left[T^{-1} \tau(1-\tau) \sum_{t=1}^{T} \nabla g_{t}\left(0 \mid \mathcal{F}_{t}\right) f_{t}\left(\boldsymbol{\beta}^{0}\right)^{\top} \nabla f_{t}\left(\boldsymbol{\beta}^{0}\right)\right],
\end{aligned}
$$

and $\hat{\boldsymbol{\beta}}$ is computed as in Theorem C.
Quantile Regression: Primary Techniques

Need to show two things:
Asymptotc FOC: Let $\operatorname{Hit}_{t}\left(\boldsymbol{\beta}^{0}\right) \stackrel{\text { def }}{=} \mathbf{1}\left\{y_{t}<f_{t}\left(\boldsymbol{\beta}^{0}\right)\right\}-\tau$,
$Q_{j}(\delta) \stackrel{\text { def }}{=}-T^{-1 / 2} \sum_{t=1}^{T} \rho_{\tau}\left\{y_{t}-f_{t}\left(\boldsymbol{\beta}+\delta \boldsymbol{e}_{j}\right)\right\}$ and $G_{j}(\delta) \stackrel{\text { def }}{=}-T^{-1 / 2} \sum_{t=1}^{T} \nabla_{j} f_{t}\left(\hat{\boldsymbol{\beta}}+\delta \boldsymbol{e}_{j}\right) \boldsymbol{H i t}_{t}\left(\hat{\boldsymbol{\beta}}+\delta \boldsymbol{e}_{j}\right)$, where \boldsymbol{e}_{j} are standard basis of \mathbb{R}^{p}. Because $Q_{j}(\delta)$ is continuous in δ and achieves a maximum at 0 ,

$$
\left|G_{j}(0)\right| \leq G_{j}(\delta)-G_{j}(\delta)
$$

$=\frac{1}{\sqrt{T}} \sum_{t=1}^{T}\left[\nabla_{j} f_{t}\left(\hat{\boldsymbol{\beta}}+\delta \boldsymbol{e}_{j}\right) \operatorname{Hit}_{t}\left(\hat{\boldsymbol{\beta}}+\delta \boldsymbol{e}_{j}\right)+\nabla_{j} f_{t}\left(\hat{\boldsymbol{\beta}}-\delta \boldsymbol{e}_{j}\right) \operatorname{Hit}_{t}\left(\hat{\boldsymbol{\beta}}-\delta \boldsymbol{e}_{j}\right)\right]$

Letting $\delta \rightarrow 0$,

$$
\begin{aligned}
\left|G_{j}(0)\right| & \leq \frac{1}{\sqrt{T}} \sum_{t=1}^{T}\left|\nabla_{j} f_{t}(\hat{\boldsymbol{\beta}})\right| \mathbf{1}\left\{y_{t}=f_{t}(\hat{\boldsymbol{\beta}})\right\} \\
& \leq \frac{1}{\sqrt{T}}\left[\max _{1 \leq t \leq T} H\left(\mathcal{F}_{t}\right)\right] \sum_{t=1}^{T} \mathbf{1}\left(y_{t}=f_{t}(\hat{\boldsymbol{\beta}})\right) .
\end{aligned}
$$

Assumption AN1 implies $T^{-1 / 2}\left[\max _{1 \leq t \leq T} H\left(\mathcal{F}_{t}\right)\right]={ }_{P}(1)$ and C 2 implies $\sum_{t=1}^{T} \mathbf{1}\left(y_{t}=f_{t}(\hat{\boldsymbol{\beta}})\right)=\mathcal{O}(1)$ a.s. because the $\left\{\varepsilon_{t}=0\right\}$ has probability 0 .
Stochastic equicontinuous condition:
N2 : AN1 implies $\boldsymbol{\beta}^{0}$ lies in the interior of B.

$$
\mathrm{E}\left[q_{t}\left(\boldsymbol{\beta}^{0}\right)\right]=\mathrm{E}\left[\mathrm{E}\left[\operatorname{Hit}_{t}\left(\boldsymbol{\beta}^{0}\right) \mid \mathcal{F}_{t}\right] \nabla f_{t}\left(\boldsymbol{\beta}^{0}\right)^{\top}\right]=0
$$

N3 : too technical

Asymtptic Theory

Theorem (VC)
Under assumptions VC1-VC3 and the conditions of Theorems C and AN, $\hat{\boldsymbol{A}}_{T}-\boldsymbol{A}_{T} \xrightarrow{\mathrm{P}} 0$ and $\hat{\boldsymbol{D}}_{T}-\boldsymbol{D}_{T} \xrightarrow{\mathrm{P}} 0$, where

$$
\begin{aligned}
& \hat{\boldsymbol{A}}_{T}=T^{-1} \tau(1-\tau) \nabla f_{t}(\hat{\boldsymbol{\beta}})^{\top} \nabla f_{t}(\hat{\boldsymbol{\beta}}) \\
& \hat{\boldsymbol{D}}_{T}=\left(2 T \hat{c}_{T}\right)^{-1} \sum_{t=1}^{T} \mathbf{1}\left(\left|y_{t}-f_{t}(\hat{\boldsymbol{\beta}})\right|<\hat{c}_{T}\right) \nabla f_{t}(\hat{\boldsymbol{\beta}})^{\top} \nabla f_{t}(\hat{\boldsymbol{\beta}}),
\end{aligned}
$$

\boldsymbol{A}_{T} and \boldsymbol{D}_{T} are defined in Theorem $A N$, and \hat{c}_{T} is a bandwidth defined in assumption VC1.

Backtesting

\square Define the hit sequence

$$
\operatorname{Hit}_{t}\left(\beta^{0}\right) \stackrel{\text { def }}{=} \mathbf{1}\left(y_{t}<f_{t}\left(\beta^{0}\right)\right)-\tau
$$

\square A natural way to test the validity of the forecast model is to check whether the sequence Hit_{t} is i.i.d.
\square This concept has a drawback: define a i.i.d. sequence (like flipping a coin)

$$
z_{t}=\left\{\begin{aligned}
1, & \text { with probability } \tau ; \\
-1, & \text { with probability } 1-\tau .
\end{aligned}\right.
$$

Setting $f_{t}\left(\beta^{0}\right)=K z_{t-1}$ for K large. Once z_{t-1} is observed, the probability of y_{t} exceeding $f_{t}(\boldsymbol{\beta})$ is almost 0 or 1

Testing in-sample fit

Define

$\boldsymbol{X}_{t}(\hat{\boldsymbol{\beta}}) \in \mathbb{R}^{q}$: the typical row of $\boldsymbol{X}_{t}(\hat{\boldsymbol{\beta}}) \in F_{t}$,
$\operatorname{Hit}_{t}(\hat{\boldsymbol{\beta}}) \stackrel{\text { def }}{=}\left(\operatorname{Hit}_{1}(\hat{\boldsymbol{\beta}}), \ldots, \operatorname{Hit}_{T}(\hat{\boldsymbol{\beta}})\right)^{\top}$
$\boldsymbol{M}_{T} \stackrel{\text { def }}{=} \boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{0}\right)-\mathrm{E}\left[\boldsymbol{T}^{-1} \boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{0}\right) \boldsymbol{H} \nabla f\left(\boldsymbol{\beta}^{0}\right)\right] \boldsymbol{D}_{T}^{-1} \nabla^{\top} f\left(\boldsymbol{\beta}^{0}\right)$,
$\boldsymbol{H}=\operatorname{diag}\left(g_{1}\left(0 \mid \mathcal{F}_{1}\right), \ldots, g_{T}\left(0 \mid \mathcal{F}_{T}\right)\right)$

Theorem (In-sample dynamic quantile test)
Under the asuumption of Theorem C and AN and assumptions DQ1-DQ6,

$$
\left[\tau(1-\tau) \mathrm{E}\left[T^{-1} M_{T} \boldsymbol{M}_{T}^{T}\right]\right]^{-1 / 2} T^{-1 / 2} \boldsymbol{X}^{\top}(\hat{\boldsymbol{\beta}}) \boldsymbol{X}(\hat{\boldsymbol{\beta}}) \stackrel{\mathrm{d}}{\sim} N(0, I)
$$

If assumption DQ7 and the conditions of Theorem VC also hold, then
$D Q_{I S} \stackrel{\text { def }}{=} \frac{\boldsymbol{H i t}^{\top}(\hat{\boldsymbol{\beta}}) \boldsymbol{X}(\hat{\boldsymbol{\beta}})\left(\hat{\boldsymbol{M}}_{T} \hat{\boldsymbol{M}}_{T}^{\top}\right)^{-1} \boldsymbol{X}^{\top}(\hat{\boldsymbol{\beta}}) \boldsymbol{H i t}^{\top}(\hat{\boldsymbol{\beta}})}{\tau(1-\tau)} \stackrel{\mathrm{d}}{\sim} \chi_{q}^{2}, \quad T \rightarrow \infty$,
where
$\hat{M}_{T} \stackrel{\text { def }}{=}$
$\boldsymbol{X}^{\top}(\hat{\boldsymbol{\beta}})-\left\{\left(2 T \hat{c}_{T}\right)^{-1} \sum^{T} \mathbf{1}\left(\left|y_{t}-f_{t}(\hat{\boldsymbol{\beta}})\right|<\hat{c}_{T}\right) \boldsymbol{X}_{t}^{\top}(\hat{\boldsymbol{\beta}}) \nabla f_{t}(\hat{\boldsymbol{\beta}})\right\} \hat{\boldsymbol{D}}_{T}^{-1} \nabla f(\hat{\boldsymbol{\beta}})^{\top}$.
Quantile Regression: Primary Techniques

Out-of-sample test

Define

T_{R} : no. in-sample obs
N_{R} : no. out-of-sample obs.
$\boldsymbol{X}_{n}\left(\hat{\boldsymbol{\beta}}_{T_{R}}\right) \in \mathbb{R}^{q}$: the typical row of $\boldsymbol{X}_{t}\left(\hat{\boldsymbol{\beta}}_{T_{R}}\right) \in F_{t}$,

$$
n=T_{R}+1, \ldots, T_{R}+N_{R}
$$

$\operatorname{Hit}_{t}\left(\hat{\boldsymbol{\beta}}_{T_{R}}\right) \stackrel{\text { def }}{=}\left(\operatorname{Hit}_{T_{R}+1}\left(\hat{\boldsymbol{\beta}}_{T_{R}}\right), \ldots, \operatorname{Hit}_{T_{R}+N_{R}}\left(\hat{\boldsymbol{\beta}}_{T_{R}}\right)\right)^{\top}$

Theorem (Out-of-sample dynamic quantile test)

Under the assumption of Theorem C and $A N$ and assumptions $D Q 1-D Q 3, D Q 8$ and $D Q 9$,

$$
\begin{aligned}
D Q_{\text {OOS }} \stackrel{\text { def }}{=} & N_{R}^{-1} \boldsymbol{H i t}^{\top}\left(\hat{\boldsymbol{\beta}}_{T_{R}}\right) \boldsymbol{X}\left(\hat{\boldsymbol{\beta}}_{T_{R}}\right)\left[\boldsymbol{X}\left(\hat{\boldsymbol{\beta}}_{T_{R}}\right)^{\top} \boldsymbol{X}\left(\hat{\boldsymbol{\beta}}_{T_{R}}\right)\right]^{-1} \boldsymbol{X}^{\top}\left(\hat{\boldsymbol{\beta}}_{T_{R}}\right) \\
& \boldsymbol{H i t}^{\top}\left(\hat{\boldsymbol{\beta}}_{T_{R}}\right) /[\tau(1-\tau)] \stackrel{\text { d }}{\sim} \chi_{q}^{2}, \quad R \rightarrow \infty
\end{aligned}
$$

\square The In-sample DQ test is useful for model selection
\square The out-of-sample DQ test is useful for regulators to check whether the VaR estimates satisfy basic requirements, such as unbiasedeness, independent hits, and independence of the quantile estimates

Application

$\checkmark 3392$ daily prices (April 7, 1986-April 7, 1999) of GM, IBM and S\&P500
\square Estimation: first 2892 obs. last 500 for backtesting
$\square G=10$ in adaptive model

Quantile Regression: Primary Techniques

Shih-Kang Chao

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics

Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

A1:Convex Analysis

Definition (Subdifferetial/subgradient)
g is called a subdifferetial/subgradient of a convex function f at $x \in \operatorname{domf}$ if

$$
f(y) \geq f(x)+g^{\top}(y-x)
$$

Remark: if f is differentiable, then its subdifferential is unique.
Theorem
If f is convex. Its composition with an affine function is again convex; namely, $\boldsymbol{f}\left(\alpha+\boldsymbol{\beta}^{\top} \boldsymbol{x}\right)$ is convex.
Remark: composition with arbitrary function may lose convexity.
Theorem
The subgradient obeys chain rule.

A1:Convex Analysis

Figure 7: g_{1} is the unique subgradient at $x_{1} . g_{2}$ and g_{3} are subgradients at x_{2}.

C0 (Ω, F, P) is acomplete probability space, and $\left\{\varepsilon_{t}, \boldsymbol{x}_{t}: t=1, \ldots\right\}$ are random vectors on this space
C1 $f_{t}(\boldsymbol{\beta}): \mathbb{R}^{k_{t}} \times B \rightarrow \mathbb{R}$ is such that for each $\boldsymbol{\beta} \in B$, a compact subset of $\mathbb{R}^{p}, f_{t}(\boldsymbol{\beta})$ is measurable with respect to the information set \mathcal{F}_{t} and $f_{t}(\boldsymbol{\beta})$ is continuous in $B, t=1,2, \ldots$, for a given choice of explanatory variables $\left\{y_{t-1}, x_{t-1}, \ldots, y_{1}, x_{1}\right\}$
C2 Conditional on all the past information \mathcal{F}_{t}, the error terms ε_{t} form a stationary process, with continuous conditional density $g_{t}\left(\varepsilon \mid \mathcal{F}_{t}\right)$
C3 There exists $h>0$ such that for all $t, g_{t}\left(0 \mid \mathcal{F}_{t}\right) \geq h$
C4 $\left|f_{t}(\boldsymbol{\beta})\right|<K\left(\mathcal{F}_{t}\right)$ for each $\boldsymbol{\beta} \in B$ and for all t, where $K\left(\mathcal{F}_{t}\right)$ is some (possibly) stochastic function of variables that belong to the information set, such that $\mathrm{E}\left[\left|K\left(\mathcal{F}_{t}\right)\right|\right] \leq K_{0}<\infty$

C5 $\mathrm{E}\left[\left|K\left(\mathcal{F}_{t}\right)\right|\right]<\infty$ for all t
C6 $\rho_{\tau}\left(y_{t}-f_{t}(\boldsymbol{\beta})\right)$ obeys the unifrom law of large numbers
C7 $\forall \xi>0$, there exists a $\delta>0$, such that if $\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\| \geq \xi$, then

$$
\liminf _{T \rightarrow \infty} T^{-1} \sum \mathrm{P}\left[\left|f_{t}(\boldsymbol{\beta})-f_{t}\left(\boldsymbol{\beta}^{0}\right)\right|>\delta\right]>0
$$

AN1 $f_{t}(\boldsymbol{\beta})$ is differentiable in B and $\forall \boldsymbol{\beta}$ and γ in a neighborhood ν_{0} of $\boldsymbol{\beta}^{0}$, such $\|\boldsymbol{\beta}-\gamma\| \leq d$ for d sufficiently small and for all t :
a $\left\|\nabla f_{t}(\boldsymbol{\beta})\right\| \leq H\left(\mathcal{F}_{t}\right)$, where $H\left(\mathcal{F}_{t}\right)$ is some (possibly) stochastic function of variables that belong to the information set and $\mathrm{E}\left[H\left(\mathcal{F}_{t}\right)^{3}\right] \leq H_{0}<\infty$, for some constant H_{0}.
b $\left\|\nabla f_{t}(\boldsymbol{\beta})-\nabla f_{t}(\gamma)\right\| \leq M\left(\mathcal{F}_{t}, \boldsymbol{\beta}, \gamma\right)=\mathcal{O}(\|\boldsymbol{\beta}-\gamma\|)$, where $M\left(\mathcal{F}_{t}, \boldsymbol{\beta}, \gamma\right)$ is some function such that $\mathrm{E}\left[M\left(\mathcal{F}_{t}, \boldsymbol{\beta}, \gamma\right)\right]^{2} \leq M_{0}\|\boldsymbol{\beta}-\gamma\|<\infty$ and $\mathrm{E}\left[M\left(\mathcal{F}_{t}, \boldsymbol{\beta}, \gamma\right) H\left(\mathcal{F}_{t}\right)\right] \leq M_{1}\|\boldsymbol{\beta}-\gamma\|<\infty$ for some constants M_{0} and M_{1}
AN2 a $g_{t}\left(\varepsilon \mid \mathcal{F}_{t}\right) \leq N<\infty \forall t$, for some constant N
b $g_{t}\left(\varepsilon \mid \mathcal{F}_{t}\right)$ satisfies the Lipschitz condition $\left|g_{t}\left(\lambda_{1} \mid \mathcal{F}_{t}\right)-g_{t}\left(\lambda_{2} \mid \mathcal{F}_{t}\right)\right| \leq L\left|\lambda_{1}-\lambda_{2}\right|$ for some constant $L<\infty \forall t$

AN3 The matrices \boldsymbol{A}_{T} and \boldsymbol{D}_{T} have the smallest eigenvalues bounded below by a positive constant for T sufficiently large
AN4 The sequence

$$
\frac{1}{\sqrt{T}} \sum_{t=1}^{T}\left[\tau-\mathbf{1}\left(y_{t}<f_{t}\left(\boldsymbol{\beta}^{0}\right)\right)\right] \nabla f_{t}\left(\boldsymbol{\beta}^{0}\right)^{\top}
$$

obeys the central limit theorem.

- Asym. Normality

VC1 $\hat{c}_{T} / c_{T} \xrightarrow{P} 1$, where the nonstochastic positive sequence c_{T} satisfies $c_{T}=(1)$ and $c_{T}^{-1}=\left(T^{1 / 2}\right)$.
VC2 E $\left[\left|H\left(\mathcal{F}_{t}\right)\right|^{4}\right] \leq H_{1}<\infty$ for all t and for some constant H_{1}, where $H\left(\mathcal{F}_{t}\right)$ has been defined in assumption AN1(a)
VC3

$$
\begin{aligned}
& T^{-1} \tau(1-\tau) \nabla f_{t}\left(\boldsymbol{\beta}^{0}\right)^{\top} \nabla f_{t}\left(\boldsymbol{\beta}^{0}\right)-\boldsymbol{A}_{T} \xrightarrow{\mathrm{P}} 0 \\
& T^{-1} \sum_{t=1}^{T} g_{t}\left(0 \mid \mathcal{F}_{t}\right) \nabla f_{t}\left(\boldsymbol{\beta}^{0}\right)^{\top} \nabla f_{t}\left(\boldsymbol{\beta}^{0}\right)-\boldsymbol{D}_{T} \xrightarrow{\mathrm{P}} 0
\end{aligned}
$$

DQ1 $\boldsymbol{X}_{t}(\boldsymbol{\beta})$ is different element wise from $\nabla f_{t}(\boldsymbol{\beta})$, is measurable $\mathcal{F}_{t},\left\|\boldsymbol{X}_{t}(\boldsymbol{\beta})\right\| \leq W\left(\mathcal{F}_{t}\right)$, where $W\left(\mathcal{F}_{t}\right)$ is some (possibly) stochastic function of variables that belong to the information set, such that $\mathrm{E}\left[W\left(\mathcal{F}_{t}\right) M\left(\mathcal{F}_{t}, \boldsymbol{\beta}, \gamma\right)\right] \leq W_{0}\|\boldsymbol{\beta}-\gamma\|<\infty$ and $\mathrm{E}\left[\left\{W\left(\mathcal{F}_{t}\right) H\left(\mathcal{F}_{t}\right)\right\}^{2}\right]<W_{1}<\infty$ for some finite constant W_{1}, and $H\left(\mathcal{F}_{t}\right)$ and $M\left(\mathcal{F}_{t}, \boldsymbol{\beta}, \gamma\right)$ are defined in AN1.
DQ2 $\left\|\boldsymbol{X}_{t}(\boldsymbol{\beta})-\boldsymbol{X}_{t}(\gamma)\right\| \leq S\left(\mathcal{F}_{t}, \boldsymbol{\beta}, \gamma\right)$, where $\left.\mathrm{E}\left[S^{\left(\mathcal{F}_{t}, \boldsymbol{\beta}\right.}, \boldsymbol{\gamma}\right)\right] \leq S_{0}\|\boldsymbol{\beta}-\gamma\|<\infty$,
$\mathrm{E}\left[W\left(\mathcal{F}_{t}\right) S\left(\mathcal{F}_{t}, \boldsymbol{\beta}, \gamma\right)\right] \leq S_{1}\|\boldsymbol{\beta}-\gamma\|<\infty$, and for some constant S_{0}, S_{1}.

DQ3 Let $\left\{\varepsilon_{t}^{1}, \ldots, \varepsilon_{t}^{J_{i}}\right\}$ be the set of values for which $\boldsymbol{X}_{t}(\boldsymbol{\beta})$ is not differentiable. Then $\mathrm{P}\left(\varepsilon_{t}=\varepsilon_{t}^{j}\right)=0$ for $j=1, \ldots, J_{i}$. Whenever the derivative exists, $\left\|\nabla \boldsymbol{X}_{t}(\boldsymbol{\beta})\right\| \leq Z\left(\mathcal{F}_{t}\right)$, where $Z\left(\mathcal{F}_{t}\right)$ is some (possibly) stochastic function of variables that belong to the information set, such that $\mathrm{E}\left[Z\left(\mathcal{F}_{t}\right)^{r}\right]<Z_{0}<\infty, r=1,2$, for some constant Z_{0}
DQ4 $\boldsymbol{T}^{-1} \boldsymbol{X}_{t}^{\top}\left(\boldsymbol{\beta}^{0}\right) \boldsymbol{H} \nabla f\left(\boldsymbol{\beta}^{0}\right)-\mathrm{E}\left[\boldsymbol{T}^{-1} \boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{0}\right) \boldsymbol{H} \nabla f\left(\boldsymbol{\beta}^{0}\right)\right] \xrightarrow{\mathrm{P}} 0$.
DQ5 $T^{-1} M_{T} M^{\top}-T^{-1} \mathrm{E}\left[M_{T} M_{T}^{\top}\right] \xrightarrow{\mathrm{P}} 0$
DQ6 The sequence $\left\{T^{-1 / 2} M_{T} \operatorname{Hit}\left(\beta^{0}\right)\right\}$ obeys the central limit theorem
DQ7 $T^{-1} \mathrm{E}\left[M_{T} M_{T}^{T}\right]$ is a nonsingular matrix
DQ8 $\lim _{R \rightarrow \infty} T_{R}=\infty, \lim _{R \rightarrow \infty} N_{R}=\infty$, and $\lim _{R \rightarrow \infty} N_{R} / T_{R}=0$
DQ9 The sequence $\left\{N_{R}^{-1 / 2} \boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{0}\right) \boldsymbol{H i t}\left(\boldsymbol{\beta}^{0}\right)\right\}$ obeys the central limit theorem.

- In-sample test
- Out-of-sample test

