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Motivation

Dynamics of tail event curves

DYTEC and its applications
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Motivation 1-2

Intra-day trading volume

BAYER 01/04/2014 & 03/04/2014
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Motivation 1-3
Intra-day trading volume

Jain and Joh (1988)
(1 day of the week and the hour effect the trading volume

I N4

IMo Tu we Th Fr I10n 12n 14h 16h

Darrat et al. (2003) and Spierdijk et al. (2003)

(] lagged values of volatility and trading volume simultaneously

Bialkowski et al. (2008) and Brownlees et al. (2011)
1 dynamic volume approach for VWAP

.
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Motivation 1-4

Intra-day trading volume

2014-4-1

log(volume)

900 | 1100 = 1300 = 1500  17:00

time of day
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Figure: Expectiles for 7 € {0.01,0.02, ,0.1,0.2,0.5,,...}
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Motivation 1-5

Intra-day trading volume

BAYER 2014-29-4

15

1.0

cum. returns
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|

900 | 1100 = 1300 = 1500  17:00
time

Figure: Cumulative VWAP-returns (trans. costs 0.2%) with
weights based on T-expectiles of volume, 7 = 0.1, , 0.9.
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Motivation 1-6

Hurricane predictions

5eune Daily News

Wome Anmas Rocant Erewy Enenmert TmiCuss Spcecn Waer Wors NewsPhos NewsVideo News 808

Will U.S. Hurricane Forecasting Models Catch Up to Europe’s?
Ayear after Hurricane Sandy, Europe’s forecasting technology is still tops.

Forbes

Damaging Hurricanes Could
Impact Energy, Insurance Bloomberg

Industries In 2012 T—
Comment Now Typhoon Worse
. y 5 for Philippines
by Alan Lammey, Joe Bastardi, Joe D'Aleo, oy
Michael Barak Economy Than
Sandy for U.S.

The 2012 Atlantic Hurricane Season is likely to see
an overall decrease in tropical activity as compared
to 2011, but with the focus of tropical development
closer to the United States.

When evaluating the hurricane season as a whole, o inaestiosommeies
it is important to consider more data than just the TC 1hs imege wos roduced
number of storms that are named. Evaluating
in multiple ways. The best way to determine total
seasonal activity is by collectively measuring the intensity and duration of
named tropical cyclones (both tropical storms and hurricanes), also called the
ACE index (Accumulated Cyclone Energy). While the National Hurricane

'NOAA. (Photo crodit: Wikipedia)
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Motivation 1-7

Trend analysis of tropical storms

Strenght of Pacific typhoons yearly

[J strength of wind
[ different trend
[] periodicity

due to sun cycles

wind (in knots)
10 20 30 40 50 60 70

» Movie of curves
» Sun-Hurricane connection

o
1946 1967 1987 2011
Year

Figure: Annual expectiles for = = 0.25, 0.5, 0.75
and trend

Joint work with: P.Kokoszka & Q.Xiong (Colorado State University)
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Motivation 1-8

fMRI Tail Reaction vs. risk perception

4-point "curves" for each area ( 256 questions for 19 individuals)
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Joint work with: P.Majer (HU)
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Motivation 1-9
Temperature data

Berlin 0.95 expectiles 1948-2013

(1 Daily average o
temperature
[ Model residuals ER

(] Application: Pricing
weather derivatives

temperature residuals
3.0

25
|

2.0

T T T
Jan Apr Jul Oct Dec
month in year

Figure: 0.95-expectile of Berlin temperature residuals
in 1948-1969 1970-1991 1992-2013 1948-2013
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Motivation 1-10

Dynamic demand models

(] Electricity demand
» Quarter-hourly

» Jan.2010 - Dec.2012 aa0
» Amprion company

in west of Germany

Load in 100 MW
»
5
38

(] Water demand
(] Gas demand

e 06:00
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Motivation 1-11

Challenges

[J Tail Event Curves (TEC)
[] Time-varying TECs

] Reduce dimension

(] Dynamics and Dependence

[ Forecasts for pricing and many other applications

DYTEC and its applications




Outline

Motivation v

Quantiles and Expectiles
Modeling Time-varying Curves
Outlook

Empirical Study

ok~ wh =

References
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Quantiles and Expectiles 2-1

Quantiles and Expectiles

For r.v. Y obtain tail event measure:
g = argminE{pr (Y — 0)}
asymmetric loss function
pr (u) = |ul* |7 = Nu<op]
a = 1 for quantiles, o = 2 for expectiles

» Expectile as quantile

DYTEC and its applications




Quantiles and Expectiles 2-2

Quantiles and Expectiles

Loss function py(u) = uft = Iu<)

loss function

QO LQRcheck

Figure: Loss function of expectiles*and quantiles
for 7 = 0.5 (dashed) and 7 = 0.9 (solid)
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http://sfb649.wiwi.hu-berlin.de/quantnet/index.php?p=show&id=2307

Quantiles and Expectiles 2-3
Expectile Curves

Generalized regression T-expectile
er(x) = arg minE {p (Y —0) [ X = x}
Expectile e-(x) approximated by B-spline basis
Penalized splines:
n
Q = arg min ZpT {y,- — aTb(x,-)} + Ao Qo
.

with penalization matrix Q and shrinkage A

DYTEC and its applications




Quantiles and Expectiles 2-4

Estimation of Expectile Curves

Schnabel and Eilers (2009): iterative LAWS algorithm
Schnabel (2011): expectile sheets for joint estimation of curves

2014-4-1

o~
I

o ]
B

8

log(volume)
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time of day

Figure: BAYER trading volume expectiles (A = 0.5) on 2014-04-01
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Modelling Time-varying Curves 3-1
Dynamic Tail Event Curves
Fix 7 :
K
e(t) = adi(t)
k=1

with basis ® = (¢1,...,¢x)" and t=1,..., T.

Variation in time, s=1,...,S5 :

K
es(t) = Z a5k¢k(t)
k=1
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Modelling Time-varying Curves 3-2
Independent curves

Guo et al. (2013)

[ es(t) independent realizations of stationary process
[J Karhunen-Loéve expansion:

K
es(t) = p(t) + > aski(t) = u(t) + of B(t)
k=1

[] Penalized splines for approximated mean function and FPC
] Empirical loss function

S T
I {vst — 0] b(t) - aje¢b(t)} + pen.mtx

s=1t=1

DYTEC and its applications



Modelling Time-varying Curves 3-3
Temporal (weak) dependent curves

Sequence {X,} is m-dependent if for any k the o-algebras
]:I; =0 (..., Xx_1,Xk) and f;r+m =0 (Xkrm, Xktmits---)
are independent.

Hoérmann and Kokoszka (2010)

Karhunen-Loéve expansion applicable for m-dependent
asymptotic properties of FPC estimates remain the same

most of time series ARE NOT m-dependent

fail if i.i.d. curves are too noisy

fail if curves are sufficiently regular but dependency is too
strong

Ood O

How to model stronger dependency?

DYTEC and its applications



Modelling Time-varying Curves 3-4

Cramér-Karhunen-Loéve representation

Panaretos and Tavakoli (2013)

[] spectral decomposition of stationary functional time series

J K
es(t) ~ Z exp(iwjs) Z ajkdi(t)
=1 k=1

—T=w < ... <Wyp1 =T
{¢jk}k>1 eigenfunctions
{ajk},~, corresponding coefficients

DYTEC and its applications




Modelling Time-varying Curves 3-5

Cramér-Karhunen-Loéve representation

Simplify ¢ji(t) = ¢k (t) for each j

J K
es(t) = ) exp(ic;s) Y ad(t)
j=1 k=1
~ U(s)TAd(1)

where
U(s) = (exp (iw1s), .. .,exp (iwys)) T
Ak = (ajk) matrix of coefficients

O(t) = (¢1(t),..., ok (1))

DYTEC and its applications




Modelling Time-varying Curves 3-6

Empirical loss function
Represent ¢y (t) = S1_; Burbi(t)

(D(t) = BKXLb(t)
Loss function

ZZPT{ st_ )TCb(t)}—i-/\HCJXLHgJ

s=1 t=1

where Cjq = Ak Bk matrix of coefficients
and ||Cyx|lg, Group lasso penalization

J
|CJXLHgJ Z ”CQJH = Z

= Jj=1

DYTEC and its applications




Modelling Time-varying Curves

Empirical loss function

ein 3300 { Yoo~ 0

s=1 t=1

J
0} 43> lleg; 2
j=1

I(C)
I(C) continuously differentiable

K-K-T conditions for C to be a solution:

-~ Cg.
WKM+M@% =0
IVI(C)g;lla < A

If 7 = 0.5, closed form solution available

if Cg, # 0

if Cg, = 0

DYTEC and its applications
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Modelling Time-varying Curves 3-8

Block-Coordinate
Gradient Descent Algorithm (BCGD)

Tseng & Yun (2009)
Solve nonconvex nonsmooth optimization problem

mxin f(x)+ AP(x)

where A > 0
P:R" — ( — 00,00 | block-separable convex function
f smooth on an open subset containing domP

(] combination of quadratic approximation
and coordinate descent algorithm
(] global convergence

DYTEC and its applications



Modelling Time-varying Curves 3-9

BCGD Algorithm

Stepwise and blockwise minimize

J
S\(CW4d) = /(E(t))+dTV/(E(t))+%dTH(t)d+>\Z 1C8)+d]l2

Jj=1

Notation: rgin $\(CW) + d)
9j
minimization, where d = (dg,, ..., dg,) with dg, =0 for k # j

DYTEC and its applications



Modelling Time-varying Curves 3-10

BCGD Algorithm

repeat
t=t+1
for j=1to Jdo
if HVI(E(t))Qj - hg)ag)ﬂz < X then
J J

40 _ —55?

gj
else R
di) = min $,(C(®) + d)
j dg_j
end if
end for

until convergence criterion met
update C(t+1) — C(1) _ o(O)4(t) =

DYTEC and its applications SaE



Modelling Time-varying Curves 3-11

DYTEC Algorithm

Start with initial weights ws; (obtained separately for each
s=1,...,5) and iterate between following steps:

(] compute C using BCGD algorithm
(] update weights

1 i Yee> U(s)TCh(1),
Wst = .
1—7 otherwise.

[ stop if there is no change in weights ws ;.

DYTEC and its applications



Modelling Time-varying Curves 3-12

Dynamic functional factor model

[] generalization (capture nonstationarity)
[J extend with the idea of two spaces of basis function

Model K
es(t) = Y Zymi(t) = Z m(t)
k=1

with time-varying factor loadings Z;
and functional factors my(t)

DYTEC and its applications




Modelling Time-varying Curves 3-13

Dynamic functional factor model

Space basis: i
mi(t) =D Bubi(t)
I=1
m(t) = BKXLb(t)
Time basis:

J
Zsk = Z Oéijj(S)
=1

Zs = AKxJ . U(S)

DYTEC and its applications




Modelling Time-varying Curves 3-14

Dynamic functional factor model

es(t) = Z m(t) = U(s)' Cb(t)

with Cpy = ALKBKXL matrix of coefficients,
space basis vector b(t) = {by(t),..., b (t)}"
and time basis vector U(s) = {u1(s),...,us(s)}"

Same loss function:

sz{ e = U(s) T Cb(1) | + Mol

s=1 t=1

DYTEC and its applications



Modelling Time-varying Curves 3-15

Time basis

[] capture periodic variation

(] capture trend

[J Proposal by Song et al. (2013):

» Legendre polynomial basis
» Fourier series

DYTEC and its applications



Modelling Time-varying Curves 3-16

Space basis

(] capture daily patterns

[ capture specific structure

[J Proposal by Song et al (2013):
» Data driven
» Based on combination of smoothing techniques and FPCA

(] B-splines

DYTEC and its applications




Empirical Study 4-1

Empirical Study

BAYER 01/04/2014

[ BAYER AG @ o]

(] 201404-201409

[] 128 trading days
9:00 - 17:00

log(volume)

[J cumulated 1-min volume

o
900 | 11:00 = 1300 = 1500  17:.00

time of day
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Empirical Study 4-2

Trading volume - FPCA

Use 4 FPCs to explain 90% of variation

cumulative expl. variability
0.75 0.80 0.85 090 0.95 1.00

2 4 6 8 100 12 14
number of FPC
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Empirical Study 4-3

Trading volume - FPCA

mean

9:00 | 11:00 = 1300 1500 = 17:00
time of day

1st FPC

log(volume)
0.85 1.00
I Y |

> T T
9:00 11:00 13:00
time of day

T T T
15:00 17:00
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Empirical Study 4-4

Periodicity of 1st PC score

Fisher's G-test: p-value=0.0002

Periodogram for 1st PC scores
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Figure: Scores of 1FPC and periodogram
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Outlook 5-1

Outlook

(] Dynamic model for tail event curves
[] Considering pattern and dependency

[J Provide forecasts

TBD:
[ Algorithm - Code in R

(] Simulation and Empirical studies

DYTEC and its applications
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Appendix 7-1
VWAP trading strategy

[] Buying/Selling fixed amount of shares at average price py(t)
that tracks the VWAP-benchmark of that day

L v (t) - pa-a(t)
VWAP] = ST v (1)
t=1 Yd—1

where v](t) is T-expectile of 1-min cumulated volume

and pgy(t) price at time t on day d
(] 50 % of trades are VWAP orders

[J Implementation requires model for intraday evolution
of volume

DYTEC and its applications



Appendix 7-2

Expectiles Curves for Typhoons

1946

100 150 200
L L L

wind (in knots)

50
L

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

time per year

K<<l > ] [=ote] +]

Figure: Every year with expectile curves for 7 = 0.1,0.5 and 0.9.

» Back to Motivation
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Appendix 7-3

Expectiles Curves for Hurricanes

1851

150 200
L L

wind (in knots)
100
L

0 50
L L

|
l; gx- .

\\\\\\\\\\\\\
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

time per year

K< [> ] [=lote] +]
Figure: Every year with expectile curves for 7 = 0.1,0.5 and 0.9.

» Back to Motivation
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Appendix 7-4

Number of Hurricanes

)
s _
28 o © o o o©
4]
) - 2 g
2 ,O_— ;Qo,%dg o @@9‘9&’0@0‘5 %
E 0%0 Og@
2 o - (ﬁn@'ﬁb% &0
(]
|
1850 1900 1950 2000
year

Figure: Yearly number of hurricanes

» Back to Motivation
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Appendix 7-5

Test of trend

el (t) = ar(t) + sp-(t) +e-(t)

Test for different 7
Ho: B(t) =0

Result: do not reject for all 7
(p-values in range 0.263-0.279)

» Back to Motivation
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Appendix 7-6

Typhoon’s curves differences

el (t)—T-expectile curve for year n

1 k
THOESDIAD
n=1

1 N
L= 0 e
n=k+1
Normalized differences:
k(N —k) .. oy
Pratt) = B i) — o))

DYTEC and its applications




Appendix 7-7

Typhoon'’s curves differences

=09
3 i M/\AAJM ‘
° T T T T T T T
o 10 » 2 0 50 S
«
1=0.5
° % T T T T T ‘
o 10 » 3 0 50 3
k
=01
° j T T T T T ‘
o 10 » 2 0 50 S
«
all tau

0 10000

:
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Appendix 7-8

Sun-Typhoons connection

Elsner,Jagger (2008)

[] United States and caribbean tropical cyclone activity related to
the colar cycle

Hodges, Jagger, Elsner (2014)

(] The sun-hurricane connection: Diagnosing the solar impacts
on hurricane frequency over the North Atlantic basin using a
spaceatime model

Guy Carpenter& Company (Sep. 2014)

[] The Hurricane Seasons that Changed the Insurance Industry

.

DYTEC and its applications L



Appendix 7-9
Model of Temperature data

Berlin temperature 1945/1978/2013

10 15 20
| | |

5
|

Temperature
0
!

-10 -5
| |

-15

T T T T T
Jan Apr Jul Oct Dec
Day

Figure: Daily average temperature in Berlin in 1948, 1980, 2013
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Appendix 7-10

Model of Temperature data

For days t = 1,...,24090 (i.e. 66 years)

Xe=Te— N
2

Nt =a+ bt + Z {cmcos (még; t) + dp sin (mégg t)}

m=1

L
Xe = Z BiXe—1+ €t
=1

» Back to Motivation - Temperature Data
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Appendix 7-11

Model of Temperature data

Series X_adjust

5=5.617 B1 = 0.786
b=23%10"" j,=-0.078

& =-415%1072 33 =0.024 & :

&= -714%102 3, — 0015 .

ch = —7.932 fBs = 0.011 O

h=-3100  fg—0.007 L
B7 = 0.001 T . T
Bg = 0.019

» Back to Motivation - Temperature Data
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Appendix 7-12

Relating Expectiles and Expected Shortfall

Newey and Powell (1987):

e- = argmin E {I7 = liy<ep I(Y — €)*}

E{ I{Y<e }}_eT—E(Y)
Taylor (2008):

7{e —E(Y)}

E(Y|Y<e7—)— +m

DYTEC and its applications



Appendix 7-13

Expectile as quantile

e-(Y) is the T-quantile of the cdf T, where

_ G(y) — xF(y)
") = 3060) - yFO)) + b — v} )
6ly) = [ udF(w) @)

» Back Quantiles and Expectiles

DYTEC and its applications




Appendix 7-14

B-splines
Knot vector t = (ti,..., tp) as nondecreasing sequence in [0, 1]
Control points Py, ..., Py

Define i-th B-spline basis function N;; of order j as

lLifti<t<tiy

N;o(t) =
o(t) 0 otherwise

t—t tivjs1—t
N0) = 5 Mg (0 ¢ a0
tI+J t tl+_/+1 tiy1

j=1,....,N—-M-1

» Back to Estimation of Expectile Curves
» Back to Space Basis
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Appendix 7-15

Quantile Curves Penalty

n
Q= arg moin Z pr {y,- - aTb(x,')} + Ao Qo
i=1
where b(x) = (b1, ..., bk)" is vector of B-spline basis functions

Denote b(x) = (bi(x),..., bk (x))T the vector of second
derivatives of basis functions
and set

Q= / b(x)b(x)" dx

DYTEC and its applications




Appendix 7-16

LAWS estimation
Schnabel and Eilers (2009):

min Z wi(T)(vi — pi)’

where

(Y T ifyi>
W’(T)‘{ 1—7 ify <,

;i expected value according to some model.

Iterations:
[] fixed weights, closed form solution of weighted regression
[ recalculate weights

until convergence criterion met.

DYTEC and its applications



Appendix 7-17

LAWS estimation

Example:
Classical linear regression model

Y=Xb+¢
where E(¢|X)=0and p=E(Y |X) = Xp.
n
~ _ )
= arg min wilyi — Wi
B =argmi ; (vi — i)
Then:

B = (XTWX) I xwy
with W diagonal matrix of fixed weights w;.

» Back to Expectile Curves
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Functional principal components

X(t) stochastic process on compound interval T
with mean function p(t) = E{X(t)}
and covariance function k(s, t) = cov(X(s), X(t))

There exist orthogonal sequence of eigenfunctions ¢; and
eigenvalues \; such that k(s,t) = >°=; A\jo;(s)e;(t)
We can rewrite process as

X(t) = p(t) + Y VAikjo(t)
=1

where k; = \%AJ I X(t)¢j(s)ds , E(x;) = 0 and E(kjrk) = djk.

DYTEC and its applications
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Guo(2013) - Empirical loss function

S*:S-I-Mu—i-/\/l(p

where
D T
5= p {Ydt — b(t)T 0, — b(t)T@q,ad}
d=1t=1

MM:eT/b )" dxt, =6, Q0,

Mo = Z O / B(x)B(x) dx 0,4
k=1

and b(x) vector of second derivatives
DYTEC and its applications
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Cramér-Karhunen-Loéve representation

Conditions (Panaretos and Tavakoli (2013))

X; second order stationary time series in L2([0,1], R)
with zero mean, E || Xo||3 < 0o and autocovariance kernel at lag t :

re(u, v) = E{Xe(u)Xo(v)}
u,v €[0,1], t € Z, inducing operator :
Re: L2([0,1],R) — L3([0, 1], R)

Assume:

) Yeez IRtllr < o0
i) (u,v) = re(u,v) continuous t € Z, and .7 || 1t]|oc < 00

DYTEC and its applications
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Cramér-Karhunen-Loéve representation

Theorem (Panaretos and Tavakoli (2013))

X; admits representation
™
X¢ :/ exp(iwjt)dZ, a.s.
—Tr

where for fixed w, Z, is random element of L2([0, 1], C)
and process w — Z,, has orthogonal increments.
Integral can be understood as a Riemann-Stieltjes limit in sense
J
ElIX: — Y exp(iw;t)(Zy,, — Zu)3 — 0 as J =0
j=1

DYTEC and its applications
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Cramér-Karhunen-Loéve representation

Remark (Panaretos and Tavakoli (2013))

With spectral density operator F,, = 5= >°, ., exp(—iwt)R;
having eigenfunctions {¢%},~;

C-K-L representation can be interpreted as

xi= [ ew)Y (6542 6

- n=1

» Back to C-K-L representation

DYTEC and its applications




Appendix 7-23

Block-Coordinate
Gradient Descent Algorithm

Tseng & Yun (2009)
min f(x) + AP(x)

Solve 1
min {dTVf(x) + §dTHc/ + AP(x + d)}

(] P is block-separable then H is block-diagonal

[J solve subproblems
(for every j take d = (dg,,...,dg,) with dg, = 0 for k # )

» Back to BCGD algorithm
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Block-Coordinate
Gradient Descent Algorithm

V/(CW)g, — MOCLY )

1 ~
dif) = —— [ VI(CW)g, - A—— -
T ( T IVIC ), — KO

; (1) _ (1)
H(®) has submatrices Hg, = hg/lg; for scalars hg)
o) set by Amijo rule (See Details: Tseng & Yun (2009))

» Back to BCGD algorithm
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Song et. al.(2013) - Time basis

Orthogonal Legendre polynomial basis
to capture the global trend in time

Ul(d) = 1/C1, U2(d) = d/CQ, U3(C/) = (3t2 — 1)/C3, e
with generic constant C; such that 25:1 u,-(d)/C,-2 =1

Fourier series

to capture periodic variations

us = sin(2nd/p)/Cs, us = cos(2nwd/p)/Cs,
ue = sin(2nd/(p/2))/ G, ...

with given period p

DYTEC and its applications e
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