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Motivation 1-1

Motivation

[J Pricing kernel (PK)
» Consumption based models
- marginal rate of consumption substitution
» Arbitrage free models
- Radon-Nikodym derivative of the physical measure w.r.t. the
risk neutral measure

[] Empirical pricing kernel (EPK)
» Any estimate of the PK
» EPK paradox - locally increasing EPK
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Figure 1: EPK’s: Engle and Rosenberg (2002), Ait-Sahalia and Lo (2000),

Brown and Jackwerth (2004)
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Figure 2: EPK's for various maturities (left) and different estimation dates
for fixed maturity 1M (right), Grith et al. (2010)
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EPK Paradox
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Figure 3: EPK’'s across moneyness x and maturity 7 for DAX from
20010101 — 20011231, Giacomini and Hardle (2008)
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EPK Paradox

Figure 4. Upper panel: estimated risk neutral density g and historical den-
sity p. Lower panel: EPK and 95% uniform confidence bands on 20080228,

Hardle et al. (2010)
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Objectives

[ Pricing kernel derivation

» Adjust individual and aggregate preferences
» State-dependent (state variable: market return)
» Simulation study

[J Fitting EPK's
» ldentifiability of parameters
» Empirical study
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Research Questions

EPK

How to modify standard expected utility theory to rationalize
the EPK paradox?

How well can 'observed’ EPK's be fitted?

How sensitive are results with respect to the preference
parameters?

How to estimate the time variation of estimated
parameters/functions?
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Assumptions

[ Financial markets
» Finite investment time horizon [0, T] and r risk free interest
rate
» Risky asset with prices {S;}y~,~7 and return Rt = S7/S0
»> Arbitrage free market, at least one equivalent martingale
measure with density 7

3 m Consumers

» Endowment ¢; and consumption ¢; (Rt), i=1,...,m
» State-dependent utility function
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State-Dependent Utility - Literature Review

[] Axiomatisation
» Dreze and Rustichini (2004)
» Evans and Viscusi (1991)
» Mas-Colell, Winston und Green (1995)

(] Empirical evidence
» Karni, Schmeidler and Vind (1983)
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Individual Preferences

[] Consumer i's extended expected utility, Mas-Colell et al.
(1995)

U'{ci (RT)} = E [v' {Rr, i (RT)}]

with o' : Ri — R - state dependent utility index

u'{Rr,ci (Rr)} = uf {ci (RT)}{Rr € [0,]} + i {ci (RT)} I{Rr € (xi,00)}

x; € [0,00) - reference point of consumer i; x1 < -+ < Xm
u?, uf Ry — R - utility indices

- strictly increasing, concave and twice cts differentiable
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Microeconomic Framework

Individual Preferences

Utility Indices
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Figure 5: Utility indices u?(y) = y%2°/0.25 (bearish market) and v?(y) =
y9:50/0.50 (bullish market)
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Equilibrium

(1 Individual optimization

& (Rr) = arg max U'{ci(Rr)}

s.t. E[ci(RT)K(RT)] < &
[] Market clearing

Zm: G(Rr) = e (Rr) ¥ e(Ry)
i=1 j

i=1

» Pareto optimal ¢, (R7),...,¢m (RT)

EPK Paradox \)xv\




Microeconomic Framework 2-6

Aggregated Preferences

[] Aggregated extended expected preferences
Ua {8 (RT)} = Efua {RT,8(RT)}],
with u, : Ri — R - aggregated indirect utility
Uo {R7,8(RT)} =ta,1 {8 (RT)} I {RT € [0,x1]} +

m—1

+ Z Ua,i+1 {8 (RT)}H{RT € (i, xita]}+

i=1

+ ta,m+1 {€(RT)}H{RT € (xm, 00) }

Uaj {8 (RT)} =) ontid {@ (R} {k > j}+ > cuic {8 (Rr)} 1 {k < j}

k=1 k=1

for j=1,...,m+1 and importance weights o = (a1,...,am)"
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Pricing Kernel

Theorem
For every a; > 0 there exists 5; s.t.
~ Oug,
QB (1) = K (r7) = al{y} | {rr € 0]} +
y y=rr
m—1
Ouy ;
2y 2ot e Gl +
i=1

y=rr
4 P ()
dy

for every realization rr of Rt and é(r7) =rr .

1 {rr € (xm,00)}.
y=rr

Note: K (rr) is nonincreasing separately on the intervals

[0,x1], (x1,x2] ;- .., (Xm, 00) but may be nonmonotone at x;'s
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Example 1

Example 1. Consider m investors with identical reference point x;

that switch between constant relative risk aversion (CRRA) utilities

0 1
u?(y) =y /’y? and u,-l(y) =y /’y,l 0< ’y,p < ’y,-l < 1.

Kx(rr) = M {rr € [0,xa]} + r 27 1 {rr € (31, 00)},

m

e =rr/Y

i=1

EPK Paradox \ex\
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Example 1 a=»

PK

~__
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Figure 6: Pricing kernel K (r7) for x, = 1.1 and 42 = 0.25 < 72 = 0.50
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Example 2

Example 2. Consider m investors with possibly different reference
points x;'s that switch between CRRA utilities u%(y) = bo% and

ut(y) = bl%. Let F (r7) be the cdf of the reference points
F(rr)=m> 1{x <rr}
i=1

v—1

K (rr) = Kx (rr) = T - (1)
{1—F(rr)y by +F(rr)bi

for parameters v = (v, by, bl)T, 0< by < b
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Pricing Kernel

Example 2
PK
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Figure 7: Pricing kernel K,  (r7) with v+ = 0.5, bp = 1, by = 1.2 and
m = 3 with uniformly generated reference points
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Example 2
PK PK
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Figure 8: Pricing kernel K,  (r7) with v+ = 0.5, bp = 1, by = 1.2 and
m = 40 (left) and m = 400 (right) with reference points generated from
a triangular distribution
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Example 2
PK PK
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Figure 9: Pricing kernel Ky ¢ (r7) with v = 0.5, by = 1, by = 1.2 and
m = 40 (left) and m = 400 (right) with reference points generated from
a normal distribution N(0.95,0.05)
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Example 2
PK PK
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Figure 10: Pricing kernel KC, r (rr) with v = 0.5, by = 1, by = 1.2
and m = 4000 with reference points generated from a normal distribution
N(1.15,0.05) (left) and N(0.95,0.10) (right)
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Fitting EPK's

Fitting EPK’s
[J Find v and F that minimize

SR ()~ Kur (5))

J=1

. - . n
for the estimate K at points {s;}/_,

X

KvF(x) = i 1
{1-F(x)}b§ +F(x)b}

with v = (6, b9, b1)", 6 =1 —~ and F cdf.

-0
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Parameters Identifiability

For (5, bo, bl > 0 and bo < bl
1 1 1
XKy g (x) ={1—F(x)} bg + F (x) b7 (3)
1 1
is a monotonically increasing function bounded between b{ and b; .

(] For discrete reference points v is identifiable
[ For F continuous v is not identifiable
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Data

(] Financial markets
» EUREX European option data on 20000920 and 20060621
» Daily DAX returns - past 500 observations until 20000920 and
20060621 respectively

[J Pricing kernels
» K (rr) - Grith et al. (2010)
> Kve(rr)= K. (rr) - semi-parametric PK (1)
> K; g (rr) - estimated Ky (rr)
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Empirical Study

Fitting Results: Discrete RP
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Figure 11: K (r) on 20060621 and IC, g (rr) for m=1,2,3,4.
v =(~13.96,0.27,2.38)
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Continuous F: Parametric Case
Assume
T(x)?
(TG + 1~ Ty
¢ > 0 distortion parameters and T sigmoid distribution
T(x)=[1+exp{—a(x —c)}] "
a>0and c € R. Then find v and Fy that minimize

zn: {’6 (5) = Kvr, (Sj)}2

j=1

EPK Paradox \)xv\
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Fitting Results: Continuous /?¢
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Figure 12: K (rr) on 20060621 and K 7, (rr) (left) and I?¢ (rr) (right)
for 6 = 21.10 by = 0.09, b; = 3.99, 3 = 65.01, & = 0.97, 1) = 0.58
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Fitting Results: Continuous F,
For fixed ¢ find IA)O, 131, 3, ¢, Q[)A minimize 2
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Figure 13: R(rT) and IA-_(rT) on 20060621 for § = 5 (green), § = 10
(cyan), 6 = 15 (light blue), 6 = 20 (dark blue), § = 25 (magenta), 6 = 30
(red)
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Continuous F: Semi-Parametric Case

Assume

x P P X P
:/ Zﬁkwk(u)du:ZBk/ Gi(u)du = BiVi(x)
0 k=1 k=1 0 k=1

For fixed P and fixed 0 find (bo, b1, 51, - - .,BP)T that minimize

n 2
z{ zﬁkwk 68— b))+ bs}
under the restriction that F is a distribution.

J=1
EPK Paradox \)xv\
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Conclusions

Pricing kernel derivation

[] Reference points determine jumps in the aggregate utility

[] State-dependent preferences may explain the EPK paradox

Fitting EPK’s
[ Quality increases with the number of switching points

(] Fully parametric PK specification successfully applied

EPK Paradox \)x\
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Conclusions

Further Research

[ Statistical estimation methodology for semi-parametric PK's
[ Theoretical properties of v and F
(] Multidimensional reference points

[] Dynamic implementation (PK's, reference points)
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Appendix 8-1

Risk Neutral Valuation

[] Present value of the payoffs ¢ (ST)

Py =Eq [e‘Trib(sT)} = /OO e "y(st) K(sT)p(sT) dst

0

r risk free interest rate, {S;},c[o 1} Stock price process,

p pdf of S7, Q risk neutral measure, KC(+) pricing kernel
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PK under the Black-Scholes Model

(] Geometric Brownian motion for S;

@ = Mdt+0th
St

1 mean, o volatility, W, Wiener process

[ Physical density p is log-normal, 7= T — ¢t

2
1 1 | log(S7/St) — (M - 072) T
SrV2no?r P12 o\T

p:(ST) =

[ Risk neutral density q is log-normal: replace p by r
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PK under the Black-Scholes Model

[] PK is a decreasing function in St for fixed S;

K (S, 571) = <ST);eXP{(M_r) (M+r—02)7}

S, 202

() (tr—o®)r
202

risk aversion (CRRA) coefficient

EPK Paradox \)xv\
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Example 1

# Step 1/3: Input parameters

R = t(matrix(seq(0.8, 1.2, by = 0.01), 1))
x0 <- 1.1

gamma0 <- 0.25

gammal <- 0.50

# Step 2/3: Define the PK
K = R[R <= x0, ] = (gammaO - 1)
K2 = R[R >= x0, 1 ~ (gammal - 1)

# Step 3/3: Plot the PK against simple gross market return

plot(R[R <= x0, 1, K, type = ’1’, 1lud = 3, col = "blue",
x1lim = ¢(0.8, 1.2), ylim = ¢(0.8, 1.25), xlab = "r_T")
lines(R[R >= x0, ], K2, type = ’1’, 1lwd = 3, col = "blue",
x1lim = ¢(0.8, 1.2), ylim = ¢(0.8, 1.25), xlab = "r_T")

EPK Paradox \eX\




Appendix 8-5

Example 2

b0 =1

bl =1.2

# Step 1/3: Input parameters and F_n
n = 1000

s = seq(0.5, 1.5, 0.2/n)

m = 10 # number of switching points
x = runif(m, 0.8, 1.2)

F_n = ecdf(x) (s)

# Step 2/3: Define the PK
PK = (s/((1 - F_n)*b0~(1/(1-gamma)) + F_n*b1~(1/(1-gamma))))" (gamma-1)

# Step 3/3: Plot the PK against simple gross market return
plot( cbind(s, PK) )
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Example 2

b0 =1

bl =1.2

# Step 1/3: Input parameters and F_n
n = 1000

s = seq(0.5, 1.5, 0.2/n)

m = 40 # number of switching points
x = 0.8 + 0.4*sqrt(runif (m))

F_n = ecdf(x) (s)

# Step 2/3: Define the PK
PK = (s/((1 - F_n)*b0~(1/(1-gamma)) + F_n*b1~(1/(1-gamma))))" (gamma-1)

# Step 3/3: Plot the PK against simple gross market return
plot( cbind(s, PK) )
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Example 2

b0 =1

bl =1.2

# Step 1/3: Input parameters and F_n
n = 1000

s = seq(0.5, 1.5, 0.2/n)

m = 40 # number of switching points
F_n = pnorm( 20%(s-0.95) )

# Step 2/3: Define the PK
PK = (s/((1 - F_n)*b0~(1/(1-gamma)) + F_n*b1~(1/(1-gamma))))~ (gamma-1)

# Step 3/3: Plot the PK against simple gross market return
plot( cbind(s, PK) )
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Discrete RP

F(rr)=m™! Z H{x <rr}
i=1

For L distinct reference points x; < xo < ... < x, on any arbitrary
interval (x;_1,x] with /=1,...,L+1

F(x) = Fi(x) = const. = ¢;
Using (3)
1 1 1
xK? g (x) = (1 —¢)bg + ¢;b) = const.,

which identifies v.

EPK Paradox \)X\




	Motivation
	Microeconomic Framework
	Pricing Kernel
	Fitting EPK's
	Empirical Study
	Conclusions
	References
	Appendix

	0: 
	0: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	13: 
	14: 
	15: 
	16: 
	17: 
	18: 
	19: 
	20: 
	21: 
	22: 
	23: 
	24: 
	25: 
	26: 
	27: 
	28: 
	29: 
	30: 
	31: 
	32: 
	33: 
	34: 
	35: 
	36: 
	37: 
	38: 
	39: 
	40: 
	41: 
	42: 
	43: 
	44: 
	45: 
	46: 
	47: 
	48: 
	49: 
	50: 
	51: 
	52: 
	53: 
	54: 
	55: 
	56: 
	57: 
	58: 
	59: 
	60: 
	61: 
	62: 
	63: 
	64: 
	65: 
	66: 
	67: 
	68: 
	69: 
	70: 
	71: 
	72: 
	73: 
	74: 
	75: 
	76: 
	77: 
	78: 
	79: 
	80: 
	81: 
	82: 
	83: 
	84: 
	85: 
	86: 
	87: 
	88: 
	89: 
	90: 
	91: 
	92: 
	93: 
	94: 
	95: 
	96: 
	97: 
	98: 
	99: 
	100: 
	101: 
	102: 
	103: 
	104: 
	105: 
	106: 
	107: 
	108: 
	109: 
	110: 
	111: 
	112: 
	113: 
	114: 
	115: 
	116: 
	117: 
	118: 
	119: 
	120: 
	121: 
	EndLeft: 
	StepLeft: 
	PlayPauseLeft: 
	PlayPauseRight: 
	StepRight: 
	EndRight: 
	Minus: 
	Reset: 
	Plus: 

	anm0: 


