TERES - Tail Event Risk Expected Shortfall

Philipp Gschöpf
Wolfgang Karl Härdle
Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin

http://lvb.wiwi.hu-berlin.de/ http://case.hu-berlin.de http://irtg1792.hu-berlin.de

Motivation

TERES - Tail Event Risk Expected Shortfall λ

Risk Management

\square Challenges

- Expected shortfall $E S_{\alpha}$ - coherent; $V a R_{\alpha}$ - not coherent
- Extreme value theory discards data
- Historical estimation not feasible for small samples

Example: credit rating, $V a R_{0.0002}, E S_{0.001}, E S_{0.01}$

- Coherence

Objectives

(i) Expected Shortfall (ES)

- M-quantiles: expectiles, quantiles
- Tail heaviness
(ii) TERES
- ES estimation: robustness; pseudo maximum likelihood
- Tail scenarios and ES range: risk level, lengthening the tail

Motivation ——4

Example 1

Figure 1: Discrete distribution of returns, $V_{a} R_{0.05}$ remains unchanged if tail structure changes

Motivation ———1-5

Example 2

Expected Shortfall (lengthening the tail)
An investor holds a portfolio and investigates the theoretical ES at 1% level across two scenarios

Result
(a) Standard normal, $V a R_{0.01}=-2.33, E S_{0.01}=-2.66$
(b) Standard Laplace, $V a R_{0.01}=-3.91, E S_{0.01}=-4.91$

Example 3

Expected Shortfall (lengthening the tail)
An investor has a long position in the S\&P 500 index and estimates ES at 1\% level, 20000911-20140911 (3654 days)

TERES - standardized returns
(a) Standard normal
(b) Standard Laplace

Example 3

Figure 2: S\&P 500 returns from 20000911-20140911 (3654 days)

Example 3

Figure 3: Estimated $E S_{0.01}$ using TERES, (a) standard normal - solid, (b) standard Laplace - dashed

Research Questions

How are M -Quantiles used for ES estimation?
How does the risk level α influence the variability of ES estimates?
Which range of ES is expected under different tail scenarios?

Outline

1. Motivation \checkmark
2. Expected Shortfall
3. TERES
4. Empirical Results
5. Conclusions

Expected Shortfall

\square Standardized (portfolio) return Y with pdff($)$ and $\operatorname{cdf} F(\cdot)$
\square Expected shortfall

$$
E S_{\alpha}=\mathrm{E}\left[Y \mid Y<q_{\alpha}\right]
$$

with quantile $\operatorname{Va}_{\alpha}=q_{\alpha}=F^{-1}(\alpha)$ at risk level $\alpha \in[0,1]$

M-Quantiles

\square Loss function $\rho_{\alpha, \gamma}(u)=|\alpha-\mathbf{I}\{u<0\}||u|^{\gamma}$

- Quantile - ALD location estimate

$$
q_{\alpha}=\arg \min _{\theta} \mathrm{E} \rho_{\alpha, 1}(Y-\theta)
$$

- Expectile - AND location estimate

$$
e_{\alpha}=\arg \min _{\theta} \mathrm{E} \rho_{\alpha, 2}(Y-\theta)
$$

Loss Function

Figure 4: Expectile and quantile loss functions at $\alpha=0.01$ (left) and $\alpha=0.50$ (right)

Q LQRcheck

Tail Structure

- M-Quantiles
- Level α, e_{α} and q_{α}
$>$ Level $\tau_{\alpha}, e_{\tau_{\alpha}}=q_{\alpha}$
\square Taylor (2008)

```
\(\rightarrow\) Proof
```

$$
E S_{\alpha}=e_{\tau_{\alpha}}+\frac{e_{\tau_{\alpha}}-\mathrm{E}[Y]}{1-2 \tau_{\alpha}} \frac{\tau_{\alpha}}{\alpha}
$$

Expectiles and Quantiles

\square Jones (1993), Guo and Härdle (2011)

$$
\begin{aligned}
\tau_{\alpha} & =\frac{L P M_{Y}\left(q_{\alpha}\right)-q_{\alpha} \alpha}{2\left\{L P M_{Y}\left(q_{\alpha}\right)-q_{\alpha} \alpha\right\}+q_{\alpha}-\mathrm{E}[Y]} \\
\operatorname{LPM_{Y}(u)} & =\int_{-\infty}^{u} s f(s) d s
\end{aligned}
$$

Example: $\operatorname{LPM_{Y}}\left(q_{\alpha}\right)=-\varphi\left(q_{\alpha}\right)$ for $N(0,1)$

TERES

\square Flexible statistical framework - tail scenarios
\square ES estimation

1. Mixture distribution for Y or
2. Loss function reparameterization - asymmetric generalized error distribution (GED)

Mixture Distribution

\square Contamination level $\delta \in[0,1]$, Huber (1964)

$$
F_{\delta}(x)=(1-\delta) \Phi(x)+\delta H(x)
$$

with $H(\cdot)$ - cdf of a symmetrically distributed r.v., e.g., standard Laplace

Mixture Distribution

\square Lengthening the tail
\square Special cases

- Standard normal, $\delta=0$
- Standard Laplace, $\delta=1$

Expected Shortfall

Figure 5: Theoretical ES assuming different contamination (δ) and risk levels (α)

Data

- Datastream: S\&P 500 Index
\square Span: 20000911-20140911 (3654 trading days)
\square Standardized daily returns

Data

Figure 6: S\&P 500 standardized returns

Expected Shortfall

\square Risk level α : $0.01,0.05$ and 0.10
\square Sample quantiles \widehat{q}_{α} : $-2.62,-1.43$ and -1.03
\square Contamination level
$\delta \in\{0,0.001,0.002,0.005,0.01,0.02,0.05,0.10,0.15,0.25,0.5,1\}$

- GARCH scaling

TERES - Tail Event Risk Expected Shortfall

Expected Shortfall

δ	$E S_{0.10}$	δ	$E S_{0.10}$
0.0	-1.46	0.05	-1.49
0.001	-1.46	0.10	-1.51
0.002	-1.46	0.15	-1.53
0.005	-1.46	0.25	-1.58
0.01	-1.47	0.50	-1.66
0.02	-1.47	1.00	-1.73

Table 1: $E S$ for the S\&P 500 at $\alpha=0.10$

Expected Shortfall

δ	$E S_{0.05}$	δ	$E S_{0.05}$
0.0	-1.86	0.05	-1.90
0.001	-1.86	0.10	-1.94
0.002	-1.86	0.15	-1.98
0.005	-1.87	0.25	-2.04
0.01	-1.87	0.50	-2.13
0.02	-1.88	1.00	-2.13

Table 2: $E S$ for the S\&P 500 at $\alpha=0.05$

Expected Shortfall

δ	$E S_{0.01}$		
0.0	-3.03		δ
0.001	-3.03		$E S_{0.01}$
0.002	-3.04		-3.18
0.005	-3.05		-3.28
0.01	-3.06		-3.37
0.02	-3.09		0.50

Table 3: $E S$ for the S\&P 500 at $\alpha=0.01$

Expected Shortfall

Figure 7: Expected shortfall using S\&P 500 sample quantiles and assuming different contamination (δ) and risk levels (α).

Outlook

$\square \delta$-environment

- Strict convexity
- Analytical formula for Normal and Laplace cases
\square Connection to Generalized Error Distribution (GED)
- Risk level α is connected to skewness
- Integration of moments into τ estimation

Figure 8: Asymmetric GED Likelihood and expectile loss function for $\alpha=$ 0.05 .

Q TERESGEDandMQuantile

Conclusions

(i) Expected Shortfall (ES)

- M-Quantiles applied successfully to estimate ES
- Interaction between α and τ illustrated
(ii) Estimating Expected Shortfall
- Distributional robustness: δ-neighborhood
- TERES: S\&P $500-E S_{0.01}, E S_{0.05}$ and $E S_{0.10}$

TERES - Tail Event Risk Expected Shortfall

Philipp Gschöpf
Wolfgang Karl Härdle
Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de/
http://case.hu-berlin.de

http://irtg1792.hu-berlin.de

References

Bellini, F. , Klar, B., Muller, A. and Gianin, E. R.
Generalized quantiles as risk measures
Insurance: Mathematics and Economics 54, 41-48, 2014, ISSN:
0167-6687
E. E. Guo M. and Härdle, W. K.

Simultaneous Confidence Band for Expectile Function
Advances in Statistical Analysis, 2011
DOI: 10.1007/s10182-011-0182-1

TERES - Tail Event Risk Expected Shortfall

Breckling, J. and Chambers, R. M-quantiles
Biometrica 75(4): 761-771, 1988
DOI: 10.1093/biomet/75.4.761
Huber, P.J.
Robust Estimation of a Location Parameter
The Annals of Mathematical Statistics 35(1): 73-101, 1964
DOI: 10.1214/aoms/1177703732
Q Huber, P.J. and Ronchetti, E.M.
Robust Statistics
Second Edition, 2009, ISBN: 978-0-470-12990-6

TERES - Tail Event Risk Expected Shortfall

固 Jones, M.C.
Expectiles and M-quantiles are quantiles Statistics \& Probability letters 20(2): 149-153, 1993, DOI: http://dx.doi.org/10.1016/0167-7152(94)90031-0
围 Koenker, R.
When are expectiles percentiles?
Economic Theory 9(3): 526-527, 1993
DOI:http://dx.doi.org/10.1017/S0266466600007921
Newey, W. K., Powell J.L.
Asymmetric Least Squares Estimation and Testing.
Econometrica 55(4): 819-847, 1987 DOI: 10.2307/1911031

TERES - Tail Event Risk Expected Shortfall

目 Taylor，J．W
Estimating value at risk and expected shortfall using expectiles Journal of Financial Econometrics（6），2， 2008

埥 Yao，Q．and Tong，H．
Asymmetric least squares regression estimation：A nonparametric approach Journal of Nonparametric Statistics（6），2－3， 1996

怅 Yee，T．W．
The VGAM Package for Categorical Data Analysis
R reference manual
http：／／127．0．0．1：16800／library／VGAM／doc／categoricalVGAM．pdf

TERES－Tail Event Risk Expected Shortfall

Coherence

\square Coherent risk measure $\rho(Y)$

- Subadditivity, $\rho\left(Y_{1}+Y_{2}\right) \leq \rho\left(Y_{1}\right)+\rho\left(Y_{2}\right)$
- Translation invariance, $\rho(Y+c)=\rho(Y)$ for constant c
- Monotonicity, $\rho\left(Y_{1}\right)>\rho\left(Y_{2}\right) \quad \forall Y_{1}<Y_{2}$
- Positive homogeneity, $\rho(k Y)=k \rho(Y) \quad \forall k>0$

Subadditivity

$\square \rho\left(Y_{1}+Y_{2}\right) \leq \rho\left(Y_{1}\right)+\rho\left(Y_{2}\right)$
\square Diversification never increases risk
\square Quantiles are not subadditive
\square Expected shortfall is subadditive, Delbaen (1998)

The expectile is defined as

$$
\begin{array}{r}
e_{\tau_{\alpha}}=\arg \min _{\theta} \mathrm{E} \rho_{\tau_{\alpha}, 2}(Y-\theta) \\
\rho_{\tau_{\alpha}, 2}(u)=\left|\tau_{\alpha}-\mathbf{I}\{u<0\}\right||u|^{2}
\end{array}
$$

For the continuous case

$$
e_{\tau_{\alpha}}=\arg \min _{\theta} \int \rho_{\tau_{\alpha}, 2}(Y-\theta)
$$

This is a Quadratic convex problem with F.O.C.

$$
\left(1-\tau_{\alpha}\right) \int_{-\infty}^{s}(y-s) f(y) d y+\tau_{\alpha} \int_{s}^{\infty}(y-s) f(y) d y=0
$$

$$
\begin{gathered}
\left(1-\tau_{\alpha}\right) \int_{-\infty}^{e_{\tau_{\alpha}}}\left(y-e_{\tau_{\alpha}}\right) f(y) d y+\left(1-\tau_{\alpha}\right) \int_{e_{\tau_{\alpha}}}^{\infty}\left(y-e_{\tau_{\alpha}}\right) f(y) d y \\
=-\tau_{\alpha} \int_{e_{\tau_{\alpha}}}^{\infty}\left(y-e_{\tau_{\alpha}}\right) f(y) d y+\left(1-\tau_{\alpha}\right) \int_{e_{\tau_{\alpha}}}^{\infty}\left(y-e_{\tau_{\alpha}}\right) f(y) d y \\
(1-\tau)\left\{\mathrm{E}(Y)-e_{\tau_{\alpha}}\right\}=\left(1-2 \tau_{\alpha}\right) \int_{e_{\tau_{\alpha}}}^{\infty}\left(y-e_{\tau_{\alpha}}\right) f(y) d y \\
e_{\tau_{\alpha}}-\mathrm{E}(Y)=\frac{\left(2 \tau_{\alpha}-1\right)}{1-\tau_{\alpha}} \int_{e_{\tau_{\alpha}}}^{\infty}\left(y-e_{\tau_{\alpha}}\right) f(y) d y
\end{gathered}
$$

This result is equal to (2.7) in Newey and Powell (1987)

```
- Tail Structure
```

Finally, as pointed out in Taylor (2008)

$$
\begin{aligned}
e_{\tau_{\alpha}}-\mathrm{E}[Y] & =\frac{1-2 \tau_{\alpha}}{\tau_{\alpha}} \mathrm{E}\left[\left(Y-e_{\tau_{\alpha}}\right) \mathbf{I}\left\{Y>e_{\tau_{\alpha}}\right\}\right] \\
\mathrm{E}\left[Y \mid Y>e_{\tau_{\alpha}}\right] & =e_{\tau_{\alpha}}+\frac{\tau\left(e_{\tau_{\alpha}}-\mathrm{E}[Y]\right)}{\left(1-2 \tau_{\alpha}\right) F\left(e_{\tau_{\alpha}}\right)}
\end{aligned}
$$

And using $e_{\tau_{\alpha}}=q_{\alpha}$

$$
\begin{aligned}
\mathrm{E}\left[Y \mid Y>q_{\alpha}\right] & =e_{\tau_{\alpha}}+\frac{\left(e_{\tau_{\alpha}}-\mathrm{E}[Y]\right) \tau_{\alpha}}{\left(1-2 \tau_{\alpha}\right) \alpha} \\
& =\mathrm{ES}\left(e_{\tau_{\alpha}}, \tau_{\alpha} \mid \alpha\right)
\end{aligned}
$$

Relation of Expectiles and Quantiles

$$
\begin{aligned}
& \text { F.O.C. of Expectiles: } \\
& 0=\left(1-\tau_{\alpha}\right) \int_{-\infty}^{e_{\tau_{\alpha}}}\left(y-e_{\tau_{\alpha}}\right) f(y) d y+\tau_{\alpha} \int_{e_{\tau_{\alpha}}}^{\infty}\left(y-e_{\tau_{\alpha}}\right) f(y) d y
\end{aligned}
$$

Reformulation yields

$$
\begin{aligned}
& \tau_{\alpha}\left(e_{\tau_{\alpha}}-2 \int_{-\infty}^{e_{\tau_{\alpha}}} e_{\tau_{\alpha}} f(y) d y\right)+\int_{-\infty}^{e_{\tau_{\alpha}}} e_{\tau_{\alpha}} f(y) d y \\
= & \tau_{\alpha}\left(\int_{-\infty}^{\infty} y f(y) d y-2 \int_{-\infty}^{e_{\tau_{\alpha}}} y f(y) d y\right)+\int_{-\infty}^{e_{\tau_{\alpha}}} y f(y) d y
\end{aligned}
$$

- Expectiles and Quantiles

$$
\begin{aligned}
& \tau_{\alpha}\left\{2\left(\int_{-\infty}^{e_{\tau_{\alpha}}} y f(y) d y-e_{\tau_{\alpha}} \int_{-\infty}^{e_{\tau_{\alpha}}} f(y) d y\right)+e_{\tau_{\alpha}}-\mathrm{E}[Y]\right\} \\
= & \int_{-\infty}^{e_{\tau_{\alpha}}} y f(y) d y-\int_{-\infty}^{e_{\tau_{\alpha}}} e_{\tau_{\alpha}} f(y) d y
\end{aligned}
$$

And finally

$$
\tau_{\alpha}=\frac{\operatorname{LPM}_{e_{\tau_{\alpha}}}(y)-e_{\tau_{\alpha}} F\left(e_{\tau_{\alpha}}\right)}{2\left\{\operatorname{LPM}_{e_{\tau_{\alpha}}}(y)-e_{\tau_{\alpha}} F\left(e_{\tau_{\alpha}}\right)\right\}+e_{\tau_{\alpha}}-\mathrm{E}[Y]}
$$

Expectiles and Quantiles

Tail Event Risk

Figure 9: $\alpha \tau(\alpha)$ for F_{δ}

- Expectiles and Quantiles

TERES - Tail Event Risk Expected Shortfall

Standardization

$\square \widehat{\sigma}_{i}$ from $\operatorname{GARCH}(1,1)$

$$
\begin{aligned}
y_{i} & =\beta_{0}+\beta_{1} y_{i-1}+\varepsilon_{i} \\
\sigma_{i}^{2} & =\alpha_{0}+\alpha_{1} \varepsilon_{i-1}^{2}+\alpha_{2} \sigma_{i-1}^{2}
\end{aligned}
$$

$\square \widehat{e}_{0.5}$ is assumed time constant
$\square \widehat{Y}_{i}=\frac{r_{i}-\widehat{e}_{0.5}}{\widehat{\sigma}_{i}}$

Generalized Error Distribution

\square Let $\kappa>0$ and $g(x)$ be a symmetric distribution
\square An asymmetric distribution $f(x)$ can be obtained as:

$$
f(x)=\frac{2 \kappa}{1+\kappa^{2}} \begin{cases}g(x \kappa) & , 0 \leq x \tag{1}\\ g\left(\frac{x}{\kappa}\right) & , \text { else }\end{cases}
$$

\square The Generalized Error Distribution (GED, Exponential Power distr.) is defined as

$$
\begin{equation*}
g(x \mid \gamma, \sigma, \theta)=\frac{\gamma}{2 \sigma \Gamma\left(\frac{1}{\gamma}\right)} \exp \left\{-\left|\frac{x-\theta}{\sigma}\right|^{\gamma}\right\} \tag{2}
\end{equation*}
$$

Following Ayebo and Kozubowski (2003), (1) and (2) yield a skew GED:
$f(x \mid \gamma, \kappa, \sigma, \theta)=\frac{\gamma}{2 \sigma \Gamma\left(\frac{1}{\gamma}\right)} \frac{\kappa}{1+\kappa^{2}} \exp \left\{-\frac{\kappa^{\gamma}}{\sigma^{\gamma}}|x-\theta|_{+}^{\gamma}-\frac{1}{\kappa^{\gamma} \sigma^{\gamma}}|x-\theta|_{-}^{\gamma}\right\}$
\square Parameter

- γ Shape, $\gamma=1$ Laplace, $\gamma=2$ Normal
- κ Skewness, $\kappa=1$ is symmetric
- σ Scale
- θ Mean
\square Part of $-\ln \{f(\cdot)\}$ that depends on x

$$
\frac{\kappa^{\gamma}}{2 \sigma^{\gamma}}|x-\theta|^{\gamma} \mathbf{I}\{x-\theta \leq 0\}+\frac{1}{2 \kappa^{\gamma} \sigma^{\gamma}}|x-\theta|^{\gamma} \mathbf{I}\{x-\theta<0\}
$$

\square M-quantile loss function

$$
\begin{aligned}
\rho(x-\theta) & =|\tau-\mathbf{I}\{x-\theta<0\}||x-\theta|^{\gamma} \\
& =\tau|x-\theta|^{\gamma} \mathbf{I}\{x-\theta \leq 0\}+(1-\tau)|x-\theta|^{\gamma} \mathbf{I}\{x-\theta<0\}
\end{aligned}
$$

\square M-Quantile-GED relation: $\frac{\alpha}{1-\alpha} \propto \frac{\kappa^{\gamma}}{\kappa^{-\gamma}}=\kappa^{2 \gamma}$

