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Summary. This chapter deals with the estimation of risk neutral distributions for
pricing index options resulting from the hypothesis of the risk neutral valuation
principle. After justifying this hypothesis, we shall focus on parametric estimation
methods for the risk neutral density functions determining the risk neutral distribu-
tions. We we shall differentiate between the direct and the indirect way. Following
the direct way, parameter vectors are estimated which characterize the distributions
from selected statistical families to model the risk neutral distributions. The idea of
the indirect approach is to calibrate characteristic parameter vectors for stochastic
models of the asset price processes, and then to extract the risk neutral density
function via Fourier methods. For every of the reviewed methods the calculation of
option prices under hypothetically true risk neutral distributions is a building block.
We shall give explicit formula for call and put prices w.r.t. reviewed parametric sta-
tistical families used for direct estimation. Additionally, we shall introduce the Fast
Fourier Transform method of call option pricing developed in [6]. It is intended to
compare the reviewed estimation methods empirically.
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1 Introduction

It is usual practice of empirical studies on index option pricing in financial
markets to start with the hypothesis of risk neutral valuation principle. That
means it is assumed that prices of path independent derivatives with expi-
ration at maturity may be represented as expected pay offs. The underlying
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distribution is referred as the risk neutral distribution. In the seminal paper
[5], a stochastic model for financial markets has been established where this
risk neutral distribution may be singled out by arbitrage arguments up to the
volatility parameter. This Black Scholes model is nowadays very well under-
stood, and widely used in financial industries due to the derived formula of
risk neutral index call and put option prices.

Several empirical studies had come to the conclusion that the stochas-
tic assumptions underlying the Black Scholes model does not fit very well
the observed dynamics of asset prices. Therefore several alternative stochas-
tic models have been proposed in the literature where typically risk neutral
distributions may not be obtained by arbitrage arguments alone. However,
within quite general stochastic frameworks one may identify theoretically risk
neutral distributions compatible with observable liquid derivatives like call
and put options. These risk neutral distributions are often called implied risk
neutral distributions.

Compared to the risk neutral distribution according to the Black Scholes
model implied risk neutral distributions generally do not have further specifi-
cations in advance. This complicates estimations in two directions. From the
point of view of accuracy specification aspects like the choice of statistical fam-
ilies for the risk neutral distributions or the assumptions on stochastic models
for the asset price processes have to be taken into account when selecting
the estimation method and controlling the accuracy. Additionally the numer-
ical problems associated with the implementation of the estimation method
typically became more involved.

As a general assumption within the literature on estimation of risk neu-
tral distributions they are considered as continuous distributions. The object
is then to estimate related probability density functions called the risk neu-
tral density functions, with a slight abuse of mathematical correctness. Two
principal ways to estimate risk neutral density functions may be pointed out,
parametric and nonparametric methods. This chapter deals with the para-
metric ones. One class of them is built upon parametric statistical families
assumed to describe the risk neutral distribution accurately. The problem re-
duces to the estimation of the distribution parameters. The other group of
methods estimate the probability density functions indirectly. A parametric
stochastic model is assumed for the asset price processes, and the risk neu-
tral density functions are extracted then after the calibration of the model to
observed option prices. The chapter is organized as follows.

We shall start with the risk neutral valuation principle. There are con-
troversial standpoints concerning the reasonability of this principle. Since the
field of mathematical finance is mainly built upon the framework of arbitrage
theory, many mathematicians accept risk neutral pricing for replicable options
only. Instead non-linear pricing rules like superhedging are favoured which re-
duce to risk neutral pricing for replicable options. In section 2 we shall present
an argumentation which might reconcile the different views.
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The general idea behind the estimation methods under considerations is
to fit option prices calculated under hypothetically true risk neutral density
distributions to respective observed ones. Therefore these calculations play an
important role for the implementation of the estimation methods. In section 4
we shall assume particular statistical families to model the risk neutral distri-
butions. The considered families, namely log-normal distributions, mixtures
of log-normal distributions and general gamma distributions, allow for explicit
formula of call and put prices. Section 3 deals with calculations of call prices
based on parametric stochastic models for the asset price processes. There the
classical Black Scholes formula will be reviewed, and the Fast Fourier Trans-
form method developed in [6] will be introduced. This method might be used
as a tool for the model calibration as presented in section 5. There it will also
be shown how to extract the risk neutral density functions via Fourier meth-
ods. The whole line of reasoning will be explified by Merton’s jump diffusion
and Heston’s volatility model. In the last section it is intended to compare
the different reviewed estimation methods empirically.

2 The risk neutral valuation principle

Let [0, T ] be the time interval of investment in the financial market, where
t = 0 denotes the present time and t = T ∈]0,∞[ the time of maturity.

Furthermore it is assumed that a riskless bond with constant interest rate
r > −1 and a risky asset are traded in the financial market as basic un-
derlyings. The evolution of the risky asset is expressed in terms of a state
dependent nonnegative price process (St)t∈[0,T ] with constant S0. Notice that
time discrete modelling may be subsumed under this framework.

For the pricing of nonnegative derivatives ψ(ST ) it is often assumed that
the risk valuation principle is valid. That means that there is a stochastic
model for (St)t∈[0,T ] by means of a probability measure Q such that the price
of any ψ(ST ) is characterized by

EQ

[
e−rTψ(ST )

]
.

There exist many arguments supporting this principle. From the viewpoint of
the arbitrage theory it is closely related to the condition that Q is a so called
martingale measure, i.e.

EQ

[
e−trSt|Sτ , τ ≤ t̃

]
= e−t̃rSt̃ for 0 ≤ t̃ < t ≤ T. (1)

In this case the financial market is arbitrage free in the sense that the value
process (Vt(H))t∈[0,T ] of a self-financing investment strategy H = (Ht)t∈[0,T ]

which is bounded from below by −(δSt)t∈[0,T ] for some δ > 0, with V0(H) ≤ 0
the value at maturity VT (H) is vanishing almost surely if it is nonnegative.
For a comprehensive account on the theory of arbitrage the reader is kindly
referred to the monograph [10].
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The expectation EQ

[
e−rTψ(ST )

]
is then a so called arbitrage free price of

ψ(ST ), meaning that Q remains a martingale measure for the new financial
market with an additional underlying having price process{

E
[
e−r(T−t)ψ(ST ) | Sτ , τ ≤ t

]}
t∈[0,T ]

.

Unfortunately, arbitrage free prices vary over the martingal measures unless a
derivative ψ(ST ) is replicable by the terminal wealth VT (H) of a value process
(Vt(H))t∈[0,T ] of a self-financing investment strategy H = (Ht)t∈[0,T ] satisfy-
ing boundness conditions as above. If every such derivative is replicable the
financial market is called complete. An outstanding example is the famous
Black-Scholes model (see below). However, at least in the special case of time
discrete modelling complete financial markets are very exceptional, e.g. re-
ducing directly to a binomial model within out setting (cf. [14], Theorem
5.38). Hence arbitrage arguments alone are not sufficient for a justification of
the risk neutral valuation. Several suggestions have combined them with addi-
tional criteria. In [16] arbitrage free markets are embedded into a utility-based
model for the terminal wealths of value processes of self-financing investment
strategies that leads to risk neutral valuation of the derivatives ψ(ST ). An-
other suggestion is built upon the observation that in organized markets call
and put options are traded so often that they might be viewed as liquid
derivatives. So the idea is to look for martingale measures Q consistent with
observable prices C(K) of call options with expiration T and strike price K
in the sense

C(K) = EQ

[
e−rT max{0, ST −K}

]
.

If consistency is required for all strike prices K, then for any pair Q1,Q2

of such martingale measures the marginal distributions of ST w.r.t. Q1,Q2

coincide (see proof of Lemma 7.23 in [14]), implying EQ1

[
e−rTψ(ST )

]
=

EQ2

[
e−rTψ(ST )

]
for a derivative ψ(ST ). Moreover, there exist axiomatiza-

tions for pricing rules in financial markets that guarantee the existence of
martingale measures which are consistent with the observable call prices C(K)
for all strikes K (cf. e.g. [14], Proposition 7.26, [4]).

If the risk neutral valuation principle is valid w.r.t. to some stochastic
model in terms of a probability measure Q, we shall call it risk neutral
probability measure. As discussed above marginal distributions of ST are
independent of the chosen risk neutral probability measure so that we may
speak of the risk neutral distribution of ST , henceforth denoted by QST

.
Of course the marginal distributions of ln(ST ) are independent of the choice of
risk neutral probability measures too, suggesting the convention of the log-
price risk neutral distribution. We shall further restrict considerations to
continuous risk neutral distributions admitting a probability density function
q, which we shall call risk neutral density function. So from now on the
assumption of the risk valuation principle should mean that the price of a
derivative ψ(ST ) is expressed by
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ψ(x) q(x) dx.

Since the risk neutral density function is unknown, the task is to estimate it
upon observed prices for options ψ(ST ) at time t = 0. Typically, prices for
call and put options are used. We shall review some widely used paramet-
ric methods. There always computations of hypothetical prices for options
w.r.t. candidates of the risk neutral density functions are involved. For some
models like the Black Scholes model such hypothetical prices for call and
put options are given in implementable analytical expressions, for others like
several stochastic volatility models numerically efficient ways of calculations
have been developed. These results and methods will be the subject of the
next section.

3 Calculations of risk neutral option prices

Let us assume that the stock price process (St)t∈[0,T ] is characterized by a
parameter vector ϑ ∈ Θ ⊆ Rr under the risk neutral probability measures. In
the special case of the Black Scholes model the famous Black Scholes formulas
provide explicit formulas for parameter dependent call and put prices. They
will be reviewed in the following subsection. Afterwards we shall introduce
the Fast Fourier Transform method to calculate call option prices as proposed
in [6]. It relies on the additional assumption that the characteristic function
of the log-price risk neutral distribution is known analytically.

3.1 The Black Scholes formula

In the Black Scholes model the price process (St)t∈[0,T ] is modelled under the
risk neutral probability measure by

St = S0 exp
{(

r − σ2

2

)
t+ σWt

}
,

where σ > 0, and (Wt)t∈[0,∞[ denotes a standard Brownian motion. In partic-

ular ϑ def= σ ∈ Θ def= ]0,∞[, the so called volatility, and the risk neutral distribu-

tion is a log-normal distributions with parameters µ def=
(
r − σ2

2

)
T + ln(S0)

and σ2T.
As usual, let Φ denote the distribution function of the standard normal

distribution, and let MK
def= ST

K be the moneyness w.r.t. strike price K > 0.
With these notations we may report the celebrated Black Scholes formula (cf.
[5]) for the prices CBS(K,σ), PBS(K,σ) of respectively the call and put with
expiration at T and strike price K > 0 dependent on the volatility σ :
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CBS(K,σ) = STΦ(d1)−Ke−rTΦ(d2) (2)
PBS(K,σ) = CBS(K,σ)− S0 + e−rTK (3)

d1
def=

− ln(M) + T (r + σ2

2 )

σ
√
T

, d2
def= d1 − σ

√
T (4)

3.2 Fast Fourier Transform method to calculate call option prices

We shall follow the line of reasoning in [6], assuming that the characteristic
function ΦT |ϑ of the log-price risk neutral distribution is known analytically.
Prominent examples are some widely used stochastic volatility models with
or without jumps (see below). The aim is to calculate the hypothetical price
Cϑ(K) for the call option with expiration at T and strike K if ϑ is the true
parameter vector driving the risk neutral model for the stock price process.

Recall that for an integrable function f : R → R we may define the so
called Fourier transform f̂ of f via

f̂(y) def=
∫
feiyv dv.

Due to Plancherel’s theorem (cf. [23], Theorem 9.13) we may recover f from
its fourier transform by

f(x) =
∫
e−ixy f̂(y)

2π
dy

if f is in addition square integrable. Under the assumption

E
[
S1+α

T

]
<∞ for some α > 0 (5)

this relationship between functions and their fourier transforms may be ap-
plied to

Cϑ
α : R → R, x 7→ eαxCϑ(ex) (ϑ ∈ Θ)

(see [6]). We obtain the following formulas for the fourier transforms Ĉϑ
α of

Cϑ
α (ϑ ∈ Θ)

Ĉϑ
α =

e−rTΦT |ϑ(y − (1 + α)i)
α2 + α− y2 + i(2α+ 1)y

, (6)

A derivation may be found in [6] or [7], p. 189. This yields

Cϑ(K) = K−αCϑ
α(ln(K)) =

∫
K−αe−iy ln(K)Ĉϑ

α(y)
2π

dy (7)

=

∞∫
0

K−αe−iy ln(K)Ĉϑ
α(y)

π
dy.
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The last equation holds because Cϑ(K) is real, which implies that fourier
transform Ĉϑ

α is odd in its imaginary part and even in its real part. Using
the Trapezoid rule for the integral on the right hand side of (7), we may
approximate the prices Cϑ(K) by

Cϑ(K) ≈ 1
Kαπ

N−1∑
j=0

e−iηjĈϑ
α(ηj)η, (8)

where η > 0 is the distance between the points of the integration grid. Bounds
for sampling and truncation errors of this approximation have been developed
in [19].

Approximation (8) suggests to apply the Fast Fourier algorithm which is
an efficient algorithm to compute sums of the form

wu =
N−1∑
j=0

e−i 2π
N juzj for u = 0, ..., N − 1

(cf. [27]). In general, the strikes near the spot price S0 are of interest because
call options with such prices are traded most frequently. We thus consider an
equidistant spacing of the log-strikes around the log spot price ln(S0) :

xu = − 1
N

Nζ + ζu+ ln(S0) for u = 0, ..., N − 1, (9)

where ζ > 0 denotes the distance between the log-strikes. Inserting (9) into
formula (8) yields

Cϑ {exp(xu)} ≈ exp(−αxu)
π

N−1∑
j=0

e−iζηju eiηj{ 1
2 Nζ−ln(S0)}Ĉϑ

α(ηj)η (10)

for u = 0, ..., N − 1. Now we may apply the Fast Fourier algorithm to

zj
def= eiηj{ 1

2 Nζ−ln(S0)}Ĉϑ
α(ηj)η for j = 0, ..., N − 1

provided ζη = 2π
N holds. This restriction means on one hand that if we choose

η small in order to obtain a fine grid for the integration, we have a relatively
large spacing between the log-strikes with few log-strikes lying around the de-
sired region near ln(S0). On the other hand a small ζ to catch many log-strikes
near ln(S0) a more rough grid for the integration is forced by the restriction.
So we face a trade-off between accuracy and the number of interesting strikes.
Accuracy may be improved for large η by using better numerical integration
rules. Carr and Madan considered the Simpson rule leading to the approxi-
mation

exp(−αxu)
π

N−1∑
j=0

e−iζηju eiηj{ 1
2 Nζ−ln(S0)}Ĉϑ

α(ηj)
η

3
{
3 + (−1)j − δ0(j)

}
(11)
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for u = 0, ..., N −1, instead of (10), where δ0(0) def= 1 and δ0(j)
def= 0 for j 6= 0.

The Fast Fourier algorithm may be applied to calculate

zj
def= eiηj{ 1

2 Nζ−ln(S0)}Ĉϑ
α(ηj)

η

3
{
3 + (−1)j − δ0(j)

}
for j = 0, ..., N − 1,

again taking into account the condition ζη = 2π
N .

4 Direct parametric estimation of the risk neutral
density function

The parametric approach to estimate the risk neutral density function directly
starts with the assumption that the risk neutral distribution of ST belongs to a
parametric family WΘ (Θ ⊆ Rr) of one-dimensional continuous distributions.
For any parameter vector ϑ ∈ Θ and every strike price K we may calculate the
hypothetical prices for the call C(K,ϑ), the put P (K,ϑ) both with expiration
T, and the forward Fη by

C(K|ϑ) = e−rT

∞∫
K

(x−K) q(x|η) dx (12)

P (K|ϑ) = e−rT

K∫
0

(K − x) q(x|η) dx (13)

Fϑ = e−rT

∞∫
0

x q(x|ϑ) dx (14)

Therein, q(·|ϑ) denotes any probability density function of the distribution
from WΘ associated with ϑ.

The estimation of the risk neutral density function reduces to the esti-
mation of the distribution parameter vector ϑ. The most common approach
is based on S0, observed prices Y1, ..., Yn for calls with strikes K1, ...,Km,
and Ỹ1, ..., Ỹm with strikes K̃1, ..., K̃n. Both, calls and puts with expiration T.
The parameter vector ϑ is estimated by minimizing the sum of the squared
differences between the observed call, put and forward price and the hypothet-
ical ones. More precisely, the estimation involves the solution of the following
minimization problem

min
m∑

i=1

{Yi − C(Ki|ϑ)}2 +
n∑

j=1

{
Ỹi − P (K̃i|ϑ)

}2

(15)

+
(
e−rTS0 − Fϑ

)2
s.t. ϑ ∈ Θ.

The crucial step to implement this parametric approach is to find a proper
statistical family WΘ as a model for the risk neutral distribution. Usually,
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either a very general class a distribution is selected or mixtures of log-normal
distributions are utilized. As general classes we shall discuss the benchmark
case of log-normal distributions and the generalized Gamma distributions. Let
us start with assumption of log-normal distributions.

4.1 Estimation using log-normal distributions

Closely related to the Black Scholes model the log-normal distributions are
sometimes used for the risk neutral distribution, indicated as a benchmark
case (cf. e.g. [18]). Recall that a probability density function fLN(µ,σ) of a
log-normal distribution with parameters µ ∈ R and σ > 0 is given by

fLN(µ,σ)(x)
def=


1√

2πσx
e−

{ln(x)−µ}2

2σ2 : x > 0

0 : otherwise
.

For fixed σ2 and different µ1, µ2 the respective probability density functions
fLN(µ1,σ) and fLN(µ2,σ) are linked by

fLN(µ2,σ) = e(µ1−µ2) fLN(µ1,σ)

{
x e(µ1−µ2)

}
. (16)

Then applying the change of variables theorem for integration we obtain the
following relationships between the call and put prices

C(K|µ2, σ) = e(µ2−µ1) C
{
K e(µ1−µ2)|µ1, σ

}
(17)

P (K|µ2, σ) = e(µ2−µ1) P
{
K e(µ1−µ2)|µ1, σ

}
. (18)

The equations suggest to express prices C(K|µ, σ) and P (K|µ, σ) in terms of

Black Scholes formulas, noticing that CBS(K,σ) = C

{
K|
(
r − σ2

2

)
T + ln(S0), σ

}
and PBS(K,σ) = P

{
K|
(
r − σ2

2

)
T + ln(S0), σ

}
holds for any strike K. For

µ ∈ R and σ > 0 we obtain

CBS(K|µ, σ) def= C(K|µ, σ) (19)

= e

µ−

r−
σ2

2

T+ln(S0)


CBS

K e

r−
σ2

2

T+ln(S0)−µ

, σ


PBS(K|µ, σ) def= C(K|µ, σ) (20)

= e

µ−

r−
σ2

2

T+ln(S0)


PBS

K e

r−
σ2

2

T+ln(S0)−µ

, σ

 .
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With a slight abuse of convention we shall call CBS(K|µ, σ) and PBS(K|µ, σ)
Black Scholes call and put prices too.

Next we want to introduce the approach to substitute log-normal distri-
butions for the risk neutral distributions by mixtures of them.

4.2 Estimation using log-normal mixtures

The use of log-normal mixtures to model the risk neutral distribution of ST

was initiated by [22] and became further popular even in financial industries
by the studies [2], [20] and [26]. The idea is to model the risk neutral den-
sity function as a weighted sum of probability density functions of possibly
different log-normal distribution. Namely, we set

q(x|µ1, ..., µk, σ1, ..., σk, λ1, ..., λk) def=
k∑

i=1

λifLN(µi,σi)(x),

where fLN(µi,σi) denotes a probability density function of the log-normal dis-
tribution with parameters µi ∈ R as well as σi > 0, and nonnegative weights
λ1, ..., λk summing up to 1.

This approach might be motivated w.r.t. two aspects. Firstly such density
functions are flexible enough to model a great variety of potential shapes
for the risk neutral density function. Secondly, we may compute easily the
hypothetical call and put prices in terms of respective Black-Scholes formulas
by

C(K|µ1, ..., µk, σ1, ..., σk, λ1, ..., λk) =
k∑

i=1

λiC
BS(K|µi, σi) (21)

P (K|µ1, ..., µk, σ1, ..., σk, λ1, ..., λk) =
k∑

i=1

λiP
BS(K|µi, σi). (22)

Additionally, drawing on well known formulas for the expectations of log-
normal distributions, we obtain

Fµ1,...,µk,σ1,...,σk,λ1,...,λk
=

k∑
i=1

λie
(µi+

σ2
i
2 −rT )

Recalling that the parameter estimation is based on observations of m call
and n put prices we have to take into account the problem of overfitting.
More precisely, the number 3k − 1 of parameters should not exceed m + n,
the number of observations. Furthermore in order to reduce the numerical
complexity of the minimization problem underlying the estimation it is often
suggested to restrict estimation to the choice of k ∈ {2, 3}.

Empirical evidence (cf. e.g. [9], [24] and [25]) shows that the implied skew-
ness of the underlying used in options is often negative, in contrary to the
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skewness of log-normal distributions. In order to take into account negative
skewness Savickas proposed to use Weibull distributions (cf. [24] and [25]).
In [12] this suggestion has been extended to the family of generalized gamma
distributions that will be considered in the next subsection.

4.3 Estimation using generalized Gamma distributions

According to ϑ
def= (α, β, k) ∈ Θ

def= ]0,∞[3 a respective probability density
function fG(·|α, β, δ) is given by

fG(·|α, β, k) =


1

Γ (k)

(
β

α

) (x
α

)βk−1

exp
{
−
(x
α

)β
}

: x > 0

0 : otherwise
,

where Γ denotes the Gamma function. The corresponding cumulative distri-
bution function G(·|α, β, k) is given by

G(x|α, β, k) def= I

{
k,
(x
α

)β
}
,

where I denotes the incomplete gamma function defined as

I (k, y) def=
1

Γ (k)

y∫
0

xk−1 e−x dx.

It is known that k = 1 leads to a Weibull distribution, when β = 1 we get a
gamma distribution, when β = k = 1 we obtain an exponential distribution
and when k → ∞ we arrive a log-normal distribution. Explicit formulas for
the respective hypothetical prices C(K|α, β, k), P (K|α, β, k) and Fα,β,k, the
moment generating function, have been derived in [12] (pp. 58,70). They read
as follows.

Fα,β,k = α
Γ (k + 1

β )

Γ (k)
(23)

C(K|α, β, k) = e−rTFα,β,k − e−rTK (24)

−

[
Fα,β,k I

{
k − 1

β
,

(
K

α

)β
}

+ K I

{
k,

(
K

α

)β
}]

P (K|α, β, k) = e−rT

[
K I

{
k,

(
K

α

)β
}

− Fα,β,k I

{
k +

1
β
,

(
K

α

)β
}]

.(25)

A different class of methods to estimate the risk neutral density start with
a parametric model of the whole stock price process which determines in an
analytic way the risk neutral distribution. Then the risk neutral density will
be estimated indirectly via calibration of the stock price process.
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5 Estimation via calibration of the stock price process

The starting point for the indirect estimation of the risk neutral density func-
tion via model calibration is the assumption that the risk neutral probability
measure of the stock price process (St)t∈[0,T ] is characterized by a parameter
vector ϑ ∈ Θ ⊆ Rr. Furthermore it is supposed that the characteristic func-
tions ΦT |ϑ of ln(ST ) under ϑ is known analytically. Prominent examples are
some widely used models (see below).

Based on observed prices Y1, ..., Ym for call options with expiration T and
strike prices K1, ...,Km the stock price process is calibrated to obtain an
estimated parameter vector ϑ̂. A popular way is to solve the following inverse
problem (cf. e.g. [3], [1])

min
m∑

i=1

{
Yi − Cϑ(Ki)

}2
(26)

s.t. ϑ ∈ Θ, (27)

where Cϑ(Ki) denotes the hypothetical call price with expiration T and strike
price Ki if ϑ is the true characteristic parameter vector. These prices might be
calculated via the Fast Fourier Transform method as introduced in subsection
3.2. This approach has the attractive numerical feature that for implementa-
tion we may draw on the Fast Fourier algorithm.

Once we have solved the inverse problem some parameter vector say ϑ̂, we
might extract the risk neutral density function in the following way. Firstly
we obtain by Fourier inversion theorem (cf. [11], 9.5.4) for probability density
function q

log|ϑ̂ of ln(ST )

q
log|ϑ̂(x) =

∫ ΦT |ϑ̂(y)e−ity

2π
dy.

Then application of the transformation theorem for probability density func-
tions yields the estimation

qϑ̂(x) =


q
log|ϑ̂(x)

x
: x > 0

0 : otherwise
.

Let us now have a closer look at some special models where we shall identify
the respective calibration parameter and characteristic functions. We shall
consider refinements of the classical Black Scholes model. Namely Merton’s
jump diffusion model which incoporates possible large or sudden movement in
prices, and Heston’s volatility model which take into account state dependent
changes in volatilities.
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5.1 Merton’s jump diffusion model

The jumps of the log prices are usually modelled by a compound Poisson

process
Nt∑
i=1

Yi, consisting of a Poisson process (Nt)t∈[0,∞[ with intensity pa-

rameter λ > 0 independent of a sequence (Yi)i∈N of i.i.d. random variables.
The Nt model the random number of jumps, whereas the respective jump sizes
are expressed by the Yi having a common distribution of typical jump size.
Within the Merton’s jump diffusion model a normal distribution N(µ, δ2) is
assumed as the distribution of typical jump size. Then this compound Pois-
son process is added to classical Black Scholes model. As introduced in [21],
the risk neutral price process within Merton’s jump diffusion model may be
described by

St = S0 exp

(
µM t + σWt +

Nt∑
i=1

Yi,

)

where µM = r− σ2

2 −λ
{

exp
(
µ+ δ2

2

)
− 1
}
, σ > 0, and (Wt)t∈[0,∞[ denoting

a standard Brownian motion which is independent of the compound Poisson
process.

Drawing on well-known formulas for characteristic functions of normally
distributed random variables (cf. [11], Proposition 9.4.2), and that for com-
pound Poisson processes ([8], Proposition 3.4), we obtain the characteristic
function Φln(ST ) of ln(ST ) by an easy calculation, yielding

Φln(ST )(z) = exp {iz ln(S0)} (28)

× exp
[
T

{
1− σ2z2

2
+ iµMz + λ

(
e(−

δ2z2
2 + iµz)

)}]
As parameter vector we may identify ϑ def= (σ2, λ, µ, δ2) ∈ ]0,∞[2×R×]0,∞[ def=
Θ.

5.2 Heston’s volatility model

A popular approach to substitute the deterministic volatility in the Black
Scholes model by a stochastic process (vt)t∈[0,∞[. was proposed in [15]. In this
model the risk neutral dynamics of the log price ln(St) is expressed by the
stochastic differential equations

d ln(St) =
(
r − 1

2
vt

)
dt +

√
vt dW

S
t (29)

d vt = κ(η − vt) dt + θ
√
vt dW

V , (30)

where (WS
t )t∈[0,∞[, (WV

t )t∈[0,∞[ are correlated standard Brownian motion
with rate ρ :
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Cov(d WS
t , d W

V
t ) = ρ dt.

An analytical expression of the characteristic function Φln(ST ) of ln(ST ) has
been derived in [15] in the following way

Φln(ST )(z) =
exp

[
κηT (κ−iρθz)

θ2 + iz {Tr + ln(S0)}
]

{
cosh(γT

2 ) + κ−iρθz
γ sinh(γT

2 )
} 2κη

θ2
(31)

× exp

{
− (z2 + iz)v0
γ coth(γT

2 ) + κ− iρθz

}
,

where γ =
√
θ2(z2 + iz) + (κ− iρθz)2. As parameter vector we obtain

ϑ
def= (θ, ρ, κ, η) ∈ ]0,∞[×[−1, 1]× [0,∞[×]0,∞[ def= Θ.

6 Empirical study

In this section we will demonstrate the methods exposed in the theoretical
part and address some aspects of concern for practitioners. Estimating the
risk neutral density by direct methods involves the choice of parametric dis-
tribution family to which it belongs to. This introduces some arbitrariness
in modelling because the distribution family must be selected a priori from
a set of candidates. Indirect modelling relies on assumptions about the data
generating process and the shape of the risk neutral density is intrinsically
related to the parameter values of the underlying process.

Practitioners are interested in modelling the RND from observed data
and therefore have to solve an inverse problem. Model parameters are often
obtained by solving nonlinear least squares equations for which analytical so-
lutions may be very difficult or impossible to derive. Therefore, one has to
rely on numerical optimization algorithms in order to retrieve the unknown
parameters. In addition, the approaches may suffer the drawbacks associated
with the ill-posedness of some inverse problems in pricing models: there may
exist no solution at all or an infinity of solutions. The last case means that
there are many sets of parameters reproducing call prices with equal preci-
sion, which in turn may translate in pricing errors with many local minima
or flat regions with low model sensitivity to variations in parameters. The
solutions are often very sensitive to the numerical starting values; numerical
instability may also occur if the dependence of solutions to the observed data
is discontinuous. Uniqueness and stability may be achieved by introducing a
regularization method: e.g. adding penalty to the linear least squares term.
For further discussions on regularization methods see [8].

In order to assess the shape of RND implied by different parametric ap-
proaches we use paired European call options written on the underlying DAX
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stock index which mature in one month (21 days) and strike prices observed
on 20040121. The data is provided by Eurex - Deutsche Börse and collected
from the Research Data Center (RDC) of the Collaborative Research Center
649. Strike prices have been transformed to account for intraday stock price
movements; these have been computed from the futures prices following a
methodology by [13]. The EURIBOR interpolated interest rate for this ma-
turity is r=2.05% per annum and the stock index value taken from the daily
series DAX 30 Index is S=4138. The dividend rate is zero. Observations that
do not respect general arbitrage conditions (see [17]) have been excluded from
the sample. We are left with 2562 paired observations, which we display in
figure 1. The counterpart representation of the observations in the implied
volatility space (based on Black-Scholes valuation formula) will be further
used to assess the quality of the estimates. Note that in practice, it is often
more convenient to match implied volatilities which are of the same order of
magnitude relative to call prices which display a much larger out-of-the-money
variation.
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Fig. 1. Left: European call option versus strike prices on 20040121. Right: ν of the
observed call prices.

Figure 2 depicts the estimation results for the RND by direct methods
as well as the fit in the implied volatility space. In the upper left panel, the
Black-Scholes log-normal RND depends on only one unknown for given risk
free interest rate, the constant - across strikes - volatility parameter σ. It is
contrasted with the implied volatility of the observed call prices in the right
panel.

Next, we fit a mixture of log-normal densities. The parameter k is usually
assumed to be unknown and one has to apply appropriate criteria to find the
optimal parameter value. Here, we illustrate the method for fixed k = 2 in
the central part of figure 2. Since µ1 and µ2 are known up to the volatility
parameters σ1 and σ2 respectively of the components, the mixing distribution
will have three unknown parameters. We have investigated the shape of the
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Fig. 2. Left: RND estimated by: log-normal distribution with σ=0.18 (top), mixture
of log-normal distributions for weighted components σ1=0.24 - dashed, σ2=0.15 -
dotted with λ=0.31 (center) and generalized gamma distribution with α1=3033.03,
β2=6.86 and k=9.05 (bottom). Right: IVBS for observed call prices (asterisk) and
fitted call prices (plus sign)

resulting density and found that it is robust with respect to the mixtures, in
the sense that for known basic densities, the proportion parameter λ regulates
the relative impact of each component. Conversely, one can fix λ and try to
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estimate σ1 and σ2. The mixture generates a rather symmetric smile, with a
minimum different from that of the volatility skew of the observed prices. The
higher kurtosis improves the fit at a price of higher skewness compared with
the simple log-normal case. This shows that using mixtures of log-normals
improves the fit especially by higher kurtosis. Every (central) moment of a
linear combination of densities is given by the same combination of the cor-
responding moments. The third moment of a log-normal density is always
positive, therefore a mixture of log-normal can never generate negative skew-
ness. In order to generate a negative skew either other mixture types or other
parametric models for the RND has to be considered.
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Fig. 3. Estimation error function by direct methods

Generalized gamma distribution allows more flexibility in modelling the
shape of RND. It depends on three parameters: the parameter α is a scale
parameter, k is the index parameter and β is the power parameter. There are
many sets of parameters that give a good fit and produce relatively stable
shapes of the RND. For a given set of parameters we display the results in the
lower panel of figure 2. In the implied volatility space, the gamma distribution
cannot reproduce the smile; it establishes a negative relationship between the
strike price and the implied volatility. In terms of the fitting errors this does
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Model Mean St. Dev. Skewness Kurtosis RSS

Log-Normal 4145.11 216.99 0.15 3.04 7693.08
Mixture 4139.39 221.28 0.20 3.83 7465.22

Generalized Gamma 4152.76 205.44 -0.18 3.06 351.07

Table 1. Comparison of the RND estimates by direct method in terms of moments
and fit: log-normal for σ=0.18 (blue), mixture of lognormals for σ1=0.24, σ2=0.15
and λ=0.31, generalized gamma for α1=3033.03, β2=6.86 and k=9.05

not constitute too much of a problem because the vega of the call price ν = ∂C
∂σ

decreases steeply for large K and reaches values close to 0 for deep out-of-the
money call prices (see figure 1 right). The vega of the call option based on
the Black-Scholes’s call pricing formula is given by ν = S

√
T (φ(d1)) with d1

defined in equation 4.
For the Black-Scholes RND the calibration error function ||Y − Cϑ̂||2,

where Y is the vector of observed and Cϑ̂ the vector of fitted call prices (i.e.
the objective function in (15)) has a unique minimum (see figure 3 upper panel
left). The same holds for the mixture when the two basic densities are fixed.
The RSS takes values close to a minimum for a multitude of combinations of
σ1 and σ2 (see figure 3 right). The following two panels in figure 3 refer to
the generalized gamma distribution. The objective function is a surface which
forms a valley or rift of minimum values. This illustrate the ill-posed problem.

The pricing errors computed as a difference between observed and fitted
call prices, display some regularities: RND-s estimated by the first two meth-
ods lead to underpriced calls for ITM options and overpriced calls for OTM
options; the discrepancies diminish for deep ITM and OTM options. Gen-
eralized gamma distribution is flexible enough to give a good fit for a large
range of strikes in the central part of the distribution. Since the observations
in the tails are more sparse, the pricing errors will be higher for deep ITM
call options. In this particular case, the estimated density will have fetter left
tails resulting in overpriced options for small strike prices. However, the ab-
solute pricing errors are smaller than for the other candidates. The resulting
moments of the estimated densities are summarized in table 2.

In the remaining of this section, we describe the results by the indirect
approach for finding the RND. The calibration of the second type of models
is further supported by advanced numerical methods available, such as Fast
Fourier Transform (FFT). In order to apply the FFT-based algorithm we use
the characteristic function of the risk neutral density as described in section 5
for the Merton and Heston models and set the parameters α = 1.25,N = 4096,
and η = 0.25. For OTM option prices the calibration error increases; therefore,
we use the Fourier Transform of OTM option prices as described in [6]. With
the above parameters choice and pricing rules, we solve the problem of model
calibration. This implies solving the minimization problem given in (26) and
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(27). We describe the results for both models in terms of the resulting RND
and fit in the IV space in figure 4.
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Fig. 4. Left: RND estimated for the Merton with σ = 0.13, λ = 0.10, µ = −0.23,
δ = 0.17 and Heston with θ = 0.19, ρ = −0.61, κ = 1.18, η = 0.21. Right: IVBS for
observed call prices (asterisk) and fitted call prices (plus sign)

Merton model for pricing European options tries to capture the deviations
from normality of log-returns by adding a compound Poisson jump process
to the Black-Scholes model. Jump components add mass to the tails of the
returns distribution. Increasing δ adds mass to both tails. The sign of µ de-
termines the sign of the skewness: negative µ implies relatively more mass
in the left (negative skew) and the other way around. Larger values of the
intensity parameters λ (which means that the jumps are expected to occur
more frequently) makes the density flatter tailed, i.e. increases kurtosis.

In the Merton model an implied volatility skew is attainable by the pres-
ence of jumps. By introducing a correlation parameter ρ between log-returns
and volatility movements in the Heston model has a similar effect on the
volatility smile. Varying the parameter ρ around 0 gives us asymmetric tails of
RND. Intuitively, if ρ > 0, then volatility will increase as the asset price/return
increases. This will spread the right tail and squeeze the left tail of the distri-
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Fig. 5. Calibration error function by indirect methods

bution creating a fat right-tailed distribution. Parameter κmeasures the speed
of mean reversion and can be interpreted as the degree of ’volatility cluster-
ing’ in the sense that large price variations are likely to be followed by large
price variations and the other way around. η is the long run level of volatility
and θ is the volatility of volatility. θ affects the kurtosis of the distribution:
when it is 0 the log-returns will be normally distributed. Increasing θ will
then increase the kurtosis only, creating heavy tails on both sides. Conversely,
if θ < 0, then volatility will increase when the asset price/return decreases,
thus spreading the left tail and squeezing the right tail of the distribution and
creating a fat left-tailed distribution.

Empirical results for the RND by both method indicate negative skewness:
µ > 0 in Merton model and ρ < 0 in Heston model. Negative correlation ρ
is in line with the empirical studies of the financial returns which show that
volatility is negatively correlated with the returns. Reproducing some of the
essential features of asset dynamics can result in significant shape differences.
We can see in figure 4 that RND implied by Merton has a much fatter left tail
and a higher kurtosis than the RND obtained from the Heston model. This
shows how different models for the stock prices give various shapes of the risk
neutral density. In terms of the implied volatility, Merton model seems more
suitable to reproduce the skew in figure 4. Pricing errors have a very similar



Parametric estimation of risk neutral density functions 21

Model Mean St. Dev. Skewness Kurtosis RSS

Merton 4008.40 256.61 -0.09 4.88 6468.49
Heston 4130.12 240.20 -0.35 3.19 6362.18

Table 2. Comparison of the RND estimates by indirect method in terms of moments
and fit: Merton with σ = 0.13, λ = 0.10, µ = −0.23, δ = 0.17 and Heston with
θ = 0.19, ρ = −0.61, κ = 1.18, η = 0.21

structure for the two models: they are almost symmetrical against the 0 line
and decrease for high strike prices.

The graphs in figure 5 show the calibration error function in both models
for pairs of parameters in each model. Three of the panels indicate that the
calibration is ill-posed because there is a large, nearly flat region or a valley of
minima for the objective function. It implies that there are many parameter
sets for which the model prices match the observed prices. However, by using
this approach the shape of RND for different set of parameters that give a
comparable good fit may differ a lot. We do not report such graphs here, but
one can easily vary two of the parameters along a valley in figure 5 to verify
this. The right panel bottom indicate that the objective function has a clearly
defined minimum so that the pairs (ρ, κ) in the Heston model are uniquely
defined when keeping the other model parameters fixed.

In modelling the risk neutral densities based on option data the practition-
ers face a trade off between modelling aspects of the underlying’s dynamics and
reliability of calculations concerning the shape of the RND. While some distri-
bution families allow for great flexibility in the shape of RND (e.g. generalized
gamma) they are not very informative about the dynamic of the underlying
asset. If modelling the underlying process is preferred indirect methods are
to be chosen. The challenge is to find a model that is able the reproduce the
main features of the stock prices.
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