Cross Country Evidence for the EPK Puzzle

Maria Grith Wolfgang Karl Härdle Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

Motivation — 1-1

Motivation

- □ Pricing kernel (PK)
 - Consumption based models
 - marginal rate of consumption substitution
 - Arbitrage free models
 - Radon-Nikodym derivative of the physical measure w.r.t. the risk neutral measure Risk Neutral Valuation PK Black-Scholes
- - $ightharpoonup \widehat{\mathcal{K}}$ any estimate of the PK
 - EPK paradox locally increasing EPK

PK Estimation

■ Indirect estimation of the PK

$$\widehat{\mathcal{K}} = \frac{\widehat{q}}{\widehat{p}}$$

- q risk neutral density; p physical density;
- European options and stock index data
- ► EPK puzzle emerges Ait-Sahalia and Lo (2000), Brown and Jackwerth (2004)

Motivation — 1-3

PK Estimation

Direct estimation of the PK

$$\widehat{\mathcal{K}} = G_{\widehat{\theta}}$$

- $ightharpoonup PK \stackrel{\mathrm{def}}{=} G_{ heta} \propto U'$, U aggregated utility
- cross-sectional equity returns data
- mixed evidence for the EPK puzzle Dittmar (2002), Schweri (2011)

Motivation ______ 1-4

EPK Paradox: European option market

Figure 1: EPK's: Engle and Rosenberg (2002), Ait-Sahalia and Lo (2000), Brown and Jackwerth (2004)

Cross Country Evidence for the EPK Puzzle

Motivation ______1-5

EPK Paradox: European option market

Figure 2: EPK's for various maturities (left) and different estimation dates for fixed maturity 1M (right), Grith et al. (2010)

Motivation 1-6

EPK Paradox: European option market

Figure 3: EPK's across moneyness κ and maturity τ for DAX from 20010101-20011231, Giacomini and Härdle (2008)

Cross Country Evidence for the EPK Puzzle ————

Motivation — 1-7

EPK Paradox

Figure 4: Upper panel: estimated risk neutral density \hat{q} and historical density \hat{p} . Lower panel: EPK and 95% uniform confidence bands on 20060228, Härdle et al. (2010)

Cross Country Evidence for the EPK Puzzle -

Motivation — 1-8

Research Questions

- Parametrization of the PK that admits nonmonotonicity
- Dynamic estimation of the EPK parameters
- Test the significance of the 'bump' in the EPK
- Cross-country variation of the EPK in equity returns

Outline

- 1 Motivation ✓
- 2. Pricing Kernel (PK)
- 3. Generalized Method of Moments (GMM)
- 4. Empirical Results
- 5. Conclusion

Modeling Framework

- Neoclassical economy, representative agent
 - \blacktriangleright Exogenous income ω_t
 - \triangleright Consumption c_t and financial portfolio of k assets

$$\omega_t = c_t + q_t^{\top} S_t$$

Asset holdings $q_t = (q_{1,t}, \dots, q_{k,t})^{\top}$, prices $S_t = (S_{1,t}, \dots, S_{k,t})^{\top}$

 $ightharpoonup c_{t+1}$ contains the future income and all asset payoffs

$$c_{t+1} = \omega_{t+1} + q_t^{\top} S_{t+1}$$

Preferences

Expected time separable and state-dependent utility

$$u(c_{t}, c_{t+1}) = u(c_{t}) + \beta_{1} \mathsf{E}_{t} [u(c_{t+1})] \mathsf{I} \{c_{t} \in [0, x)\}$$
$$+ \beta_{2} \mathsf{E}_{t} [u(c_{t+1})] \mathsf{I} \{c_{t} \in [x, \infty)\}$$

- **Parameters** Reference parameters β_1 and β_2
- $\blacktriangleright \quad \mathsf{E}_t\left[\bullet\right] = \mathsf{E}\left[\bullet \mid \mathcal{F}_t\right]$

Optimal Portfolio Holding

$$\begin{aligned} \max_{c_{t},c_{t+1}} u\left(c_{t},c_{t+1}\right) &= \max_{q_{t}} \left[\ u\left(\omega_{t} - S_{t}^{\top}q_{t}\right) \right. \\ &+ \beta_{1} \mathsf{E}_{t} \left[u\left(\omega_{t+1} + q_{t}^{\top}S_{t+1}\right) \right] \mathsf{I} \left\{ \left(\omega_{t+1} + q_{t}^{\top}S_{t+1}\right) \in \left[0,x\right) \right\} \\ &+ \beta_{2} \mathsf{E}_{t} \left[u\left(\omega_{t+1} + q_{t}^{\top}S_{t+1}\right) \right] \mathsf{I} \left\{ \left(\omega_{t+1} + q_{t}^{\top}S_{t+1}\right) \in \left[x,\infty\right) \right\} \right] \end{aligned}$$

Consumption based asset pricing

$$S_{t} = E_{t} \left[\left\{ \beta_{1} \frac{u'(c_{t+1})}{u'(c_{t})} I\{c_{t} \in [0, x)\} \right. \right. + \beta_{2} \frac{u'(c_{t+1})}{u'(c_{t})} I\{c_{t} \in [x, \infty)\} \right\} S_{t+1} \right] (1)$$

Cross Country Evidence for the EPK Puzzle —

Preferences

$$\frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)}=\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}.$$

constant relative risk aversion coefficient (CRRA) $\gamma>0$

Pricing Kernel

Assumption (Cochrane, 1996)

$$c_{t+1} = r_{m,t+1} = S_{m,t+1}/S_{m,t}$$

$$\mathcal{K}_{\theta}(r_{m,t+1}) = \beta_1 r_{m,t+1}^{-\gamma} \mathsf{I} \left\{ r_{m,t+1} \in [0,x) \right\} + \beta_2 r_{m,t+1}^{-\gamma} \mathsf{I} \left\{ r_{m,t+1} \in [x,\infty) \right\}$$

with
$$\theta = (\beta_1, \beta_2, \gamma)^{\top}$$

Cross Country Evidence for the EPK Puzzle ———

Generalized Method of Moments

 \square Interpret (??) as the expectation of k moment conditions

$$\mathsf{E}_{t} \left[\mathcal{K}_{\theta} \left(r_{m,t+1} \right) R_{t+1} - 1_{k} \right] = 0_{k}, \tag{2}$$

where $R_{t+1} = \left(S_{1,t+1}/S_{1,t}, \dots, S_{k,t+1}/S_{k,t}\right)^{\top}$. Then for

$$g(\theta) = \mathcal{K}_{\theta}(r_{m,t+1}) R_{t+1} - 1_k, \quad \mathsf{E}_t[g(\theta)] = 0_k$$

the sample analogue of (??)

$$g_n(\theta) = n^{-1} \sum_{t=0}^{n-1} \left\{ \mathcal{K}_{\theta} \left(r_{m,t+1} \right) R_{t+1} - 1_k \right\}$$
 (3)

over the data sample of size n.

Cross Country Evidence for the EPK Puzzle ———

Two-step GMM

$$\widetilde{ heta}_{n}\overset{\text{def}}{=} rg \min_{ heta} \left\{ oldsymbol{g}_{n}^{ op}\left(heta
ight) oldsymbol{g}_{n}\left(heta
ight)
ight\}.$$

$$\widetilde{W}_n = n^{-1} \sum_{t=0}^{n-1} g(\widetilde{\theta}_n) g(\widetilde{\theta}_n)^{\top}.$$

 $\odot 2^{nd}$ step: weighting matrix \widetilde{W}_n

$$\widehat{\boldsymbol{\theta}}_{n} \overset{\text{def}}{=} \arg \, \min_{\boldsymbol{\theta}} \, \left\{ \boldsymbol{g}_{n}^{\top} \left(\boldsymbol{\theta} \right) \, \widetilde{\boldsymbol{W}}_{n}^{-1} \boldsymbol{g}_{n} \left(\boldsymbol{\theta} \right) \right\}$$

06 08 1 12 1

Data

- Cross country analysis
 - ► Germany and UK, 1998–2007 (daily data)
 - Overlapping monthly returns
 - Rolling window (5y)
- Stock markets
 - Index returns (DAX, FTSE 100)
 - ▶ Returns of the largest 20 constituents of each market
 - Reference point: zero simple net market return (x = 1); 5y average market return

Empirical Results — 4-2

EPK Dynamics

Figure 5: EPK on the German stock market in 2005. Reference point: zero simple net market return.

Cross Country Evidence for the EPK Puzzle —

Parameter Dynamics

Figure 6: Estimated parameters $\widehat{\beta}_1$, $\widehat{\beta}_2$ and $\widehat{\gamma}$ on the German and the British stock market. Reference point: zero simple net market return.

Cross Country Evidence for the EPK Puzzle

Parameter Dynamics

Figure 7: Estimated parameters $\widehat{\beta}_1$, $\widehat{\beta}_2$ and $\widehat{\gamma}$ on the German and the British stock market. Reference point: 5y mean market return.

Cross Country Evidence for the EPK Puzzle

EPK Puzzle - Stock Markets

Figure 8: EPK given average estimated parameters from 2003-2007 on the German $\widehat{\theta} = (0.69, 1.31, 2.78)^{\top}$ and the British stock market $\widehat{\theta} = (0.72, 1.27, 2.39)^{\top}$. Reference point: zero simple net market return.

EPK Puzzle - Stock Markets

Figure 9: EPK given average estimated parameters from 2003-2007 on the German $\widehat{\theta} = (0.60, 1.54, 4.37)^{\top}$ and the British stock market $\widehat{\theta} = (0.73, 1.31, 2.76)^{\top}$. Reference point: 5y mean market return.

Conclusion — 5-1

Conclusion

- (i) Estimating pricing kernels (PK)
 - State-dependent preferences 'jump' in the PK
 - Estimated 'jump' is time-persistent with different intensities
- (ii) Cross country study
 - Evidence for the existence of the 'jump' in both countries
 - ▶ Positive comovements between EPKs' parameters

Cross Country Evidence for the EPK Puzzle

Maria Grith Wolfgang Karl Härdle Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de

References — 6-1

References

Breeden, D., Gibbons, M. and Litzenberger, R. Empirical tests of the consumption-oriented CAPM Journal of Finance 44: 231–262, 1989

Cochrane, J.

A cross-sectional test of an investment-based asset pricing model

Journal of Political Economy 104: 572-621, 1996

📄 Dittmar, R.F.

Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from the Cross Section of Equity Returns

Journal of Finance **62**(1): 369–403, 2002

Cross Country Evidence for the EPK Puzzle -

References — 6-2

References

Hansen, L.P.

Large sample properties of generalized method of moments estimators

Econometrica 50: 1029-1054, 1982

Hansen, L.P. and Jagannathan, R.

Assessing specification errors in stochastic discount factor models

Journal of Finance 52: 557-590, 1997

Schweri, U.

Is the pricing kernel u-shaped?

NCCR Finrisk Working Paper 732, University of Zurich, 2011

Risk Neutral Valuation Motivation

 \square Present value of the payoffs $\psi(S_T)$

$$P_0 = \mathsf{E}_Q \left[e^{-\mathsf{Tr}} \psi(s_T) \right] = \int_0^\infty e^{-\mathsf{Tr}} \psi(s_T) \; \mathcal{K}(s_T) p(s_T) \; ds_T$$

r risk free interest rate, $\{S_t\}_{t\in[0,T]}$ stock price process, p pdf of S_T , Q risk neutral measure, $\mathcal{K}(\cdot)$ pricing kernel

PK under the Black-Scholes Model Motivation

 \Box Geometric Brownian motion for S_t

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t$$

 μ mean, σ volatility, W_t Wiener process

 \square Physical density p is log-normal, $\tau = T - t$

$$p_t(S_T) = \frac{1}{S_T \sqrt{2\pi\sigma^2\tau}} \exp \left[-\frac{1}{2} \left\{ \frac{\log(S_T/S_t) - \left(\mu - \frac{\sigma^2}{2}\right)\tau}{\sigma\sqrt{\tau}} \right\}^2 \right]$$

 \square Risk neutral density q is log-normal: replace μ by r

PK under the Black-Scholes Model Motivation

 \square PK is a decreasing function in S_T for fixed S_t

$$\mathcal{K}(S_t, S_T) = \left(\frac{S_T}{S_t}\right)^{-\frac{\mu-r}{\sigma^2}} \exp\left\{\frac{(\mu - r)(\mu + r - \sigma^2)\tau}{2\sigma^2}\right\}$$
$$= b\left(\frac{S_T}{S_t}\right)^{-\delta}$$

$$b=\exp\left\{rac{(\mu-r)\left(\mu+r-\sigma^2
ight) au}{2\sigma^2}
ight\}$$
 and $\delta=rac{\mu-r}{\sigma^2}\geq 0$ constant relative risk aversion (CRRA) coefficient