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Abstract

Several empirical studies reported that pricing kernels exhibit a common pattern

across different markets. The main interest in pricing kernels lies in validating the

presence of the peaks and their variability in location among curves. Motivated

by this observation we investigate the problem of estimating pricing kernels based

on the shape invariant model, a semi-parametric approach used for multiple curves

with shape-related nonlinear variation.

This approach allows us to capture the common features contained in the shape

of the functions and at the same time characterise the nonlinear variability with a

few interpretable parameters. These parameters provide an informative summary

of the curves and can be used to make a further analysis with macro economic

variables. Implied risk aversion function and utility function also can be derived.

The method is demonstrated with the European options and returns values of DAX

index.
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1 Introduction

1.1 Pricing kernel and risk aversion

Risk analysis and management drew much attention in quantitative finance recently. Un-

derstanding the basic principles of financial economics is a challenging task in particular

in a dynamic context. With the formulation of utility maximisation theory, individ-

uals’ preferences are explained through the shape of the underlying utility functions.

Namely a concave, convex or linear utility function is associated with risk averse, risk

seeking or risk neutral behaviour respectively. The comparison is often made through

the Arrow-Pratt measure of absolute risk aversion (ARA), as a summary of aggregate

investor’s risk-averseness. The quantity is originated from the expected utility theory

and is defined by

ARA(u) = −U
′′(u)

U ′(u)
,

where U is the individual utility as a function of wealth.

With an economic consideration that one unit gain and loss does not carry the same value

for every individual, understanding state dependent risk behaviour becomes an increasing

issue. The fundamental problem is that individual agents are directly observable but it

is assumed that the prices of goods traded in the market reflect the dynamics of risk

behaviour. Several efforts have been made to relate the price processes of assets of stocks

and options traded in a market to risk behaviour of investors, since options are securities

guarding against losses in risky stocks.

A standard option pricing model in a complete market assumes a risk neutral distribution

of returns, which gives the fair priceunder a no arbitrage assumption. If markets are

not complete, there are more risk neutral distributions and the fair price depends on the

hedging problem. The subjective or historical distribution of observed returns reflects a

risk-adaptive behaviour of investors based on subjective assessment of the future market.

Then the equilibrium price is the arbitrage free price and the transition from risk neutral

pricing to subjective rule is achieved through the pricing kernel. Assuming those densities

exist, write q for the risk neutral density and p for the historical density. The pricing

kernel K is defined by the ratio of those densities:

K(u) =
q(u)

p(u)
,

Through the intermediation of these densities, there exists a link between the pricing

kernel and ARA, see for example Leland (1980)

ARA(u) =
p′(u)

p(u)
− q′(u)

q(u)
= −d logK(u)

du
.
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In this way, rather than specifying a priori preferences of agents (risk neutral, averse or

risk seeking) and implicitly the monotonicity of the pricing kernel, we can infer the risk

patterns from the shape of the pricing kernel.

0.8 1 1.2

1

2

EP
K

Returns
0.8 1 1.2

1

2

EP
K

Returns

Figure 1: Examples of intertemporal pricing kernels for various maturities (left) and

monthly pricing kernels from the first 6 months in 2006 for maturity one month (right).

1.2 Dynamics of empirical pricing kernels

With increasing availability of large market data, several approaches to recovering pricing

kernels from empirical data have been proposed. As many of them estimate p and q

separately to recover K, potentially relevant are many studies focusing on recovering risk

neutral density, see e.g. Jackwerth (1999), Bondarenko (2003) for comparison of different

approaches. For the estimation of p nonparametric kernel methods or parametric models

such as GARCH or Heston models are popular choices.

Examples of empirical pricing kernels are shown in Figure 1. These are estimated based

on European options data on DAX index in 2006. The detailed estimation method is

explained in Section 3.5. Figure 1 depicts inter-temporal pricing kernels with various

maturities in January-February 2006 (left), and monthly pricing kernels with fixed matu-

rity one month in 2006 (right). To make these comparable, they are shown on a returns

scale. Throught the article, the pricing kernel is considered as a function of this common

scale of returns.

The sample of curves appears to have a bump around 1 and has convexity followed by

concavity in all cases. The location as well as the magnitude of the bump vary among

curves, which reflects individual variability on different dates or under different market
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conditions. Some features that are of particular economic interest include the maximum

of the bump, the spread or duration of the bump and the location of the bump.

From a statistical perspective, the properties of the pricing kernel are intrinsically related

to the assumptions about the data generation process. A very restrictive model, with

normal marginal distributions, is the Black-Scholes model. This results in an overall de-

creasing pricing kernel in wealth, which is consistent with overall risk-averse behaviour.

These preferences are often assumed in the classical economic theory of utility maxi-

mizing agent and correspond to a concave indirect von Neumann and Morgenstern util-

ity function. However, under richer parametric specifications or nonparametric models

monotonicity of the pricing kernel has been rejected in practice (Rosenberg and Engle,

2002; Giacomini and Härdle, 2008). The phenomenon of locally nondecreasing pricing

kernel is referred pricing kernel puzzle in the literature. There have been many attempts

to reconcile the underlying economic theory with the empirical findings. A recent solu-

tion is suggested in Hens and Reichlin (2010), relating the puzzle to the violation of the

fundamental assumptions in the equilibrium model framework.

Most of earlier works adopt a static viewpoint, showing a snap shot of markets on

selected dates but report that there is a common pattern across different markets. The

first dynamic viewpoint appears in Jackwerth (2000), who recovers a series of pricing

kernels in a consecutive time and claims that these do not correspond to the basic

assumption of asset pricing theory. In a similar framework Giacomini and Härdle (2008)

perform a factor analysis based on the so-called dynamic semiparametric factor models,

while Giacomini et al. (2008) introduce time series analysis of daily summary measures

of pricing kernels to examine variability between curves.

Chabi-Yo et al. (2007) explain the observed dynamics or the puzzles by means of latent

variables in the asset pricing models. Effectively they propose to build conditional

models of the pricing kernels given the state variables reflecting preferences, economic

fundamentals or beliefs. Within this framework they were able to reproduce the puzzles,

in conjunction with some joint parametric specifications for the pricing kernel and the

asset return processes.

Due to evolution of markets over time under different circumstances, the pricing kernels

are intrinsically time varying. Thus, approaches that do not take into account the

changing market make limited use of information available in the current data. On the

other hand, changes over time may not be completely arbitrary, as there are common

rules and underlying laws that assure the dynamic evolution of the market system.

Moreover, variability observed in pricing kernels, as shown in Figures 1, is not necessarily

linear, and thus factors constructed from a linear combination of observations are only

meaningful for explaining aggregated effects.

We approach the problem of estimating the pricing kernels and their risk aversion func-

tion from a functional data analysis viewpoint (Ramsay and Silverman, 2002), consider-
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ing the pricing kernels as an object of curves. The main interest in pricing kernels lies

in validating the presence of the peaks and their variability in location among curves.

Motivated by this observation we investigate the estimation method based on the shape

invariant model, which will be formally introduced in Section 2. This is chosen over the

commonly adopted functional principal component analysis to accommodate the nonlin-

ear features such as variation of peak locations, which encapsulate quantities related to

economic interpretation. The shape invariant model allows us to capture the common

characteristics, reported across different studies on different markets. We then explain

individual variability as a deviation from the common curve viewing it as a reference.

This framework also enables us to reproduce the observed pricing kernel puzzle. Our

approach can be viewed as an alternative way of introducing state dependence in pricing

kernels (Chabi-Yo et al., 2007), as illustrated in Section 2. In addition, based on the

pricing kernel estimates we derive implied market risk behaviour based on the ARA mea-

sures and its corresponding utility function. The ARA corresponding to the reference

pricing kernel may be viewed as a typical pattern of risk behaviour for the period under

consideration. Through real data example we have related the changes in risk behaviour

to some macro economic variables of interest and found that local risk loving behaviour

is procyclical.

The paper is organised as follows. Section 2 motivates common shape modelling ap-

proach and Section 3 reviews the shape invariant model and describes it in detail in

the context of pricing kernel estimation. This section serves the basis of our analysis.

Numerical studies based on simulation are found in Section 4. Application to real data

example is summmarised in Section 5. Note that all figures of pricing kernels are shown

on the returns scale used in Figure 1.

2 Common shape modelling

2.1 Shape invariant model (SIM) for pricing kernel

When considering several markets simultaneously, we introduce the time index t in the

pricing kernel as Kt. We consider a common shape modelling approach for the series of

pricing kernels with explicit components of location and scale known as shape invariant

modelling. Then we formulate the relationship among Kts as

Kt(u) = θt1K0

(u− θt3
θt2

)
+ θt4 . (1)

We assume that the functional form of K0 is unknown. The common shape function

K0 can be interpreted as a reference curve and deviation from the reference curve is

described by four parameters θt = (θt1, θt2, θt3, θt4) that represent a scale change and a

shift in horizontal and vertical direction.
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This parametrisation in (1) is commonly known as shape invariant models (SIM), origi-

nally introduced by Lawton et al. (1972), and includes as a special case complete para-

metric models with known K0. Detailed account of this approach is given in Section 3.

The new message here is an analysis of a sequence of pricing kernels through shape-

invariant models. Although we start with different motivation, our approach is in line

with that of Chabi-Yo et al. (2007). In constrast to their approach, we impose a struc-

tural constraint that is related to the shape of the function. This way we strike a balance

between flexibility much desired in parametric model specification and interpretability

of the results lacking in full nonparametric models.
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Figure 2: Example of location and scale shift pricing kernels (left) and corresponding

utility functions (right) of a power utility. Solid line in each plot represents reference

curves of K0(u) = u−γ and U0(u) = u1−γ/(1− γ) with γ = 0.7 respectively. Parameters

are θt1 = 1.1, θt2 = 1, , θt3 = 1− θ(1/γ)t1 , and θt4 = 0 for dot-dashed (red) and θt4 = −0.5

for dashed (blue) lines.

2.2 SIM and Black-Sholes model

To appreciate the model formulation, it is instructive to consider utility functions implied

by this family of pricing kernels together. The utility function can be derived from

Ut(u) = α

∫ u

0
Kt(x) dx ,

for a constant α. Figure 2 shows an example of transformation based on a power utility

function, which corresponds to risk averse behaviour, marked as solid line. Pricing

kernels Kt are shown on the left and the corresponding utility functions Ut are on the
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right. The dashed and dot-dashed lines represent Kt and Ut with appropriate parameters

θt in the equation (1). Depending on the choice of parameters, the utility function can

be made increase quickly or slowly. As an illustration, we consider the Black-Scholes

model with power utility function. The Black-Scholes model assumes that the stock

price follows a geometric Brownian motion

dSt/St = µdt+ σdWt ,

which gives rise to a log normal density for the historical density p. Under the risk

neutral measure, the drift µ is replaced by the riskless rate r and the density q is also

log normal. The pricing kernel can be written as a power function

K(u) = λu−γ , 0 < γ < 1 ,

with appropriate constants λ and γ. The corresponding utility function is a power utility

U(u) = λ
u1−γ

1− γ
.

Assume that λ = 1 and suppose that K0 is the Black-Scholes power function u−γ . Then

the class of pricing kernel implied in (1) is given by

Kt(u) = θt1

(u− θt3
θt2

)−γ
+ θt4

= θ∗t1(u− θt3)−γ + θt4 ,

where θ∗t1 = θt1θ
γ
t2. Notice that with this family of functions θt1 and θt2 are not iden-

tifiable and Kt is defined for u > θt3. For the sake of argument we set θt2 = 1 for the

moment. The corresponding utility function is

Ut(u) =

∫ u

θt3

Kt(x) dx

=
θt1

1− γ
(u− θt3)(1−γ) + θt4(u− θt3)

def
= θ∗∗t1 (u− θt3)(1−γ) + θt4(u− θt3) .

When θt4 = 0, this produces again a transformed power utility. When θt4 6= 0, there is

additional linear term in the function. See Figure 2 for comparison.

2.3 Identifiability condition for SIM

The previous section illustrates two aspects of applicability of the shape invariant models.

The class of functions that can be generated by the relation (1) is rich, but in order to

uniquely identify the model parameters, some restriction is necessary. For example, we
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have seen that the two scale parameters in the pricing kernel functions corresponding to

the Black-Scholes model are not separable. Basically unless there exist some qualitatively

distinct common characteristics for each curve, the model is not identifiable (Kneip and

Gasser, 1988). In the case of no prior structural information available as in the case of

pricing kernels, it is sufficient to consider a few landmarks such as peaks and inflection

points.

Even with unique K0, some translation and scaling of parameters lead to multiple rep-

resentations of the models. For uniqueness of parameters, we will impose normalizing

conditions suggested in Kneip and Engel (1995):

T−1
T∑
t=1

θt1 = 1, T−1
T∑
t=1

θt2 = 1, T−1
T∑
t=1

θt3 = 0, T−1
T∑
t=1

θt4 = 0

in the sense that there exists an average curve. This is not restriction at all and can be

replaced by any appropriate combination of parameters. Alternatively, we could consider

the first curve as a reference, as done in Härdle and Marron (1990), which implies the

restriction θ1 = (1, 1, 0, 0). Generally an application-driven normalisation scheme can

be devised and examples are found in Lawton et al. (1972).

2.4 SIM implied risk aversion and utility function

In general the utility function corresponding to Kt is given by

Ut(u) = θt1θt2

{
U0

(u− θt3
θt2

)
− U0

(
− θt3
θt2

)}
+ θt4u

≡ θ∗t1U0

(u− θt3
θt2

)
+ θ∗t4 + θt4u .

The utility function Ut is a combination of a SIM class of the common utility function

and a linear utility function.

The ARA measure is given by

ARAt(u) =
− θt1
θt2
K′0
(
u−θt3
θt2

)
θt1K0

(
u−θt3
θt2

)
+ θt4

. (2)

For example, assuming K0(u) = u−γ with θt2 = 1 gives

ARAt(u) = γ
{

(u− θt3) + (θt4/θt1)(u− θt3)γ+1
}−1

.

When θt4 = 0, this function is monotonically decreasing but in general this is not the

case.
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Figure 3: Effect of parameters on pricing kernel (top), ARA (middle) and utility func-

tions (bottom) compared to the baseline model θ0 = (1, 1, 0, 0) (black). Dot-dashed lines

are used for increasing direction and dashed lines for decreasing direction.

In order to gain some insights, we take a closer look at the changes that individual

effects in the family of scale and shift parameters. These effects are demonstrated in

Figure 3. We vary each θi with respect to a baseline model and then we show how these

modifications translate into changes of the risk attitudes and the corresponding utility

functions. The parameters used in Figure 3 are θ = (0.5, 0.7,−0.025,−0.25) in dashed

red line and θ = (1.5, 1.3, 0.025, 0.25) in dot-dashed blue line.

For this exercise we first standardise the common curve that we have estimated via the

shape invariant model so that the peak occurs at the value 0 on the abscissa and the

effect of the scale and shift parameters is separately captured. But we added the peak

coordinates back for visualisation to be in line with other figures shown on returns scale.

We observe that an increase in θ1 marks the bump of the pricing kernel more distinctive

9



while the shape of ARA remains unchanged compared to the baseline model because,

as we can see from (2), ARA does not depend on θ1 when θ4 = 0. Yet, the effect of

θ1 on ARA can be analysed by considering two distinct cases: θ4 > 0 and θ4 < 0.

These specifications are important because the direction of change in the slope of ARA

is dictated by the sign of θ4. In the present case - after normalisation - θ1 varies around

0 and its effect on ARA is almost nil.

A larger value in the parameter θ2 as compared to a benchmark value of stretches the

x-axis, which implies larger spread of the bump. When we vary θ2 alone the slope of

ARA(θ2u) is 1/θ22

[{
K′0

2(u)−K′′0(u)/K0(u)
}
/K2

0(u)
]
. The term in brackets does not

depend on θ2; it is equal to the slope of ARA(u). Therefore, there is an inverse relation-

ship between the direction of change in the parameter and that of the absolute value of

the slope. These changes in slope occur around an inflection point that corresponds to

the peak of the pricing kernel.

A positive increment in θ3 shifts both curves to the left without any modification in

the shape. θ4 simply translates pricing kernel curves above or below the reference curve

following a sign rule. Similarly to θ2, the shape of ARA modifies around the fixed inflec-

tion point that marks the change from risk proclivity (negative ARA) to risk aversion

(positive ARA). The effect of θ4 on the values of ARA is straightforward: since θ4 adds

to the K0 in the denominator its increase will diminish the absolute ARA level and the

other way around. Insulating the effects of a change in θ4 on the slope of ARA(u) ana-

lytically proves to be a more complicated task than in the case of θ2 because the change

in the slope depends jointly on the change in θ4 and on the pricing kernel values and its

first two derivatives. In our case, the slope around the inflection point increases when

θ4 decreases.

As for the utility function, positive changes in θ1 and θ4 increases its absolute slope.

In the horizontal direction, θ3 translates the curve to the left or right similarly to the

pricing kernel and ARA while θ2 shrinks or expands its domain.

With this information at hand we can characterise the changes in risk patterns in relation

with economic variables of interest, see Section 5.4.

3 Fitting Shape Invariant Models

3.1 Model formulation

Strictly speaking, there is no realisation of the pricing kernels available, however, their

estimates are readily available from market data. Our main interest lies in quantifying

the variation among the pricing kernels given those estimates. For the purpose of anal-

ysis, we treat the estimates as something observable and denote by Yt, similar to the
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regression formulation with direct measurements Yt. A particular choice of estimates of

individual pricing kernels is not part of the model formulation but affects the starting

values for the estimation of shape invariant model. Our choice of initial estimates will

be explained in Section 3.5.

Suppose that these are evaluated at fine grid points uj . Let {Ytj , t = 1, 2, · · · , T ; j =

1, 2, · · · , n} be the estimates evaulated at {uj} in an interval J satisfying the relation

Ytj = Kt(uj) + εtj ,

where Kt satisfies the shape invariant model relation 1 and εtj are independent errors

with mean zero and standard deviation σ2t .

It is possible to elaborate our approach to incorporate simultaneous estimation with

a two-step state dependent dynamic model formulation whereby the dynamics of the

observed return processes and the unobserved pricing kernel processes as a state variable

are specified separately. However, with current advancement in the methodology, this

is only possible with limited parametric model choices, see for example Chabi-Yo et al.

(2007), and extension to a flexible shape invariant model is left for future work.

3.2 Estimation of SIM

The model in (1) is equivalently written as

Kt(θt2u+ θt3) = θt1K0(u) + θt4 , θt1 > 0 , θt2 > 0 . (3)

The estimation procedure is developed using the least squares criterion based on nonpara-

metric estimates of individual curves. If there are only two curves, parameter estimates

are obtained by minimizing∫
{K̂2(θ2u+ θ3)− θ1K̂1(u)− θ4}2w(u) du , (4)

where K̂i are nonparametric estimates of the curves. Härdle and Marron (1990) studied

comparison of two curves and Kneip and Engel (1995) extended to multiple curves with

an iterative algorithm. We consider an adaption of such algorithm here.

The weight function w is introduced to ensure that the functions are compared in a

domain where the common features are defined. We assume that there is an interval

[a, b] ∈ J where boundary effects are eliminated and then define

w(u) =
∏
t

1[a,b]
{

(u− θt3)/θt2
}
.

The parameter estimates are compared only in the common region defined by w but the

individual curve estimates are defined on the whole interval. Weights can be extended

to account for additional variability.
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The normalisation leads to:

T−1
T∑
t=1

Kt(θt2u+ θt3) = K0(u) . (5)

Formula (5) was exploited also in the algorithm proposed by Kneip and Engel (1995).

We adopt a similar strategy here.

� Initialize

– Let K̂t = Yt and set starting values (θ
(0)
t2 , θ

(0)
t3 ) for t = 1, 2, · · · , T .

– Construct an initial estimate K(0)
0 by

K(0)
0 (u) = T−1

T∑
t=1

K̂t(θ(0)t2 u+ θ
(0)
t3 ) .

� For rth step, r = 1, 2, · · · , R,

– Determine parameters θ(r) separately for t = 1, 2, · · · , T by minimizing∫
{K̂t(θt2u+ θt3)− θt1K(r−1)

0 (u)− θt4}2w(u) du .

– Normalise parameters: for j = (1, 2) and k = (3, 4)

θ
(r)
tj ←

θ
(r)
tj∑
t θ

(r)
tj

, θ
(r)
tk ← θ

(r)
tk − T

−1
∑
t

θ
(r)
tk .

– Update K(r−1)
0 to

K(r)
0 (u) = T−1

T∑
t=1

K̂t(θ(r)t2 u+ θ
(r)
t3 ) .

� Determine final estimates:

θ̃t = θ
(R)
t ,

K̃0(u) = T−1
T∑
t=1

K̂t(θ̃t2u+ θ̃t3) .

Kneip and Engel (1995) proved consistency of the estimator. In particular despite non-

parametric initial curve estimates, the parameters are shown to be
√
T consistent. In

their analysis it is noted that the initial estimates of the curves are of minor importance
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compared to the final estimate of K0. So the original algorithm includes the final updat-

ing of each curve. This improves precision of the estimates because the pooled sample

estimate reduces variance K̃0, which allows undersmoothing at the final stage to reduce

bias. However, this final updating step is not practical for our situation with indirect

measurements and is not implemented here for pricing kernel estimation. On the other

hand we can take advantage of having smooth curves evaluated at finite grid points as

data. It is easier to improve the initialisation step, explained in Section 3.3. This leads

to simplification of the estimating procedure with little compromise of the quality of the

fit. In fact, the number of iterations required is very small and often 3 or 4 is sufficient

in practical terms. We found that when the initial estimates are determined sufficiently

accurate, the iteration is not necessary.

As a working model we have assumed an independent error. If there is a reasonable

dependence structure available, this could be incorporated easily in the estimation al-

gorithm with weighted least squares estimation in (4). The effect of independence as-

sumption mainly appears in the standard error estimation and a correction can be made

with a sandwich variance-covariance estimator. To assess the effect of model misspecifi-

cation, we also carried out some simulation studies with dependent errors and reported

the results in Section 4.

3.3 Starting values

If there is no scale change in horizontal direction, due to prominent peaks in each curve,

the parameter θ3 can be identified easily by the location of the individual peak. If the

models hold true, and there are two unique landmarks identifiable for each curve, simple

linear regression between the individual mark and the average mark provides an estimate

of the slope parameter θ2. Suppose that the peak is identified by u satisfying K ′t(u) = 0.

Then we have

0 = K′t(u) =
θt1
θt2
K′0
(u− θt3

θt2

)
.

Writing u∗t for K′t and u∗0 for K′0 leads to a simple linear relation:

u∗t = θt2u
∗
0 + θt3 . (6)

If an inflection point is used, we would have

0 = K′′t (u) =
θt1
θ2t2
K′′0
(u− θt3

θt2

)
,

which gives rise to the same relation as (6), with the corresponding u∗∗t and u∗∗0 substi-

tuted. The coefficients of intercept and slope estimates are used for starting values of

θt3 and θt2 respectively.
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Figure 4: Initial estimates Kt(u) (left) and final estimates Kt(θt2u+θt3) from SIM (right)

with K0 overlayed. Marked in the left plot are two landmarks identified for estimation

of the starting values of (θt2, θt3).

We used the peak and the inflection points around 1 as landmarks, marked in Figure 4.

The location of the landmarks is defined by the zero crossings of the first and second

derivatives. Because the initial observations Kt are a smoothed curve, we find that

additional smoothing procedure is not required at this stage: a finite difference operation

is sufficient to apply mean value theorem with linear interpolation.

The slope between any two points did not vary much, which is consistent with the model

specification. This step is also used as an informal check and should there be any nonlin-

earity detected, the model needs to be extended to include a nonlinear transformation.

With our example, this was not the case.

3.4 Nonlinear optimisation

Given the estimates of (θt2, θt3), the nonlinear least squares optimisation uses (4), which

is approximated by ∑
j

{
K̂t(θt2uj + θt3)− θt1K̂0(uj)− θt4

}2
w(uj) . (7)

When the initial values of (θt2, θt3) are sufficiently accurate, this step is simplified to

a linear regression. Conditional on θt2, θt3 and K̂0, the solutions to the least square

regression with response variable K̂t(θt2uj+θt3) and explanatory variable K̂0(uj) provide

(θt1, θt4). When a further optimisation routine is employed to improve the estimates,

these numbers serve as initial values for (θt1, θt4).
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3.5 Initial estimates of K

To start the algorithm the initial estiamtes of K should be supplied. An example of

initial estimates of K is shown in Figure 4 on the scale of continuously compounded

returns. These are obtained from separate estimation of p and q, which are described in

detail in Section 5.

3.6 Word on asymptotics

There are two layers of estimation involved. The first step deals with individual curve

estimation and the second step introduces shape invariant modelling. The shape in-

variant modelling is largely robust to how the data are prepared before entering the

iterative algorithm and the resulting estimates are interpreted as conditional on the in-

dividual curves. Therefore, the main estimation error arises in the first stage where p

and q are separately estimated with possibly different sample sizes and separately chosen

bandwidths.

In practical terms, the sample size used in estimating p is normally of smaller order, say

n compared to N = nM for q for a constant M . This is due to the difference between

the daily observations available for estimating p and the intraday observations available

for estimating q. Thus it might be expected that the estimation error will be dominated

by the estimation error of p. On the other hand, the underlying function p for which

simple kernel estimation is used is much simpler and more stable compared to q for

which nonparametric second derivative estimation is required.

Because the estimates of ratios are constructed from the ratio of the estimates, we can

decompose the error as

K̂(u)−K(u) =
q̂(u)

p̂(u)
− q(u)

p(u)

' q̂(u)− q(u)

p(u)
− q(u)

p(u)

p̂(u)− p(u)

p(u)
.

Numerical instability might occur in the region where p̂ ≈ 0 however this is not of

theoretical concern. In fact, the pricing kernel is the Radon-Nikodym derivative of an

absolutely continuous measure, and thus p and q are equivalent measures, that is, the

null set of p is the same as the null set of q. So we can limit our attention to the

case where p(u) > ε for some constant ε. Provided that p(u) > ε and q(u) > ε, the

asymptotic approximation is straightforward and asymptotic bias and variance can be
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computed from

E[K̂(u)−K(u)] ' E[q̂(u)− q(u)]

p(u)
− q(u)

p(u)

E[p̂(u)− p(u)]

p(u)

= O(h4q) +O(h2p) + O(h2p + h4q) ,

Var[K̂(u)−K(u)] ' K2(u)
{Var[q̂(u)]

q2(u)
+

Var[p̂(u)]

p2(u)

}
= O

{
(Nhq)

−1}+O
{

(nhp)
−1}+ O

{
(Nhq)

−1 + (nhp)
−1} .

Since q̂ involves estimation of second derivative of a regression function, the error is dom-

inated by the estimation of q. Ait-Sahalia and Lo (2000) showed in a similar framework

that the error is dominated by the estimation of q and for the purpose of asymptotics p

can be regarded as a fixed quantity. For this reason we actually implement a semipara-

metric estimator for q to stablise the estimator.

Consistency and asymptotic normality of the parameter estimates are shown in Härdle

and Marron (1990) for two curves and in Kneip and Engel (1995) for multiple curves.

We write the approximate distribution for θ̂t as

θ̂t ≈ N(θt,Σt) .

Due to the iterative algorithm, the asymptotic covariance matrix is more complicated

for multiple curves but Kneip and Engel (1995) shows that, as the number of curves in-

creases, the additional terms arising in the covariance matrix is of lower order than the

standard error term due to non-linear least square methods. There is no suggested esti-

mate for the asymptotic covariance matrix but a consistent estimate can be constructed

as in standard non-linear least square methods. Define the residual êtj = K̂t(uj)−K̃t(uj)
where K̂ is the initial estimates and K̃ is the SIM estimates and let

σ̂2t =
1

n

n∑
j=1

ê2tj .

The covariance matrix can be estimated as

Σ̂t = σ̂2t

[
n−1

n∑
j=1

{
5θ K̃t(uj ; θ̃)

}{
5θ K̃t(uj ; θ̃)

}>]−1
,

where 5θK(u;θ) is the first derivative of the function, given by

∂K(u)

∂θ1
= K0

(u− θ3
θ2

)
,

∂K(u)

∂θ2
= −θ1

θ2

(
u− θ3
θ2

)
K′0
(u− θ3

θ2

)
,

∂K(u)

∂θ3
= −θ1

θ2
K′0
(u− θ3

θ2

)
,

∂K(u)

∂θ4
= 1 .
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To see whether the location or scale parameters are different between any pair of curves,

we can compute the standard errors of the estimates to make a comparison. A formal hy-

pothesis testing also appears in Härdle and Marron (1990) for kernel-based estimates and

in Ke and Wang (2001) for spline-based estimates. For example we might be interested

in testing whether a location or a scale parameter can be removed.

Although these results are practically relevant, we note that the methods mentioned all

assume direct observations of the underlying function of interest, with one smoothing

parameter selection involved. Obtaining comparable rigorous results for our estimator

is complicated in the present situation due to the non-standard nature of the estimator

being a ratio of two separate nonparametric estimates with independent bandwidths.

We consider this out of scope of this paper and leave for separate work.

4 Numerical studies of SIM estimation

Applying the SIM to pricing kernels involves two rather separate estimation steps, the

initial estimation of the pricing kernels and the SIM estimation given the pre-estimates.

The former has been studied extensively and in particular the properties of the nonpara-

metric methods that we have used are well established in the literature. This section

mainly concerns the latter.

We identify the two main factors that could affect the performance of SIM estimation to

be error misspecification and smoothing parameter selection for the individual curves.

Their effects are evaluated in a designed simulation studies. Their effects on pricing

kernel estimation are separately studied in Section 5.4, in comparison to the standard

nonparametric approach used in Jackwerth (2000).

4.1 Generating curves

In each simulation 50 curves are generated at 50 (random) grid points. In order to mimic

the common shape of the observed pricing kernel, we generated the common curve by a

ratio of two densities

K0(u) = q0(u)/p0(u) ,

where p0 is density of Gamma(0.8,1) distribution and q0 is density of mixture w ∗
Gamma(0.2, 1) + (1 − w) ∗N(0.91, 0.32) distribution with w = 0.3. In accordance with

the normalisation scheme, the θ values are set as in Table 1. The values of realised

the standard deviation were chosen to be similar to the observed ones in the real data

example.
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Distribution Mean Standard deviation

θ1 Log-normal 1 0.33

θ2 Log-normal 1 0.28

θ3 Normal 0 0.27

θ4 Normal 0 0.35

Table 1: Parameter values of θ.

4.2 Error specification

For the error specification, we have included dependent errors in time as well as in

moneyness as following.

� Case 1: Independent error: εt,j ∼ N(0, σ2)

� Case 2: Dependent error in moneyness:

εt,j = φεt,j−1 + ut,j , ut,j ∼ N(0, σ2u)

� Case 3: Dependent error in time: εt,j ∼ N(0, σ2t )

log(σt) = α+ β log(σt−1) + vt , vt ∼ N(0, σ2v)

� Case 4: Dependent error in moneyness and time:

εt,j = φεt,j−1 + ut,j , ut,j ∼ N(0, σ2ut) ,

log(σut) = α+ β log(σu,t−1) + vt , vt ∼ N(0, σ2v)

Case 1 and 2 are commonly assumed but Case 3 and 4 were rarely used in the literature

with SIM estimation. Table 2 lists the parameter values set for the simulation. These

values are chosen to be comparable in terms of overall variability among cases.

4.3 Smoothing parameter selection

We consider three versions of the least squares cross-validation (CV) based criteria for

bandwidth selection:

CVt(h) =
n∑
i=1

{
Yt,i − K̂−(i)t,h (ui)

}2
,

where K̂−(i)t,h is the local linear fit without using the i-th observation. For each observed

curve we find the optimal bandwidth h∗t = arg min CVt(h). Due to considerable vari-

ability in the x-dimension we standardise the optimal bandwidths (h̃∗t = h∗t /st), where
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Error 1 Error 2 Error3

Case 1 σ 0.02 0.05 0.10

Case 2 φ 0.75 0.75 0.75

σu 0.02 0.03 0.09

Case 3 α -3.69 -2.99 -2.30

β 0.75 0.52 0.53

σv 0.01 0.02 0.02

Case 4 α -2.41 -1.89 -1.39

β 0.45 0.40 0.42

φ 0.75 0.45 0.45

σv 0.10 0.25 0.25

Table 2: Parameter values for error specification.

st is the empirical standard deviation, and we choose the common bandwidth as follows:

hopt,1 = max(h̃∗t ) hopt,2 = average(h̃∗t ) or hopt,3 = arg min
∑
t

CVt(h) .

Finally, we multiply hopt by st and use these values to perform smoothing of each curve.

4.4 Results of simulation

We considered various simulation scenarios based on the combinations of the case of

errors and bandwidth selection methods. Table 3 summarises the results of the goodnees

of fit measured by MSE for the case σ = 0.05. For comparison we added in the last

row the MSE for the standard nonparametric estimates based on individual optimal

bandwidths to their advantage. For larger error (σ = 0.1, not shown) we also observed

some dramatic deterioration with case 4. Nevertheless the simulation studies suggest

that the overall error is in the same order of magnitude and we suspect that the impact

of these factors is limited. The fit was however best with smoothing parameters selected

by h1.

5 Real data example

We use intraday European options data on DAX index, provided by European Ex-

change EUREX and maintained by the CASE, RDC SFB 649 (http://sfb649.wiwi.

hu-berlin.de) in Berlin. The data contains the actually traded call prices, the implied

index price corrected for the dividends from the futures derivatives on the DAX, the
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σ = 0.05
methods parms. case 1 case 2 case 3 case 4

h1 θ1 31 32 67 65

θ2 60 70 84 77

θ3 54 62 81 76

θ4 32 32 77 75

Kis 1.2 1.6 1.5 1.5

h2 θ1 67 68 80 69

θ2 115 115 110 99

θ3 111 110 105 103

θ4 70 72 99 85

Kis 1.1 1.6 1.9 1.9

h3 θ1 67 71 67 73

θ2 115 108 91 82

θ3 111 100 88 84

θ4 70 74 83 88

Kis 1.1 1.6 1.8 1.8

npK 3.5 2.0 4.2 3.6

Table 3: Comparison of SIM estimation with respect to error misspecification and

smoothing parameter selection. Numbers are MSE multiplied by 10000. Kis computes

the average MSE for all curves from SIM and npK without SIM but using individual

optimal bandwidths for each curve.

strike prices, the interest rates (linearly interpolated to approximate a riskless interest

rate for the specific option’s time to maturity), the maturity, the type of the options,

calculated future moneyness, calculated Black and Scholes implied volatility, the volume

and the date. The extracted observations for our analysis cover the period between June

2003 and June 2006.

5.1 Estimation of the risk neutral density q

We begin with the call price option formula that links the call prices to the risk neutral

density estimation. The European call price option formula is given by (Ait-Sahalia and

Duarte, 2003)

C(X, τ, rt,τ , δt,τ , St) = e−rt,τ τ
∫ ∞
0

max(ST −X, 0)q(ST |τ, rt,τ , δt,τ , St) dST

where

� St: the underlying asset price at time t,
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� X: the strike price,

� τ : the time to maturity,

� T = t+ τ : the expiration date,

� rt,τ : the deterministic risk free interest rate for that maturity,

� δt,τ : the corresponding dividend yield of the asset.

Write q(ST ) for q(ST |τ, rt,τ , δt,τ , St). For fixed t and τ , assume rt,τ = r and δt,τ = δ, the

risk neutral density is expressed as

q(u) = erτ
∂2C

∂X2
|X=u .

The relation is due to Breeden and Litzenberger (1978) and serves the basis of many

current semi-parametric and nonparametric approaches. We employ the semiparametric

estimates of Rookley (1997), where the parametric Black-Scholes formula is assumed

except that the volatility parameter σ is a function of the option’s moneyness and the

time to maturity τ . In this work, we fix the maturity and consider it as one dimen-

sional regression problem, for which the local polynomial smoothing with degree p = 3

is applied to the observations of implied volatility on moneyness scale. The detailed

derivation is given in Appendix.

We have identified options data with maturity one month (31 working days/ 23 trading

days) from June 2003 to June 2006, from DAX 30 Index European options traded on

Eurex Exchange, which adds up to 37 days. The index stock price varies within one

day and we would need to identify the price at which a certain transaction has taken

place. However, several authors (e.g. Jackwerth (2000)) report that the change of the

index price is stale and we use instead the prices of futures contracts closest to the time

of the registered pair option strike to derive the corresponding stock price corrected for

dividends, following a methodology described in Fengler (2005). For each day, we use

only at-the-money and out-of-the-money call options and in-the-money puts to compute

the Black-Scholes implied volatilities. This guarantees that unreliable observations (high

volatility) will be removed from our estimation samples. Since, as mentioned before, the

intraday stock price varies, we use its median to compute the risk neutral density. For

this price, we verify if our observations satisfy the no arbitrage condition:

S∗ ≥ Ci ≥ max(S∗ −Xie
−rτ , 0) ,

where S∗ is the adjusted price for intraday movements.

Moneyness is computed for each pair (S∗i ,Ki), where after we assume that the volatility

does not depend on the changes in the intraday stock price. (Notice that the results

in Figure 4 are defined on a returns scale (continuously compounded 1 month-period

returns RT = 1 + log(ST /St)) different from the moneyness definition used by Rookley

(1997)).
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5.2 Estimation of the historical density p

We use the nonparametric kernel density estimates similar to Ait-Sahalia and Lo (2000)

based on the past two years’ observations of returns from the maturity. With this ap-

proach the returns of the stock prices are assumed to vary slowly and thus the process can

be assumed stationary for a short period of time. Alternatively if additional modelling

assumption is made for the evolution of the stock price such as GARCH, a simulation

based approach could be employed.

Jackwerth (2000) argues that some discrepancies between the nonparametric estimates

are attributed to overlapping and non-overlapping windows of the past observations se-

lected. Nevertheless with varying degrees of assumptions on the model, common charac-

teristics such as peaks and skewness are reportedly observed in a wide range of estimates

(Härdle et al., 2009). For comparison to the earlier works, we also experimented with

a choice of time varying equity premium and constant equity premium (we demean the

densities and supplant it with the risk free rate on the estimation day plus 8% equity

premium per annum as in Jackwerth (2000) adjusted for the corresponding maturity),

overlapping and nonoverlapping returns, window length 500, 1000, 1500 trading days

(which corresponds to 2, 4 and 6 years respectively). The estimates with the different

choice of parameters are then compared subsequently in terms of pricing kernel, implied

risk aversion and implied utility function estimation.

5.3 Smoothing parameter selection

In constrast to the simulation studies, the effect of smoothing parameter is less transpar-

ent with real data when we estimate p and q separately. At first glance, the bandwidth

selection for q seems more influential than that of p in gauging performance of the esti-

mates, as it involves derivative estimation. Figure 5 examines the effect of the bandwidth

choices on q̂. Top left panel shows the implied volatility estimates overlayed, the top

right shows the first derivative estimates and bottom left shows the second derivative

estimates respectively, which are used as inputs to create the estimates of q on bottom

right panel. The bandwidths used are (0.05, 0.10, 0.15, 0.20). With the apparent under-

smoothing at the smallest bandwidth, there is notable variability in terms of smoothness

in estimation of implied volatility and its derivatives however the resulting density esti-

mates demonstrate robustness. Similar observations are made to other dates. However

by smoothing on implied volatility domain, we find that the estimates are stable with

relatively a wide range of bandwidth choices.

For a systematic choice, we employed a version of CV criteria (hopt,1 defined in Sec-

tion 4.3) for p and q estimation. For estimation of q, we have used the least squares CV
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Figure 5: Example of q estimates with varying bandwidths (0.05, 0.1, 0.15, 0.20). The

first three panels show estimates of implied volatility, its first and second derivative. The

corresponding densities are shown in lower right panel. Estimates are stable for a wide

range of bandwidths choices.

using local cubic estimation to include the second derivative of C.

CVt(h̃) =
n∑
i=1

n∑
j 6=i

{
Yt,i − Ĉ(0)

h̃,−i(Xt,i)− Ĉ(1)

h̃,−i(Xt,i)(Xt,j −Xt,i) (8)

−1

2
Ĉ

(2)

h̃,−i(Xt,i)(Xt,j −Xt,i)
2

}2

w(Xt,i)

where Ĉ
(k)

h̃,−i are kth derivative estimate obtained without ith observation (Xt,i, Yt,i) and

0 ≤ w(Xt,i) ≤ 1 is a weight function. See, for example, Li and Racine (2007) for details.

The h1-optimal bandwidth is selected in implied volatility space, which turns out to be
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hq = 0.2. For estimation of p, we have used the likelihood CV for each curve:

lnL =

n∑
i

ln p̂−(i)(Xi)

where p̂−(i)(Xi) is leave-one-out kernel estimator for p(Xi). However we found that the

optimal bandwidth selected tends to systematically oversmooth and thus we chose a

value close to the maximum of individually optimal bandwidths, which is in our case

hp = 0.05.

5.4 Estimation of EPK, ARA, Utility function
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Figure 6: Illustration of SIM with common EPK, ARA, utility function and mean ARA.

We have considered in Section 5.2 various options for the parameter choice in estimating

p and have ended up with twelve series of pre-estimates of EPK. We are interested in

seeing how these choices influence the estimated common curves and θt parameters by

SIM. Since, as it turns out, the results are very similar among specifications we depict

graphically only four of them in Figures 6 and 7: those based on nonoverlapping (solid)
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Figure 7: Estimated SIM parameters.

and overlapping (dashed) returns over the last two years, nonoverlapping returns over the

last four (dot-dashed) and six (dotted) years respectively with varying equity premium.

The added lines in Figure 7 are 95% pointwise confidende band for the first series of

pre-estimates.

The common curves are represented in Figure 6. All estimates display a paradoxal

feature: EPK has a bump, ARA has a region of negative values that correspond to

the increasing region in the EPK, utility function has a convex region in the domain

around the EPK peak. The variability among curves is expressed by θt-s. In Figure 7

we observe that the main difference in the dynamics of different series has to do with the

magnitude but less with the direction of change. In addition, we computed the mean of

implied ARA corresponding to our estimation period and found that it similar to the

the mean ARA for S&P500 appearing in Figure 3 panel C - 19. March 91 to 19 August

1993 in Jackwerth (2000), and to a certain extent to the yearly average from 2003 and

2005 shown in Figure 4 in Chabi-Yo et al. (2007). It is worth noting that the mean

ARA and the common ARA curves differ a great deal. This is not surprising since the

interpretation of common curve is different from the average curve, in particular the

common curve and the mean curves have different scales of the x-domains - by means
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of registration.

5.5 Relation to macro economic variables

With an aid of the SIM model for EPK, we wish to characterise changes in risk patterns

in relation to economic variables of interest. Before doing this, we should mention that

in the case of nonstandard common curves - in our empirical example the peak does not

occur at 0 - both θ1 and θ2 introduce a shift effect in EPK together with its shape effect.

In order to disentangle these effects and improve interpretation we first standardise the

EPK curves by the location of the peak before applying SIM. This introduces two more

parameters, the horizontal and vertical coordinates of the peaks in the analysis. Since

their shift effect is comprised by parameters θ3 and θ4 we will not treat them here in

more detail.

Previous studies trying to link the parameters describing risk attitudes to the busi-

ness conditions include Rosenberg and Engle (2002). Based on power pricing kernel

specifications they show that risk aversion is counter-cyclical. Other related work in-

vestigates the relation between equity premiums (e.g. Fama and French (1989)), smile

asymmetry of volatility (Drechsler and Yaron (2010), Bekaert and Wu (2000)) or market

efficiency (Marshall et al., 2008). The advantage of our approach over Rosenberg and

Engle (2002) is that it allows us to identify how the change in economic variables relates

to the shape of a nonparametrically estimated pricing kernel. Due to limited sample

size - 37 observations it is impossible to estimate a structural model that correctly deals

with the simultaneity of our set of dependent variables. Further research will involve the

estimation of a (S)VAR specification, in order to account for the aforementioned endo-

geneity. We instead evaluate the potential univariate correlations between the estimated

θt parameters and macro economic variables associated with the business cycle and in-

terpret our results from the perspective of local EPK and risk aversion functions. We

use the following variables that have a revealed relation with the state of the economy:

credit spread (CS) is the difference between the yield on the corporate bond1 and the

government bond maturing in 5 years; the yield curve slope (YT) refers to the difference

between the thirty-year government bond yield and three-months intebank rate; short

term interest rate (IR) is the three-months intebank rate; and DAX 30 Performance

index as a proxy for consumption. Depending on data availability we collect daily or

monthly data. Tests on unit roots failed to reject stationarity in all parameter series

and economic variables; we therefore work with their first difference. For conciseness

we present only the correlation table for non-overalpping returns over the last two years

with varying equity premium and interpret the results below in relation to Figure 3.

In Table 4 we read significant positive correlation between changes in θ1 and DAX and

1Series Euro Area Corporate Bond Yield are based on the German CORPTOP Bond maturing in 3-5

years. Data are sourced from the Commerzbank.
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θ1 θ2 θ3 θ4 CS DAX YT

θ1 1.00 0.55* 0.02 0.78* -0.25 0.38** -0.26

θ2 1.00 0.38* -0.04 0.06 -0.12 -0.39**

θ3 1.00 -0.18 0.07 -0.21 -0.28***

θ4 1.00 -0.37** 0.62* -0.04

Table 4: Correlation table for the first difference of SIM parametethers and the selected

macro economic variables. (sig. at 1% = *, sig. at 5% = **, sig. at 10% = ***)

negative one with the credit spread, indicating that the EPK becomes more pronounced

when the economic indicators suggest an expanding economy; changes in θ2 and YT are

negatively correlated, suggesting that risk aversion slope becomes locally steeper during

economic boom. The same interpretation holds for the negative correlation between

changes in θ3 and YT. The hight of the peak varies with the returns on the index,

pointing to an increasing local risk proclivity in periods of economic expansion. We

have not found any significant correlation between changes in θt and in the short term

interest rate. Finally, we observe a positive correlation between the increments in θ1
and θ2 that suggests that over periods of concerted negative evolution of the economic

indicators the EPK bump will shrink in both horizontal and vertical direction, possibly

leading to an overall decreasing EPK.

In summary the sense of the relations between the indicators of the business cycle and

the parameters that summarise risk preferences indicates that locally risk loving behavior

is procyclical. These findings are also in line with the results found in Rosenberg and

Engle (2002).

Appendix

a. Derivation for q estimation

The Black-Scholes model assumes

CBS(X, τ) = Ste
−δτΦ(d1)− e−rτXΦ(d2)

= e−rτF{Φ(d1)−MΦ(d2)} ,

where F = Ste
(r−δ)τ and M = X/F . With semiparametric call price function, the

volatility parameter σ is expressed as a function of the option’s moneyness M = X/F

and the time to maturity τ :

C(X, τ, r, δ, St) = CBS(X, τ, F, σ(M, τ)) .
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Define a standardised all price by c(M, τ) = erτC(X, τ, r, δ, σ)/F . Then

∂C

∂X
= e−rτF

∂c

∂M

∂M

∂X
= e−rτ

∂c

∂M
∂2C

∂X2
= e−rτ

∂c2

∂M2

∂M

∂X
= e−rτ

1

F

∂c2

∂M2

Recall that

c(M, τ) = Φ(d1)−MΦ(d2) .

With some manipulation we have

∂c

∂M
= φ(d1)

∂d1
∂M
− Φ(d2)−Mφ(d2)

∂d2
∂M

∂2c

∂M2
= −d1φ(d1)

( ∂d1
∂M

)2
+ φ(d1)

∂2d1
∂M2

− φ(d2)
∂d2
∂M
− φ(d2)

∂d2
∂M

+Md2φ(d2)
( ∂d2
∂M

)2 −Mφ(d2)
∂2d2
∂M2

,

where

∂d1
∂M

= − 1√
τ

1

Mσ(M, τ)
+

1√
τ

ln(M)
σ′(M, τ)

σ2(M, τ)
+

√
τ

2
σ′(M, τ)

∂d2
∂M

=
∂d1
∂M
−
√
τσ′(M, τ)

∂2d1
∂M2

=
1

M2
√
τσ(M, τ)

+
2√
τ

σ′(M, τ)

σ2(M, τ)

{ 1

M
− ln(M)

σ′(M, τ)
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}
+σ′′(M, τ)

{ ln(M)

σ2(M, τ)
√
τ

+

√
τ

2

}
∂2d2
∂M2

=
∂2d1
∂M2

−
√
τσ′′(M, τ) .

Note that this leads to a slightly different derivation from Rookley (1997), albeit using

the same principle. In order to compute the derivatives of σ, we used the local polynomial

smoothing on implied volatility. Let σi to be the implied volatility corresponding to the

call price Ci with maturity mi. The local polynomial smoothing estimates are obtained

by minimising ∑
i

{σi −
p∑
j=0

βj(m0)(mi −m0)
j}2Kh(mi −m0) .

The estimates are computed as σ̂ = β̂0, σ̂
′ = β̂1 and σ̂′′ = 2β̂2.
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