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Motivation 1-1
Derivatives of Multidimensional Functions

[ X(t): [0,1]8 — R random function in L2([0, 1]8)
[ E[X(t)] =0,Vt €[0,1]¢ and [ 1, E [X(t)?] dt < o0

of 0l o% 0%
d:f a—dX(t =—0
at atll atgg

d=(d,...dg)T", |d| = Jg:1 |d;|. d; € N partial derivative of
function X in the spatial direction j =1,..., g

XW(t) X(tr, ..., tg) (1)

1 Xi(t), i=1,..., N sample counterpart

Objectives
1. estimate X,-(d) from a sample of discretely observed noisy curves

2. represent variability of X,-(d) in a low dimensional function space
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Motivation 1-2

Contribution

Functional Principal Component Analysis (FPCA)

1. FPCA of derivatives {X,-(d)}._l N

2. FPCA of curves {X;};,_; n + derivatives of eigenfunctions

For noisy and discretely observed curves develop estimators and
derive statistical properties for g > 1

Empirical findings
[) state price density (SPD): volatility, skewness and tail factors

[] term structure components
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2-1

Theoretical Framework

Karhunen-Loéve Decomposition

Covariance function of X(*), v = (11,. .., ug)T, vie N
o®)(t,v) E EXO ()X (v)]
Eigenvalues )\( ) g ) > > ... and functional PC goﬁy)

| o wide =26
[0,1]

X ) admits decomposition

X0)(¢ Z 5

08 = fip e X' (ﬂ‘”(wnEq&”V>:AV%EwVM?b=o

forr#£s,r,s=1,.
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Theoretical Framework 2-2

Two Approaches to Derivatives Using FPCA

1. Forv=(di,...,dg)"

2(5 (d)

2. Forv=1(0,...,0)7, v, := gpgo), A= )\E ) and 0 1= 5$0)
= Zér%(t)
(d) Z(Sr')’r

ld|
/[o 1] gvd (ot V) (v)) dv = At (2). (5)
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Estimation Methodology 3-1

The Empirical Model

Noisy and discrete observations

Yi(ti) = Xi(ti) + i = > riye(tic) + ik (6)
r=1
ti = (t,'l,...,t,'T'.)T, ti € [O,I]g, k=1,...,T;,i=1,...,N
gix i.i.d., E[ex] =0, Var (ei) = 02, cjx independent of X;(tj).

ie?
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Estimation Methodology 3-2

Dual Method

Given {X,-},Nzl, dual covariance is N x N matrix M)

M) — / X)X W) (t)dt
0.1

ij J
: (v) . (v) (v)
Eigenvectors p; ’ and eigenvalues 7"/ of M
Ll Forv=d
d 1 d) v (d N d d) (d
29 (1) = S pOX (1), 3D = a5 = (/) gl
[ o N
J Forv =0
)
~(d) 1 Ay 30 _F ) (0) (0)
r ()= —= > pirX; (L), Ar and 0,; I p;,
(0= 77 Lpxite) -
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Estimation Methodology 3-3

Multivariate Local Polynomial Estimator

Let k= (ki,.... k)", k€ N and [k| & 58 |k
T 2
min Z ﬁk t/— t KB(t/—t)
o0 0<[kI<p

Kg non-negative, symmetric and bounded multivariate kernel fct; B
a g x g diagonal bandwidth matrix diag(B) = b= (b1,...,bg)"

() = 1) —V'ZWT (=)o b™") Y(). (7)

weight function W[, ao b def (aibi,...,agbg)",

def
€ cl!l x -+ x ¢gl, for any vectors a, b € R8 and c € N
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Estimation Methodology 3-4

Quadratic Integral Estimation

6., estimator of the squared integrated functions f[o 1]e X®)(t)2dt

/ v1? ZZ W ((tx —t) o b)) W] ((ty —t) o b71) Y (1)) Y(tx)dt
[0,1]8

k=1 I=1
—u!2&§/ ZWT (tc —t)o b 1) dt

[0.1]8 ,—;

&2 is a consistent estimator of 02. The second term is introduced

to cancel the bias in E [Y?(t)] = X(t)? + 02,
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Estimation Methodology 3-5
Empirical Dual Matrix

Replace the integrals in (10) with the Riemann sums

v1? Zk 1 Z/ 1 Wy ( ik tjhb)yj(tj/)yi(f,'k) if 1 £
"A”é-”) = v <Zk:1 ST wT (b, t, b) Yitn) Yi(ta)
_Alge Elz_lzl WI/T(tika Lik, b)) if i :J

y(lkajh —leWT k—tm)ob_l)WT((/—tm)ob )

The estimator for M(®) is given by setting v = (0,...,0)" and the
estimator for M(9) by v = d.
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Estimation Methodology 3-6
Estimation of Basis Functions

Denote )\Sd% 55 7)- gﬁfd-,)- and ’Ay%)- the empirical counterparts of
A, 3D @) and 51D with

i=1

At S b0 2 S A (0
-7 e
with local polynomial estimator with bandwidth A

.
X(1) = d1Ba(t) = 'S W] (- ) oh ) Yi(t)).  (8)
=1
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Estimation Methodology 3-7

Optimal Choice of L

For the constant Cy1 = min(v/N,v/T) and L™ < min(N, T)

N
) () — - $(v) <) (log(Chr)
pPCoc) KEN R Lonax [( 2N ) +k< 2 ) ( C2r

r=k+1 r=Lmax
or
: log(C2+)
ICW (k") = min [log < Z A ) + k ( > .
keN,k<L Bt Cir
Here using v = (0,...,0)" will give L while using v = d will give

the factors Lg.
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Asymptotic Properties 4-1

Lemma 1
Lemma

Under Assumptions 7.1- 7.4, X is m > 2|v| times continuously
differentiable, the local polynomial regression is of order p with
lv| < p < mand|62—0% =0Op(T Y?). As T — oo and
max(b)’ b7V — 0, % —0as Thy x -+ X bgb™ — 00

Eey [00,0] — XW)()2dt
[0.1]8
1
— by b
Op (max( ) + T3/2(b20by x -+ x bg)>
1 1
Vare,y (6u) = Op (T2b1 X X bgb T) !

E: vy and Var; y conditional expectation and variance given t, Y.
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Asymptotic Properties 4-2

Proposition 4.1 and Remark 4.2

Proposition
Under the requirements of Lemma 1

1/2
(MY 1)) = Op | max(b)y’ b~ + ! AN
Y v T2by X -+ X bgb® = T

Remark
Under the assumptions of Lemma 1 and using Proposition 4.1 we
can estimate M) such that if m>p > & —1+3%% v,

. e -1
bandwidth b= T~ with 5o a5 < 0 < sa—

MY — )| = 0p(1/VT).
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Asymptotic Properties 4-3
Basis Properties

For max(h)P™h=? — 0, (max(h)P*? Th_d)f1 — 0 as T — oo and
p chosen such that p — |d| is odd

N
1 y . B
Ety |: > Zpl(r) (Xl_(d)(t) . Xi(,z)(t)>] _ (’)p(max(h)pﬂh d)
N =1

r

N
1 @) o | _ 1
Vart,y (\//(T) £ Pir Xi,h (t) - OP NThy x -+ % hgh2d ’
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Asymptotic Properties 4-4

Proposition 4.3

Proposition
Under the requirements of Lemma 1, Assumptions 7.6 and 7.7,
Remark 4.2, and for i;ﬂ)\, —Xs| >0, r,s=1,...,N and
SEr
max(h)P*1h=9 — 0 with NThy ... hgh®? — 00 as T, N — oo we
obtain
a) w(")(t) ‘f”( t)| = Op (max(h)P+1h=) +
Op (NThy x « -+ x hgh?d)71/2)
A(d A(d _
b) 16+() — ¢ %( t)| = Op (max(h)P+1h=) +
Op (NThy x «+- x hgh?d)71/2)

As a consequence, the resulting global optimal bandwidth is given
by hyopt = Op (NT)~1/(8+2p+2)),
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Asymptotic Properties 4-5
Properties under a Factor Structure

If a true factor model with L components is assumed, the basis
representation to reconstruct X () is arbitrary, in the sense that

Ly

X (¢ ZW Z o (2). (9)

=1
where L is an upper bound for L.

Ly
(d) def A(d) S
XI FPCA Z 5lr T, T ~ A FPCA2 Z
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Asymptotic Properties 4-6

Proposition 4.4

Proposition

Assume that a factor model with L factors holds for X. For
NT-1 >0, together with the requirements of Proposition 4.3, the
true curves can be reconstructed

d A~
a) IX\(t) — X Ehca, (1) =
Op (T2 + max(h)PTh=d + (NThy x -+ x hgh?d)71/2)

d A
b) 1XV(t) — X Fhca, (£)] =
Op (T2 + max(h)PFh=d + (NThy x -+ x hgh?d)71/2),
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Application to SPDs 5-1

Application to SPDs: Modeling Framework

Let C : R2, — R denote the price function of a European call
option with strike price k and maturity 7 such that

Clk,7) = exp (—r,7) /0 Cor— k) ta(sT)ds, (1)

where r- is the annualized risk free interest rate for maturity 7, s.
the unknown price of the underlying asset at maturity, k the strike
price and g the state price density of s.. One can show that

82C(k,7)

q(s-,7) = exp(r;7) T (12)

k=s-
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Application to SPDs 5-2
Let sy be the asset price at the moment of pricing and assume it to
be fixed. Then by the no-arbitrage condition, the forward price for
maturity 7 is

F. = / srq(sy, 7)ds; = soexp(r;7). (13)
0
Suppose that the call price is homogeneous of degree one in the
strike price. Then
C(k,7) = F.C(k/F,T). (14)
If we denote m = k/F; the moneyness, it is easy to verify that
PC(k,T) iazC(m,T)
ok2  F, om?
Then one can show that for d = (2,0)T,
C(d)(m77)|m=sT/FT = q(57/5077') = Soq(ST7 T)-

FPCA for Derivatives ’
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Application to SPDs 5-3

Data Description

[ Source: Research Data Center (RDC)

[] DAX 30 Index opening price

[ EUREX European Call Option: settlement prices
daily observations, time window length: 2002 - 2012

[J LIBOR rates

] VDAX implied volatility index for DAX 30 underlying
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Application to SPDs 5-4

Selection of L

r, Lmax 1 2 3 4 5 6 7 8

A7 x10° | 13329 18.90 2.69 1.62 049 034 026 0.09
Mr/MNyT| 705 701 166 328 144 131 283 1.18
k*(PC(®) - - - - - - 7 8
k*(1C(0) - - - - - - 7 -

Table 1: Estimated eigenvalues and eigenvalue ratios. Number of factors
by PC© and IC©) criteria
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Application to SPDs

Term Effect and Jumps

Green: 15-Jun-2007. Red: 18-Jun-2007

100
s 0 « -0.02
K o
-100 004
1
CACIN 12515
0.25 0.5 0-75 -0.06
0 2002 2004 2006 2008 2010 2012

Maturity Moneyness

Figure 1: Estimated components '3/2‘71% and its loadings obtained by the
decomposition of the dual covariance matrix M©). The effect of expiration

date on the level of estimated loadings 32’7
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Application to SPDs 5-6

Estimated Variance Factor

onr
IS}
8 o

1.5
1.25
5l

o 05 0.7 -0.06
Maturity Moneyness 2002 2004 2006 2008 2010 2012

Figure 2: Estimated components &17% and its loadings obtained by the
decomposition of the dual covariance matrix m©
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Application to SPDs

Estimated Skewness Factor

0.01
100 0.005
=2 0 5 0
e oS
-0.005
-100
1 -0.01
0.75 1 12515
Yozs 05 075 -0.015
Maturity Moneyness 2002
2 (d)

5-7

2004 2006 2008 2010 2012

Figure 3: Estimated components 43 7 and its loadings obtained by the

decomposition of the dual covariance matrix m©
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Application to SPDs 5-8

Estimated Tail Factor or Volatility of
Volatility

2 X 107

57.7"

. 12515
5 0.75

2
) 0
Maturity Moneyness 2002 2004 2006 2008 2010 2012

Figure 4: Estimated components @77% and its loadings obtained by the

decomposition of the dual covariance matrix #1(%)
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Application to SPDs 5-9

AR(1) Parameters Dynamics

Sir,T = brgiflr,T + eir, Var(eir) = Ugn r=1,2,3 (16)

by (black), by (red) and b; (blue) 107361 (black), 6.5 (red) and &r (blue)
5
0.8 4
3
0.6
2
0.4 . ,\.A—W
—TT T TN e
0.2 0
2002 2004 2006 2008 2010 2012 2002 2004 2006 2008 2010 2012

Figure 5: AR(1) coefficients and error standard deviations estimated daily
with a moving window of 250 observations
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Application to SPDs 5-10

Error Covariance Dynamics

N

5ir,T = brSiflr,T + eir, Var(eir) = Ugn r=1,2,3 (17)

corr(é1,é3) (green) and —corr(éz, é7) (magenta) corr(éy, é7) (orange) and 6y (light blue)
1

-1 -1 0
2002 2004 2006 2008 2010 2012 2002 2004 2006 2008 2010 2012

Figure 6: Pairwise correlations between residuals of univariate AR(1) re-
gressions, and time varying standard deviation of the VDAX estimated
daily with a moving window of 250 observations
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Conclusions 6-1

Conclusions

] When an underlying factor model is assumed, estimating curve
derivatives from observed discrete and noisy data using a
low-dimensional representation, /\/I(O) method performs better
both asymptotically and in finite sample.

(] We identify three main components, which can be interpreted
as volatility, skewness and tail factors. We also find evidence
for term structure variation.

[] We find evidence for time varying leverage effect and sign
reversal.

FPCA for Derivatives ’



Appendix 7-1

Assumptions 7.1 -7.3

Assumption

The random grid tj1, ..., ti1;, tj € [0,1]8 has a common bounded

and continuously differentiable density f with support

supp(f) = [0, 1]8 and the integrand u € supp(f) and inff(u) > 0.
u

Assumption

E(eix) =0, Var(ey) = 01‘25 > 0 and ¢ are independent of X;, and
E [sf}k] < 00, Vi, k.

Assumption

Kernel K is bounded and has compact support on [—1,1]8 such
that for u € RE [uuT K(u)du = p(K)! where u(K) # 0 is a scalar
and | is the g x g identity matrix.
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Appendix 7-2
Assumptions 7.4 - 7.6
Assumption

p—>.% ,d and p— 3%, d are odd.

Assumption
6% — o7l = Op(T7172)

Assumption

d d
sup sup |g0$ )(t)| < 0O, sup sup |7£ )(t)\ < 00

reN telo,1]e reN tef0,1]e
S E WH5@2<m,mmE 5V 5050 | < oo
r Si r SI qi
r=1 s=1 g=1 s=1
for all r ¢ N
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Appendix 7-3

Assumptions 7.6

Assumption

The eigenvalues are distinguishable such that for any T and N and
fixedr € 1,...,L there exists 0 < G, <00, 0< G, < Ggr < 00
such that

NG, <) < NG,
min [ — )] > NGy,

s=1,...,N;s#r
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