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Introduction 1-1

Contributions

[] Extend Granger causality and partial correlation graphs for
time series to the time-frequency domain using wavelets

[] Describe local linear dependence in terms of local graphs

(] Graph estimation from empirical data
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Introduction 1-2
Related Literature

Partial correlation graphs for multivariate time series
[ generalize classical Gaussian concentration graphical models
(] indicate the pairwise conditional linear dependence
[-] account for the contemporaneous and lagged influences

Granger causal graphs for multivariate time series
[ an effect cannot precede its cause in time, (Granger, 1969)
[ alternative to intervention-based causality (Pearl, 1995)
[ account for lagged influences

Brillinger (1981), Brillinger (1996), Dahlhaus (2000), Eichler
(2000), Dahlhaus and Eichler (2003), Eichler (2007), Eckardt
(2015) - review study; Barigozzi and Brownless (2014)

Wavelet Graph ‘/\/L/\’ =




w

Introduction 1-

Outline
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Graphical models for time series 2-1

Graphical Models

A graph G = (V, £) consists of:
[ a set of vertices V = {vi,..., v} < o0
[] a set of edges £ CV x V, ej = (vi, vj)

» undirected edges e; € £ < ¢ € £, undirected graph
> directed edges e;_,; € £, directed graph

[J optional: loops, multiple edges (multigraph), mixed graph
(directed and undirected edges)

Usually, v; € V represents a random variable or process.
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Graphical models for time series 2-2
Graphical Models for Time Series

k-dimensional stationary multivariate time series Xy,

H Xy = {Xitiev. V ={1,....k}, Xi = {Xi(t) }iez
[ Xv\s = {Xitiew\s, forany S C V

Time series graph of a process Xy
[] vertex v; refers to the component processes X; of Xy

Linear dependence graphs
1 Conditional orthogonality: X; and X; are conditionally
uncorrelated after removing the linear effects of Xg
Xi L X | Xws

Remark: For Gaussian time series “ 1" =~ independence;
factorization of the joint distribution in marginals of subgraphs
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Graphical models for time series 2-3

Granger Causality Graph

[1 X; is linearly non-causal for X; relative to the process Xy,
denoted by X; » X; | Xy if

Xj(t) AL Xi(t) | X iy (2),

for Xs(t) = {Xs(2),z < t}.
[] X; and X; are contemporaneously uncorrelated relative to
the process Xy, denoted by X; « X; | Xy if

Xi(£) AL X;(t) | Xv (1), Xon iy (2)-

Definition: The Granger causality graph G = (V, &) for a
stationary process Xy is a mixed graph with edges given by
(i) einsj & £€C &X; = X | Xv,

(ii) ej & E°C &X; = X; | Xy.
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Graphical models for time series 2-4
Partial Correlation Graph for Time Series

Definition: The partial correlation graph G = (V, ) for a
stationary process Xy is given by

=1 COV(€;|V\{iJ}(t),5]‘\/\{,‘71'}(1' + U)) =0,YueZ

gifv\ (i) (1) = Xi(t) — ™" — Z d7P" () Xu g1y (t — u)
(uiP*, d?P") = arg m'(f)l E(X, Z di(u) Xy (i3 (t — u))?
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Frequency domain representation 3-1
Frequency Domain Formulation

Partial cross-spectrum b/w X; and X; at frequency w € [—7, 7]
1 +oo

“+o0
vt (@) = 5 Do D v et +u)| e

t=—0o0 Lu=—0o0

1 X :
=5 cov(ei iy (£), g iy (£ + u))e "
U=—0o0
[ is the Fourier transform of the partial cross-correlation function
[J is a measure of covariance b/w &;j\\ (i jy and gjjy\fij)

= Xi L Xj | X\ (i & fv\gijy (@) = 0,Vw
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Frequency domain representation 3-2
Partial Spectral Coherence

Estimating residuals ;)\ (i j}(t) is computationally intensive.

Alternative: If the spectral matrix fy/(w) = {f;j(w)}ijev is regular
and g(w) := f(w)~! then the partial spectral coherence matrix
is R(w) = —diag(g(w))Y?g(w)diag(g(w)) /2, whose elements
can be shown to satisfy

fiiv\ (i (@)

Rijjv\iijp (@) =

i\ iy (@) v iy ()] 2
i iy (@) = (@) = iy (@A vy (@) i gy (@)

— X; AL XJ ’ XV\{i,j} = R,-J-|V\{,-,j}(w) =0,YVw & g,-j(w) =0,Vw
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Frequency domain representation 3-3

Vector Autoregressive Processes

P
t) =Y AX(t—j)+2Z(t), Z(t)~ N0, %)
j=1
polynomial order p; k x k coefficient matrices A;
A(L) :=1—AiL—...—ApLP, L lag-operator.

Spectral density and unstandardized spectral coherence matrices of X(t)

1 . .
fV(W) _ gA—l(e—lwt)ZA—l(elwt)T

gw) = fx(w)™ =2rA(e“)L T A(e )T

g( )—27721 1Zr 1 /rlAl:( ’Wt)Arj(e_iwt)

Wavelet Graph ‘/\[\ﬁ“




Frequency domain representation 3-4

Example: Five-dimensional VAR(2)-process with parameters

S0t 0 0 00 -2o0 o0 1 L 00
020 -1 o0 00 00 0 4|3 1 -1oo0
AD=|% 3 2 0 0l A2)=l00 0 0 0 Y=l L 1 00
000 -3 & 00 % 0 3 0 0 10

2 5 5 3
00t o 2 00 0 0-% 00 0 01

2 4 2 4
1 3 5 1 3 5
Granger causality graph (left) and partial correlation (right) - moralization
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Localized Partial Correlation Graph

For locally stationary multivariate time series, wavelet-based
methods

[] allow time varying analysis of spectral behavior
[J characterize dependence in time-frequency domain
] similar to applying linear filters locally

(] local covariance functions, local spectra and local coherence

Remark: If the time series are stationary, their spectral behavior
will be constant over time.
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Wavelets
[ “Mother wavelet” 1) € L>(R) s.t.

/ (t)dt = 0 admissibility condition

oo
/ P2(t)dt = ||1]|*> = 1 'unit’ energy property.
— 0o

[1 Families of basis functions 1, s(t)

NG

7 location and s scale (pseudo-frequency); |9+ s|| =1

wT,s(t):i (T), seRY,7eR (1)

Note: We will consider complex wavelets further on.
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Example: Morlet Wavelet

Marlet Wavelet Translated by +4
1 1
0.5 1 05
0 1 0
=05 -0.5
1 -1
=10 -5 0 5 10 —10 -5 4] 4 10
Dilated by +2 Dilated by +2 & Translated by -4
1 1
05 0.5
] 0
-0.5 -0.5
-1 -1
—10 -5 0 5 10 -10 -4 o 5 10

Morlet wavelet under translation and dilation
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Wavelet Transform

Wavelet coefficients w.r.t. X;

VV,'(T, 5) = <X,', 1/)7',5>

1 =
= % ZXi(t)wr,s(t)

(+) stands for the complex conjugate. Additionally, a frequency
domain representation of W;(7,s) follows as

2T

wiw) = VB ST X (se,

where f,, _is the Fourier transform of the wavelet function 9, s.
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Wavelet graphs

'Adaptive’ Window
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Parseval’'s Relation: Extension to Wavelets

Recall: The inner product of two time series equals the inner
product of their Fourier transform.

[J Xi(t) can be recovered from the wavelet transform

1 [t ptoe
X,'(t) = Cw/_oo /_Oo ?V‘/i(T,s)ﬁlﬁT’s(t)des

[] For two processes Xi(t) and Xj(t), the energy in the time
domain is preserved in the time-frequency domain

1 too 400 g .
<x,-xj>:cw/_oo /_Oo Wi, $)Wi(7 )l drds.

for a finite constant C satisfying
] 2
Cy = / () dw < 0.
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Wavelet graphs 4-7
Partial Cross Wavelet

[J Cross-wavelet coefficients - can be interpreted as a localized

measure of correlation between two time series
VVU(Tv 5) = VVI'(Tv S)Wj(Tv 5)
[J Partial cross-wavelet
Wijv\qijy (1, 5) = Wi(,s)
—1
— Wiv\ (i} (T, S )W (i w4y (75 8) T Winn i jy (75 5)

It extends a result for partial cross-spectrum (Brillinger, 1981)
and involves inversion of (k —2) x (k — 2) dimensional matrix;
alternatively solve via recursion formula.
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Wavelet graphs

Partial Wavelet Coherence

[J Partial wavelet coherence (PWC)

|Wijiv\{ijy (7, 9)]
1
|Wiiv\ i j3 (75 ) Wijiw (i jy (75 9) |2

Rijjw\{ijy (1, 5) =

0< ’Rulv\{,",}(T s)|? < 1, interpreted as a localized
correlation in the time-frequency domain

Remark. X; 1L X | XV\{,J} - R,'j‘\/\{,'J}(T,S) =0,Vs, 7 &
‘ J|V\{,J}(T 5)| = 0 VS T
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Undirected Wavelet Dependence Graph

For Xy (t) a multivariate stochastic process evolving in discrete
time an undirected wavelet dependence graph is an undirected
multigraph G = (V, £) in which any v; € V encodes the i-th
component X;(t) of Xy (t) s.t. at fixed scale s

Xi,s A Xj,s | XV\{i,j},s < €jjs ¢ gs
<~ Rij|V\{i,j}(7—7 S) = O,VT

where & is a scale-specific subset and it holds that £ = U&;.

Remark: A partial correlation graph is obtained from the
multigraph by replacing any multiedge by a single edge.
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Wavelet graphs 4-10
Factorization of Wavelet Spectral Matrix

Wavelet spectral matrix WS(t,w) = {WSj(7,w)}ijev, where
entries are frequency specific equivalents of W;;(7,s). For fixed 7

WS(r,w) = W, 0, ',

where W, the local minimum-phase spectral density matrix,
produces a causal filter B, with a causal inverse s.t.

l27rw § : B lk27rw

error covariance matrix ¥, . = 7_7087',0’ minimum-phase transfer
function H, = \UTBT_(}. In time domain, V. (z) = > "2, Bﬂkzk,
with W (0) = B upper triangular matrix with positive diagonal.
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Wavelet graphs 4-11
Granger Causality Spectra

Geweke (1982), Geweke (1984)
[J Granger causality (GC)

W ..
GCisj(7,w) = log %)

WSji(r,) (z - 23,,,-/%-) Hy ()2

[J Conditional Granger causality (CGC)
i (Xi)
—T
QJj(T’ W)ZT,_/'J'(XV\j) Q,I_/ (7—7 w)
Y. (Xi, X;) and X7 j(Xi, Xj, Xy\yij) are local variances of the

residuals from regressing X; on past values of X; and X\ ;.
Qjj is a function of X, . and H;, (see Ding et al., 2006).
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Wavelet graphs 4-12
Directed Wavelet Dependence Graph

For Xy(t) a multivariate stochastic process evolving in discrete
time a directed wavelet dependence graph is a directed multigraph
G = (V,£€C) in which any v; € V encodes the i-th component
Xi(t) of Xy(t) s.t. at fixed scale s

Xis 1 Xjs | Xvs & €i—v; ¢ gsGC
& GCiyjvs(T) =0,V7
where GC;_,jjy s(7) scale specific version of the GCj_,jv(7,w),

ESC is a scale-specific subset and it holds that £°¢ = UESC.

Remark: A Granger causality graph is obtained by replacing
same-directional subset of an multiedge by at most one directed
edge; together with an undirected simple graph obtained from X, ..
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Graph estimation 5-1

Model Selection and Parameter Estimation

[ Identify null entries of the precision matrix, Dempster (1972)
[] Sparsity: shrinkage, computational savings

(] Main approaches

» Hypothesis testing (Edwards, 2000)

Simultaneous confidence interval (Drton and Perlman, 2004)
Neighborhood search (Meinshausen and Biihimann, 2006)
Graphical Lasso: Friedman, Hastie and Tibshirani (2008)
Bayesian approaches (Wong et al., 2003; Dobra et al., 2004)
Measure method approaches, e.g. Frobenius norm (Rothman
et al., 2008; Lam and Fan, 2008)

vVvVvyyvyy
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Final Remarks 6-1
Conclusions

Wavelet methods
(] useful to analyze time-varying nonstationary time series

[ recover linear filters and error covariance matrices from
spectral representations

[ easy to derive the graph structure if new components are
added to the MTS

Challenges
(] Graph estimation

[ Directed graphs for contemporaneous/instantaneous
correlations
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