Estimating Inflation Expectation Comovement Across Countries

Shi Chen Wolfgang K. Härdle Weining Wang

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E.-Center for Applied Statistics and Economics Humboldt–Universität zu Berlin King's College London http://lvb.wiwi.hu-berlin.de

Inflation Expectation

- Important to financial investors and policy makers
- Inflation surprise can make real impact
- Important to estimate underlying state of the economy
 ...

General Goal

- Joint modeling of inflation expectation cross regions (states/countries)
 - Providing informative estimates of inflation expectations
- □ Accounting for the non-linear dependency among countries
 - ▶ A GeoCopula Model
- □ Cross sectional forecast and forecast of inflation expectation

Measure of Inflation

 \boxdot Break-even inflation rate (BEIR) with maturity au,

$$BEIR_t(\tau) = y_t^N(\tau) - y_t^R(\tau)$$

•
$$y_t^N(\tau)$$
 - nominal yield
• $y_t^R(\tau)$ - real yield

Decompose BEIR,

$$BEIR_t(\tau) = \pi_t^e(\tau) + else$$

- $\pi_t^e(\tau)$ is expected inflation
- else includes risk premium, convexity effects

BEIR of European Countries

Figure 1: Observed BEI rates (percent) of UK, France, Italy, Sweden and Germany, maturity five years.

Estimating Inflation Expectation Co-movement Across Countries

1-4

- ☑ Co-movement exists between countries
- Data from different countries are available at different maturities and month

Challenges

- Joint yield curve modeling across multiple maturities
- BEIR decomposition
- Panel model of inflation expectations
- Non linear dependency among countries
- □ New estimation and forecast of inflation expectation

Outline

- 1. Motivation \checkmark
- 2. Yield Curve Modeling
- 3. BEIR decomposition
- 4. Dynamics of Inflation Expectation
- 5. Empirical Results
- 6. Conclusion

Model Approach– Single Country

☑ Nelson and Siegel (1987): Classical NS model

$$y(au) = eta_0 + eta_1\left(rac{1-e^{-\lambda au}}{\lambda au}
ight) + eta_2\left(rac{1-e^{-\lambda au}}{\lambda au} - e^{-\lambda au}
ight)$$

Diebold and Li (2006): Dynamic NS (DNS) model

$$y_t(\tau) = L_t + S_t\left(rac{1-e^{-\lambda au}}{\lambda au}
ight) + C_t\left(rac{1-e^{-\lambda au}}{\lambda au} - e^{-\lambda au}
ight)$$

 Christensen et.al (2011): Arbitrage-free DNS (AFNS) model The closest match to DNS yield is

$$y_t(\tau) = L_t + S_t \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau}\right) + C_t \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau}\right) - \frac{A(\tau)}{\tau}$$

state variable $X_t^{\top} = (L_t, S_t, C_t)$ Estimating Inflation Expectation Co-movement Across Countries —

Joint AFNS model

 \Box The separate AFNS models of nominal and inflation-indexed type for a specific country i,

$$y_{it}^{N}(\tau) = \mathcal{L}_{it}^{N} + S_{it}^{N} \left(\frac{1 - e^{-\lambda\tau}}{\lambda\tau}\right) + C_{it}^{N} \left(\frac{1 - e^{-\lambda\tau}}{\lambda\tau} - e^{-\lambda\tau}\right) - \frac{A_{i}^{N}(\tau)}{\tau}$$
$$y_{it}^{R}(\tau) = \mathcal{L}_{it}^{R} + S_{it}^{R} \left(\frac{1 - e^{-\lambda\tau}}{\lambda\tau}\right) + C_{it}^{R} \left(\frac{1 - e^{-\lambda\tau}}{\lambda\tau} - e^{-\lambda\tau}\right) - \frac{A_{i}^{R}(\tau)}{\tau}$$

⊡ We assume,

$$S_{it}^{R} = \alpha_{i}^{S} S_{it}^{N}$$
$$C_{it}^{R} = \alpha_{i}^{C} C_{it}^{N}$$

Joint AFNS model

 \boxdot The joint AFNS yield curve for country i with maturity τ is

$$\begin{pmatrix} y_{it}^{N}(\tau) \\ y_{it}^{R}(\tau) \end{pmatrix} = \begin{pmatrix} 1 & \frac{1-e^{-\lambda_{i}\tau}}{\lambda_{i}\tau} & \frac{1-e^{-\lambda_{i}\tau}}{\lambda_{i}\tau} - e^{-\lambda_{i}\tau} & 0 \\ 0 & \alpha_{i}^{S} \frac{1-e^{-\lambda_{i}\tau}}{\lambda_{i}\tau} & \alpha_{i}^{C} (\frac{1-e^{-\lambda_{i}\tau}}{\lambda_{i}\tau} - e^{-\lambda_{i}\tau}) & 1 \end{pmatrix} \\ \begin{pmatrix} L_{it}^{N} \\ S_{it}^{N} \\ L_{it}^{N} \end{pmatrix} + \begin{pmatrix} \varepsilon_{it}^{N}(\tau) \\ \varepsilon_{it}^{R}(\tau) \end{pmatrix} - \begin{pmatrix} \frac{A_{i}^{N}(\tau)}{A_{i}^{T}(\tau)} \\ \frac{A_{i}^{R}(\tau)}{\tau} \end{pmatrix}$$

Yield Curve Modeling

 \boxdot For country *i* with maturity $au = (au_1, au_2, \dots, au_n)$ is

Estimating Inflation Expectation Co-movement Across Countries

2-4

Outline

- 1. Motivation \checkmark
- 2. Yield Curve Modeling \checkmark
- 3. BEIR decomposition
- 4. Dynamics of Inflation Expectation
- 5. Empirical Results
- 6. Conclusion

BEIR decomposition

🖸 That is,

 $BEIR_t(\tau) = y_t^N(\tau) - y_t^R(\tau) = \pi_t^e(\tau) + \eta_t(\tau) + \phi_t(\tau)$

$$\pi^{e}_{t}(\tau) = -\frac{1}{\tau} \log \mathsf{E}^{\mathcal{P}}_{t} \left[\exp\left\{ -\int_{t}^{t+\tau} (r^{\mathcal{N}}_{s} - r^{\mathcal{R}}_{s}) ds \right\} \right]$$

Inflation Expectation Estimates– Single Country

Figure 2: Model-implied inflation expectation for different countries - UK, France, Italy, Sweden and Germany. Estimating Inflation Expectation Co-movement Across Countries

Outline

- 1. Motivation \checkmark
- 2. Yield Curve Modeling \checkmark
- 3. BEIR decomposition \checkmark
- 4. Dynamics of Inflation Expectation
- 5. Empirical Results
- 6. Conclusion

IE Dynamics with Credit Risk Factor (with a fixed τ)

☑ The dynamics of the common factor,

 $\Pi_t = p + q \Pi_{t-1} + \nu_t$

- where m_i, n_i, p and q are unknown parameters
- the errors ν_ts are i.i.d white noises and μ_{it} follows a GeoCopula model
- d_{it} is the CDS varying over time

Copulae

A continuous function $C:[0,1]^d \rightarrow [0,1]$,

$$C(u_1,\ldots,u_d) = F\{F_1^{-1}(u_1),\ldots,F_d^{-1}(u_d)\}, \quad u_1,\ldots,u_d \in [0,1],$$

where $F_1^{-1}(\cdot),\ldots,F_d^{-1}(\cdot)$ the quantile functions.

- Separate dependency and marginal distributions
- Represent general dependency

A GeoCopulae Model

$$\mu_{it} = \alpha_{it} + \xi_{it},\tag{1}$$

 α_{it} the spatial temporal variation, ξ_{it} the i.i.d. noise with mean 0 and variance σ_{ξ} , see Bai et. al. 2014.

$$F_{it}(\alpha) = \Phi_{NT} \{ \Phi^{-1}(F_{11}(\alpha_{11})), \cdots, \Phi^{-1}(F_{N,T}(\alpha_{NT})) | \Sigma \}, \quad (2)$$

 $\Phi_{NT}(\cdot)$ the cumulative distribution function (c.d.f.) of a multivariate Gaussian distribution with a variance covariance matrix Σ , which models the spatiotemporal dependence. Details

A Spatialtemporal Variagram

To understand the spatial temporal correlation, define

$$\Gamma(t_1 - t_2, n_1 - n_2) \stackrel{\text{def}}{=} \frac{1}{2} E(\alpha_{t_1 n_1} - \alpha_{t_2 n_2})^2.$$
(3)

Closely related to covariance function. For stationary process with σ_2 are the variance,

$$\Gamma(t_1 - t_2, n_1 - n_2) \stackrel{\text{def}}{=} \sigma_2 - Cov(\alpha_{t_1 n_1}, \alpha_{t_2 n_2}). \tag{4}$$

France	Germany	Italy	Sweden	UK
2.2	13.3	12.3	18.0	0.09
48.5	52.3	41.5	59.1	51.3

Table 1: The Coordinates of countries, in Degree.

Empirical variagram is defined as

$$\hat{\Gamma}(d_1, d_2) \stackrel{\text{def}}{=} \frac{1}{N_{d_1, d_2}} \sum_{t_1, t_2, n_1, n_2 : \|t_1 - t_2\| \le d_1, \|n_1 - n_2\| \le d_2} (\alpha_{t_1 n_1} - \alpha_{t_2 n_2})^2,$$
(5)

where N_{d_1,d_2} is the number of pairs, which has the spatial and temporal distance in range.

Outline

- 1. Motivation \checkmark
- 2. Yield Curve Modeling \checkmark
- 3. BEIR decomposition \checkmark
- 4. Dynamics of Inflation Expectation \checkmark
- 5. Empirical Results
- 6. Conclusion

Data

Bloomberg: monthly zero-coupon government bond yield.
 Type: nominal y^N, inflation-indexed y^R.

Data	Span	Maturity	
UK	30.06.2006-31.12.2014	3,4,5 years	
France	30.06.2006-31.12.2014	3,5,10 years	
Italy	29.06.2007-31.12.2014	3,5,10 years	
Sweden	30.04.2007-29.08.2014	3,5,10 years	
Germany	30.06.2009-31.12.2014	5,7,10 years	

Outline

- 1. Motivation \checkmark
- 2. Yield Curve Modeling \checkmark
- 3. BEIR decomposition \checkmark
- 4. Dynamics of Inflation Expectation \checkmark
- 5. Empirical Results
 - Single Country
 - Multiple Country
 - With GeoCopulae
- 6. Conclusion

Estimated IE- Single Country

3-year IE forecast- Single Country

Figure 3: Model-implied inflation expectation for different countries - UK, France, Italy, Sweden and Germany.

Outline

- 1. Motivation \checkmark
- 2. Yield Curve Modeling \checkmark
- 3. BEIR decomposition \checkmark
- 4. Dynamics of Inflation Expectation \checkmark
- 5. Empirical Results
 - ► Single Country 🗸
 - Multiple Country
 - With GeoCopulae
- 6. Conclusion

Common effect with d_{it}

5-6

Residuals of common effect

 Figure 5: Model residual for IE dynamics without macroeconomic factor

 UK, France, Italy, Sweden and Germany.

 Stimating Inflation Expectation Co-movement Across Countries

Estimates with d_{it}

Country-specific equations		
UK	$\pi_{1t}^{e}(\tau) =$	$-0.358d_{it} + 0.798\Pi_t$
France	$\pi_{2t}^{e}(\tau) =$	$0.085d_{it} + 0.714\Pi_t$
Italy	$\pi_{3t}^{e}(\tau) =$	$1.078d_{it} + 0.531\Pi_t$
Sweden	$\pi^{e}_{At}(\tau) =$	$-0.621d_{it} + 0.805\Pi_t$
Germany	$\pi^{e}_{5t}(\tau) =$	$0.045d_{it} + 0.700\Pi_t$
Common Effect equation		
	$\Pi_t =$	$0.382 + 0.976\Pi_{t-1}$

Table 2: Estimates for the dynamics of IE.

Variance decomposition

- According to the joint model of IE dynamics, decompose the variation of IE π_{it}^e into parts driven by,
 - common effect variation
 - country-specific variation
 - sovereign risk variation

 $\operatorname{Var}(\pi_{it}^{e}) = n_{i}^{2}\operatorname{Var}(\Pi_{t}) + l_{i}^{2}\operatorname{Var}(d_{it}) + \operatorname{Var}(\mu_{it})$

Joint IE dynamics with d_{it}

	U.K.	France	ltaly	Sweden	Germany
Common effect	36.08	33.59	11.54	31.87	32.84
Country-specific effect	56.66	65.88	40.92	49.17	67.02
Sovereign risk effect	7.26	0.53	47.55	18.96	0.14

Table 3: Variations explained in percentage

Outline

- 1. Motivation \checkmark
- 2. Yield Curve Modeling \checkmark
- 3. BEIR decomposition \checkmark
- 4. Dynamics of Inflation Expectation \checkmark
- 5. Empirical Results
 - ► Single Country 🗸
 - ► Multiple Country 🗸
 - With GeoCopulae
- 6. Conclusion

Figure 6: The empirical fitted variogram (left) and the parametrically fitted variogram (right).

 $\hat{\eta} = 0.5$, given $\hat{\beta} = 0.1028$, $\hat{a} = 0.001795$ means that the marginal temporal correlation decreases by around 8% with 1 month increase in time, and $\hat{b} = 0.000298$ indicates that the marginal space correlation decays by around 9% with a 100-km increase. Estimating Inflation Expectation Co-movement Across Countries —

Forecast

Figure 7: The forecast of common inflation factor derived from the joint model of IE dynamics with CDS. Estimating Inflation Expectation Co-movement Across Countries —

Forecast with Geocopula

Figure 8: The comparision of two forecasts with (dotted) and without(solid) Geocopula, the estimation results are derived from the joint model of IE dynamics with default factor.

Comparison

Figure 9: Comparison of model-implied level, the observed inflation level, 1year SPF forecast and 2-year SPF forecast of inflation (Survey Professional Extimating Inflation Expectation Co-movement Across Countries —

Forecast inflation and cross sectional forecast

	U.K.	France	ltaly	Sweden	Germany
Without GeoCopula	0.413	0.381	0.463	0.386	0.298
With GeoCopula	0.116	0.056	0.145	0.122	0.142
Cross sectional forecast	0.345	0.312	0.487	0.344	0.201

Table 4: Averaged one year ahead forecast starting from 201401(squared mean squared error)

Conclusion

- Common inflation factor Π_t is an important drivers of country-specific inflation expectations.
- The model extracts informative estimates of inflation expectations
- ☑ Will provide good implications for monetary policies

References

Nelson, C.R., Siegel, A.F. Parsimonious modeling of yield curves. Journal of Bussiness, 60:473-489, 1987.

📄 Francis X Diebold and Li. C. Forecasting the term structure of government bond yields. Journal of Econometrics, 130: 337-364, 2006,

🔈 Cochrane, J.H.

Asset Pricing.

Princeton university press, 2005.

References

 Jens HE Christensen, Francis X Diebold and Glenn D Rudebusch
 The affine arbitrage-free class of Nelson-Siegel term structure models.
 Journal of Econometrics, 164(1):4-20, 2011.

Francis X Diebold, Canlin Li and Vivian Z Yue Global yield curve dynamics and interactions: a dynamic Nelson-Siegel approach. Journal of Econometrics, 146(2):351-363, 2008.

References

- Francis X Diebold, Glenn D Rudebusch and S Boragan Aruoba The macroeconomy and the yield curve: a dynamic latent factor approach. Journal of Econometrics, 115(1):32-39, 2012.
- Jens H.E. Christensen, Jose A. Lopez and Glenn D. Rudebusch Inflation expectations and risk premiums in an Arbitrage-Free model of nominal and real bond yields. Journal of Money, Credit and Banking, 11:143-178, 2010.

Dynamics of state variable

 Derived from affine AF model of Duffie&Kan(2002), the real world P-dynamics is

$$dX_{it} = K_i^P(t)[\theta_i^P(t) - X_{it}]dt + \Sigma_i(t)dW_{it}^P$$

$$X_{it} = \Phi^0_{i,\Delta t} + \Phi^1_{i,\Delta t} X_{i,t-1} + \eta_{it}$$

with

$$\Phi^0_{i,\Delta t} = I - \exp(-K^P_i \Delta t) \theta^P_i$$

 $\Phi^1_{i,\Delta t} = \exp(-K^P_i \Delta t)$ (Return)

$$F(\alpha_{t_1,n_1}, \alpha_{t_2,n_2}) = \Phi_2(\Phi^{-1}(F_{t_1,n_1}(\alpha_{t_1,n_1})), \Phi^{-1}(F_{t_2,n_2}(\alpha_{t_2,n_2}))|\Sigma_{t_1,n_1,t_2,n_2})$$
(6)

where \sum_{t_1,n_1,t_2,n_2} is a submatrix of \sum .

$$\sigma(n_2-n_1,t_2-t_1)$$

$$= \sigma(v, u) \stackrel{\text{def}}{=} \left\{ \begin{array}{c} \frac{2\sigma^2\beta}{(a^2u^2+1)^{\eta}(a^2u^2+\beta)\gamma(\eta)} (\frac{b}{2}(\frac{a^2u^2+1}{a^2u^2+\beta})^{1/2}v)^{\eta} K_{\eta}(b(\frac{a^2u^2+1}{a^2u^2+\beta})^{1/2}v) \text{ if } v > 0 , \\ \frac{\sigma^2\beta}{(a^2u^2+1)^{\eta}(a^2u^2+\beta)\gamma(\eta)} \text{ if } v = 0, \end{array} \right.$$

where a, b, β, η are parameters, $\gamma(\eta)$ is the gamma function and $K_{\eta}(\cdot)$ is the Bessel function of the second kind. \checkmark Go Back

Appendix

$$I(\theta, d_{1}, d_{2}) = \sum_{\substack{t_{1}, t_{2}, n_{1}, n_{2}: ||t_{1} - t_{2}|| \leq d_{1}, ||n_{1} - n_{2}|| \leq d_{2}} \log f_{\alpha_{t_{1}n_{1}}, \alpha_{t_{2}n_{2}}}, \quad (7)$$
where $\theta \stackrel{\text{def}}{=} (a, b, \beta, \eta)^{\top}$.
$$f_{\alpha_{t_{1}, n_{1}}, \alpha_{t_{2}, n_{2}}} \stackrel{\text{def}}{=} c_{\Phi} \{F(\alpha_{t_{1}, n_{1}}), F(\alpha_{t_{2}, n_{2}})\} f(\alpha_{t_{1}, n_{1}}) f(\alpha_{t_{2}, n_{2}})$$
with

$$c_{\Phi}\{F(\alpha_{t_1,n_1}),F(\alpha_{t_2,n_2})\} = |\Sigma_{t_1,n_1,t_2,n_2}|^{-1/2} \exp\{q^{\top}(I_2 - \Sigma_{t_1,n_1,t_2,n_2}^{-1})q\},$$

$$q\stackrel{\mathrm{def}}{=}(q_{t_1,n_1},q_{t_2,n_2})$$

and

$$q_{t_i,n_i} = \Phi^{-1}\{\hat{F}(x_{t_i,n_i})\}.$$

▶ Go Back

BEIR decomposition

Cochrane (2005), the price of the zero-coupon bond that pay one unit of consumption basket at time t,

$$P_t^N(\tau) = \mathsf{E}_t \left(M_{t+1}^N M_{t+2}^N \cdots M_{t+\tau}^N \right)$$
$$P_t^R(\tau) = \mathsf{E}_t \left(M_{t+1}^R M_{t+2}^R \cdots M_{t+\tau}^R \right)$$

M^N_t and *M^R_t* are SDFs.
 Under assumption of no arbitrage,

$$\frac{M_t^N}{M_t^R} = \frac{Q_{t-1}}{Q_t}$$

 Q_t is the overall price level of consumption basket.

BEIR decomposition

⊡ Converting equations,

$$y_t(\tau) = -\frac{1}{\tau} \log P_t(\tau)$$
$$\pi_{t+1} = \log \frac{Q_{t+1}}{Q_t}$$

☑ The BEIR can be defined as follows,

$$y_t^N(\tau) - y_t^R(\tau) = \frac{1}{\tau} \mathsf{E}_t \left(\log \frac{M_{t+1}^N}{M_{t+1}^R} \cdots \frac{M_{t+\tau}^N}{M_{t+\tau}^R} \right) - \frac{1}{2\tau} \mathsf{Var}_t \left(\log \frac{M_{t+1}^N}{M_{t+1}^R} \cdots \frac{M_{t+\tau}^N}{M_{t+\tau}^R} \right) \\ + \frac{1}{\tau} \mathsf{Cov}_t \left(\log \frac{M_{t+1}^N}{M_{t+1}^R} \cdots \frac{M_{t+\tau}^N}{M_{t+\tau}^R}, \log M_{t+1}^R \cdots M_{t+\tau}^R \right)$$

▶ Go Back

