### Sparsity Analysis of Energy Price Forecasting

Shi Chen Wolfgang Karl Härdle Brenda López Cabrera

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E.-Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de







FFX





#### Figure 1: Source: Blue Star Energy

- European Energy eXchange develops, operates and connects secure, liquid and transparent markets for energy and related products.
- EEX provides the trading platform for the German/Austrian Power market.
- Phelix Futures: most liquid contract and benchmark for European power trading.

Iterative Sure Independent Screening -



1 - 1

### **EEX Power Derivative**



#### Source: EEX website

Iterative Sure Independent Screening



### **Phelix Futures**

- Contract: A contract settling against the average power spot market prices of future delivery periods.
- Underlying: Physical Electricity Index determined daily by EPEX Spot Exchange.
  - Phelix Base: average price of the hours 1 to 24 for electricity traded on spot market.
  - Phelix Peak: average price of the hours 9 to 20 for electricity traded on spot market.

### **Phelix Futures**

- Find price drivers and important variables in big system.
- Energy companies' decision-making mechanisms.
- Hedge against weather risk; Predict energy price.



#### Source: Home utilities blog



### **Motivation**

- How all these prices of different contracts interact with each other?
- ☑ Which variables are crucial for the whole system?
- Model selection, variable selection.



#### Motivation - ctd

- Due to large number of variables in the system, some sparsity assumption must be imposed for the sake of an accurate estimate.
- □ Large dimension comes from,
  - varieties of future contracts
  - large lag in VAR model to avoid the correlation of error term



### Outline

- 1. Motivation  $\checkmark$
- 2. VAR model
- 3. Iterative Sure Independent Screening
- 4. Estimation Results
- 5. Forecasting
- 6. Conclusion

# VAR model

 The VAR(p) model is constructed according to Lütkepohl (2005),

$$y_t = \nu + A_1 y_{t-1} + A_2 y_{t-2} + \dots + A_p y_{t-p} + u_t$$
  
=  $\nu + (A_1, A_2, \dots, A_p) \left( y_{t-1}^\top, y_{t-2}^\top, \dots, y_{t-p}^\top \right)^\top + u_t(1)$ 

y<sub>t</sub> = (y<sub>1t</sub>, y<sub>2t</sub>,..., y<sub>Kt</sub>)<sup>⊤</sup> is a (K × 1) random vector consisting K prices we have at time t, t from 1 to T.
 ν is a (K × 1) vector of intercept terms.
 u<sub>t</sub> = (u<sub>1t</sub>, u<sub>2t</sub>,..., u<sub>Kt</sub>)<sup>⊤</sup> is a K-dimensional innovation process.



# Assumption

- The coefficients  $\nu, A_1, \ldots, A_p$  are assumed to be unknown in the following.
- $\therefore$   $y_t$  are partitioning into sample and presample values to facilitate the following analysis. Define,

$$Y = (y_1, y_2, ..., y_T)$$
  

$$B = (\nu, A_1, A_2, ..., A_p)$$
  

$$Z_t = (1, y_t, y_{t-p+1})^T$$
  

$$Z = (Z_0, Z_1, ..., Z_{T-1})$$



# **Compact form**

Hence for multivariate case, the model described in equation

 (1) can be rewritten as,

$$Y = BZ + U \tag{2}$$

⊡ The compact form (2) is equivalent to,

$$\operatorname{vec}(Y) = (Z^{\top} \otimes I_{\mathcal{K}})\operatorname{vec}(B) + \operatorname{vec}(U)$$
 (3)





# Discussion

- If the vector  $\nu$  is assumed to be zero, the total dimension of the model to be estimated is  $pK^2$  and the total number of observations is KT.
- $\Box$  When Kp > T, we need lasso etc to estimate the model.
- □ Under normal assumption, the upper bound of error is positively correlated in  $\frac{\log K^2 p}{T}$ , part of oracle inequality.
- To improve the estimation, introduce the (iterative) sure independent screening.





2-4

### **Basic Idea**

- Concept of sure screening: Fan and Lv (2008)
  - Based on correlation learning which filters out the features that have weak correlation with the response.
- □ Let  $\omega = (\omega_1, \dots, \omega_p)^\top$  be a *p*-vector obtained by componentwise regression, i.e.,

$$\omega = X^{\top} y \tag{4}$$

- > *y* is n-vector of response.
- $\blacktriangleright X \text{ is } n \times p \text{ data matrix.}$



### **Basic Idea**

When there are more predictors than observations, LS is noisy.
 Consider ridge regression, let ω<sup>λ</sup> = (ω<sup>λ</sup><sub>1</sub>,..., ω<sup>λ</sup><sub>p</sub>)<sup>⊤</sup> be a p-vector obtained by ridge regression, i.e.,

$$\omega^{\lambda} = (X^{\top}X + \lambda I_{\rho})^{-1}X^{\top}y$$
(5)

⊡ Componentwise regression is a specific case of ridge regression.

• Let us start with consider model estimation and variable selection in a linear regression model,

$$y = X\beta + \varepsilon \tag{6}$$

▶ 
$$y = (y_1, ..., y_n)^\top$$
 is an  $n \times 1$  response vector,  
▶  $X = (x_1, ..., x_p)$  is an  $n \times p$  matrix with  $x_j = (x_{1j}, ..., x_{nj})^\top$ ,  
 $j = 1, ..., p$ .

- β denotes the coefficient estimator produced by the fitting procedure.
- $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)^{\top}$  is an  $n \times 1$  vector of iid random errors.



 The lasso is a regularization technique for simultaneous estimation and variable selection. It estimates are defined as

$$\hat{\beta}_{LASSO} = \arg \min_{\beta} ||y - X\beta||^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

$$= \arg \min_{\beta} ||y - \sum_{j=1}^{p} x_j \beta_j||^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
(7)





⊡ The lasso is a regularization technique for simultaneous estimation and variable selection. It estimates are defined as

$$\hat{\beta}_{LASSO} = \underset{\beta}{\operatorname{argmin}} \|y - X\beta\|^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

$$= \underset{\beta}{\operatorname{argmin}} \|y - \sum_{j=1}^{p} x_j \beta_j\|^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
(8)

- >  $\lambda$  is a tuning parameter.
- The second term is l<sub>1</sub>-penalty, the coefficients shrinks toward 0 as λ increase.

- 3-5

 Smoothly Clipped Absolute Deviation penalty - SCAD estimator is given by,

$$\hat{\beta}_{SCAD} = \begin{cases} \operatorname{sgn}(\omega)(|\omega| - \lambda)_{+} & \text{when } |\omega| \leq 2\lambda \\ \frac{\{(a-1)\omega - \operatorname{sgn}(\omega)a\lambda\}}{a-2} & \text{when } 2\lambda < |\omega| \leq a\lambda \\ \omega & \text{when } |\omega| > a\lambda \end{cases}$$
(9)

 The continuous differentiable penalty function for SCAD estimator is defined by,

$$p_{\lambda}'(\beta) = \lambda \left\{ I(\beta \le \lambda) + \frac{(a\lambda - \beta)_{+}}{(a - 1)\lambda} I(\beta > \lambda) \right\}$$
(10)

where a > 2 and  $\beta > 0$ 

Iterative Sure Independent Screening ------



# Iterative SIS - (I)SIS

- 1. Apply SIS for initial screening, reduce the dimensionality to a relative large scale d;
- 2. Apply a lower demensional model selection method (such as lasso, SCAD) to the sets of variables selected by SIS;
- 3. Apply SIS to the variables selected in the previous step;
- 4. Repeat step 2 and 3 until the set of selected variables do not decrease.



#### **Data: Phelix Futures**

- Derview: EEX offers continuous trading data.
- ☑ Load profiles: base, peak and off peak
- Maturity:
  - Day/ Weekend Futures
  - Week Futures
  - Month Futures
  - Quarter Futures
  - Year Futures





### Data

- Recall Underlying: Physical Electricity Index determined daily by EPEX Spot Exchange.
  - Phelix Base: average price of the hours 1 to 24 for electricity traded on spot market.
  - Phelix Peak: average price of the hours 9 to 20 for electricity traded on spot market.
- Spot price:
  - Hours:  $00 01, \dots, 23 24$
  - Blocks: Base Monthly, off-peak 01-08, off-peak 21-24, Peak Monthly



#### **First-order Difference**







Estimation Results

#### Data



Time

- Time span: 30.09.2010 31.07.2015
- ⊡ Type: 58 kinds of contracts

Iterative Sure Independent Screening





Figure 2: Each curve corresponds to a variable. It shows the path of its coefficient against the l1-norm of the whole coefficient vector at as  $\lambda$  varies.





Figure 3: Each curve corresponds to a variable. It shows the path of its coefficient against the l1-norm of the whole coefficient vector at as  $\lambda$  varies.





Figure 4: Each curve corresponds to a variable. It shows the path of its coefficient against the l1-norm of the whole coefficient vector at as  $\lambda$  varies.



Figure 5: Each curve corresponds to a variable. It shows the path of its coefficient against the l1-norm of the whole coefficient vector at as  $\lambda$  varies.

(I)SIS-SCAD, lag=1



Figure 6: Each curve corresponds to a variable. It shows the path of its coefficient against the l1-norm of the whole coefficient vector at as  $\lambda$  varies.





(I)SIS-SCAD, lag=2

Figure 7: Each curve corresponds to a variable. It shows the path of its coefficient against the l1-norm of the whole coefficient vector at as  $\lambda$  varies.







(I)SIS-SCAD, lag=3

Figure 8: Each curve corresponds to a variable. It shows the path of its coefficient against the l1-norm of the whole coefficient vector at as  $\lambda$  varies.



### Samples

- ⊡ Pre-sample selected: 30.09.2010 28.11.2014
- ☑ Sample selected: 31.12.2014 31.07.2015
- ☑ High dimension due to,
  - varieties of future contracts
  - large lag in VAR model to avoid the correlation of error term



### Lag Length Selection

- ⊡ The lag length for the VAR(p) model may be determined using model selection criteria.
- ⊡ General approach:
  - Fit the VAR(p) models with different lags  $p = 0, \ldots, p_{max}$ ,
  - Choose the value of p which minimizes some model selection criteria.
- $\odot$  Model selection criteria for VAR(p),

$$IC(p) = \log|\hat{H}(p)| + \varphi(K, p)c_T$$
(11)

- $\varphi(K, p)$  is a penalty function.
- $c_T$  a sequence indexed by the sample size T.

Iterative Sure Independent Screening -



# Lag Length Selection - ctd

 The residual covariance matrix without a degrees of freedom correction is defined as,

$$\hat{H}(p) = rac{1}{T} \sum_{t=1}^{T} u_t^{ op} u_t$$

 The three most common information criteria are the Akaike (AIC), Schwarz-Bayesian (BIC) and Hannan-Quinn (HQ):

$$AIC = \log|\hat{H}(p)| + \frac{2}{T}pK^2$$
(12)

$$HQ = \log|\hat{H}(p)| + \frac{2\log\log T}{T}pK^2$$
(13)

$$BIC = \log|\hat{H}(p)| + rac{\log T}{T}pK^2$$

Iterative Sure Independent Screening -



### **Model Selection**

| Model                 | AIC    | HQ(C)  | BIC     |
|-----------------------|--------|--------|---------|
| (I)SIS-lasso, $p = 1$ | 4.5686 | 4.7249 | 5.7864  |
| (I)SIS-lasso, $p = 2$ | 4.5006 | 4.6426 | 5.6076  |
| (I)SIS-lasso, $p = 3$ | 7.7034 | 8.3143 | 12.4637 |
| (I)SIS-lasso, $p = 5$ | 7.0839 | 8.1209 | 15.1652 |
| (I)SIS-SCAD, $p = 1$  | 4.5714 | 4.7277 | 5.7892  |
| (I)SIS-SCAD, $p = 2$  | 6.1043 | 6.1043 | 9.5782  |
| (I)SIS-SCAD, $p = 3$  | 7.2559 | 7.6820 | 10.5770 |

Table 1: The three most common information criteria: the Akaike (AIC), Schwarz-Bayesian (BIC) and Hannan-Quinn (HQ) are compared.



### Forecasting Errors

⊡ Recall the VAR(p) model,

$$y_t = \nu + A_1 y_{t-1} + A_2 y_{t-2} + \dots + A_p y_{t-p} + u_t$$
  
=  $\nu + (A_1, A_2, \dots, A_p) \left( y_{t-1}^\top, y_{t-2}^\top, \dots, y_{t-p}^\top \right)^\top + u_t$ 

Pre-sample: 09.2010 - 11.2014, Sample: 12.2014 - 07.2015

| Lag          | (I)SIS-lasso | (I)SIS-SCAD |
|--------------|--------------|-------------|
| p = 1        | 0.0697       | 0.0697      |
| <i>p</i> = 2 | 0.0670       | 0.0701      |
| <i>p</i> = 3 | 1.9598       | 0.1413      |
| <i>p</i> = 5 | 0.1397       | -           |

Table 2: MSE of forecasting during 31.12.2014 - 31.07.2015



### Results

- $\odot$  Model selected: VAR(2) with (I)SIS-lasso.
- Key contracts: LPXBHR15 Index, LPXBHR06 Index, LPXBHR07 Index,LPXBHR08 Index.
  - The spot price bid from 14-15h is the price driver.
  - ► The spot price bid from 14-15h, 05-06h, 06-07h, 07-08h are essential for the prices of the phelix futures.
  - Contracts interact with each other..



### Conclusion

- Apply variable selection technique to electricity data analysis, for high-dimensional case.
- □ Find the core element in the big system.
- □ Further work: IR in the setting of sparsity.



### References

Fan, Jianqing, and Jinchi Lv.

*Sure independence screening for ultrahigh dimensional feature space.* 

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70.5 (2008): 849-911.

🔋 Fan, Jianqing, and Rui Song.

*Sure independence screening in generalized linear models with NP-dimensionality.* 

The Annals of Statistics, 38.6 (2010): 3567-3604.

#### 嗪 Lütkepohl, Helmut.

New introduction to multiple time series analysis. Springer Science & Business Media, 2005.

Iterative Sure Independent Screening



#### References



#### Fan, Jianqing, and Runze Li.

Variable selection via nonconcave penalized likelihood and its oracle properties.

*Journal of the American statistical Association*, 96.456 (2001): 1348-1360.



Tibshirani, Robert.

Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), (1996): 267-288.

