Pricing Chinese Rain

a Multi-Site, Multi-Period Equilibrium Model
Wolfgang Karl Härdle
Maria Osipenko

Ladislaus von Bortkiewicz
Chair of Statistics
C.A.S.E. Centre for Applied Statistics and Economics
School of Business and Economics and Faculty of Agriculture and Horticulture Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

No rain, no grain...

Weather risks

\square source of uncertainty in crop production
\square livestock farms and demand for food products affected
\square weather derivatives (WD) are financial instruments that permit the trade with weather risks
\rightarrow crop insurance issuer can transfer weather risks on financial markets
\rightarrow make crop insurance affordable for farmers (China)

Rain does not fall on one roof alone...

\square Agriculture
\square Other industries - tourism, entertainment, food retail
\square Diversification of financial portfolio
(Perez-Gonzalez \& Yun, 2010)

Pricing Chinese Rain

Rainfall Data

\square Daily rainfall data (from RDC)

- 29 Provinces, 105 stations in China
\square from 19510101 to 20091130

Motivation

Figure 1: Daily precipitation amount in 0.1 mm for Anhui (left) and Jiangxi (right).

Pricing rainfall

\square development of appropriate pricing approach
\square statistical modelling of relevant weather variables
\square quantification of the relationship between weather variables and production

Outline

1. Motivation \checkmark
2. Pricing Model
3. Statistical model for rainfall
4. Income-rainfall relationship
5. Simulation results
6. Outlook

Definitions

Given
\square Set of geographical sites \mathcal{S}
\square planing periods $t=0,1, \ldots, T$
\square set of agents J contains buyers (crop insurance) and an investor

Portfolios: $\alpha_{j, t}=\left(\alpha_{j, t, s_{1}}, \ldots, \alpha_{j, t, s_{n}}\right)^{\top}, s_{i} \in \mathcal{S}, i \leq n$ weather bonds and $\beta_{j, t}$ risk free assets B_{t}.

Price of the sth weather bond $W_{t, s}, s \in \mathcal{S}$, at $t=0, \ldots, T$ positive random variable on $\left\{\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t=0}^{T}, \mathbb{P}\right\}$.

Pricing Chinese Rain

Agents on the Market

Buyer(Crop insurer) j
\square rainfall exposed income l_{j}
\square portfolio: WDs + Bond
\square exponential utility with risk aversion a_{j}

Investor m
\square specializes on issue of WDs
\square portfolio: WDs + Bond
\square exponential utility with risk aversion a_{m}

Buyer's optimization problem

Profit of Buyer j

$$
\begin{aligned}
\Pi_{j, T} & =I_{j}\left\{\left(W_{T, s}\right)_{s \in \mathcal{S}_{j}}, P_{j, T}\right\}+\sum_{s \in \mathcal{S}_{j}} \alpha_{j, T, s} W_{T, s}+\beta_{j, T} B_{T} \\
& =I_{j}\left\{\left(W_{T, s}\right)_{s \in \mathcal{S}_{j}}, P_{j, T}\right\}+V_{j, T}
\end{aligned}
$$

with $I_{j}\left\{\left(W_{T, s}\right)_{s \in \mathcal{S}_{j}}, P_{j, T}\right\}$ a function of weather events $\left(W_{T, s}\right)_{s \in \mathcal{S}_{j}}$, production price $P_{j, T}$ and $\beta_{j, T} B_{T}, \alpha_{j, T} W_{T, s}$ payoffs of bond and WD on station $s \in \mathcal{S}_{j}$ (set of stations Buyer j depend on). Utility maximization

$$
\begin{aligned}
\max _{\left\{\alpha_{j, t+1, s}\right\}_{s \in \mathcal{S}_{j}}} & \mathrm{E}_{t} \\
& \left\{U_{j}\left(\Pi_{j, T}\right)\right\} \\
\text { s.t. } & \sum_{s \in \mathcal{S}_{j}} \alpha_{j, t+1, s} W_{t, s}+\beta_{j, t+1} B_{t}-V_{j, t, s}=0
\end{aligned}
$$

Investor's optimization problem

Profit of investor m

$$
\begin{aligned}
\Pi_{m, T} & =-\sum_{s \in \mathcal{S}} \alpha_{m, T, s} W_{T, s}+\beta_{m, T} B_{T} \\
& =V_{m, T}
\end{aligned}
$$

with $\sum_{s \in \mathcal{S}} \alpha_{m, T, s} W_{T, s}, \beta_{m, T} B_{T}$ payoffs of WD and bond, \mathcal{S} set of all traded stations.
Utility maximization

$$
\begin{aligned}
\max _{\left\{\alpha_{m, t+1}\right\}_{s \in \mathcal{S}}} & E_{t}\left\{U_{m}\left(\Pi_{m, T}\right)\right\} \\
\text { s.t. } & \sum_{s \in \mathcal{S}} \alpha_{m, t+1, s} W_{t, s}-\beta_{m, t+1} B_{t}+V_{m, t}=0 .
\end{aligned}
$$

Solution via dynamic programming

time	state variables	control variable
0	$\left(W_{0, s}\right)_{s \in \mathcal{S}},\left(V_{0, k}\right)_{k=j, m}$	$\left(\alpha_{1, j, s}\right)_{s \in \mathcal{S}_{j}},\left(\alpha_{1, m, s}\right)_{s \in \mathcal{S}}$
\ldots		
$\mathrm{~T}-1$	$\left(W_{T-1, s}\right)_{s \in \mathcal{S}},\left(V_{T-1, k}\right)_{k=j, m}$	$\left(\alpha_{T, j, s}\right)_{s \in \mathcal{S}_{j}},\left(\alpha_{T, m, s}\right)_{s \in \mathcal{S}}$
T	$\left(W_{T, s}\right)_{s \in \mathcal{S}},\left\{I_{j}\left(W_{T, s}, P_{T}\right)\right\}_{s \in \mathcal{S}_{j}}$	-

\square start in $T-1$ and maximize the expected utility of T choosing $\left(\alpha_{k} T_{s}\right)_{s \in \mathcal{S}, k=j, m}$
\square under utility indifference derive demand/supply functions for $T-1$,
\square move to the next period and the maximize the corresponding expectation, continue to the present period.

Buyer's Inverse Demand

$$
\begin{aligned}
W_{T-1 s^{\prime}}= & \frac{1}{a_{j} R \alpha_{j T s^{\prime}}} \log \frac{\mathrm{E}_{T-1}\left[\exp \left\{-a_{j}\left(l_{j}+\sum_{s \in \mathcal{S}_{j}, s \neq s^{\prime}} \alpha_{j T s} W_{T s}\right)\right\}\right]}{\mathrm{E}_{T-1}\left[\exp \left\{-a_{j}\left(l_{j}+\sum_{s \in \mathcal{S}_{j}} \alpha_{j T_{s}} W_{T s}\right)\right\}\right]} \\
\Theta_{j T-1}= & \exp \left\{a_{j} \sum_{s \in \mathcal{S}_{j}} \alpha_{j T_{s}} W_{T-1 s} R\right\} \\
& \mathrm{E}_{T-1}\left[\exp \left\{-a_{j}\left(I_{j}+\sum_{s \in \mathcal{S}_{j}} \alpha_{j T_{s}} W_{T s}\right)\right\}\right],
\end{aligned}
$$

Buyer's Inverse Demand

$$
\begin{aligned}
W_{t s^{\prime}}= & \frac{1}{a_{j} \alpha_{j t+1 s^{\prime}} R^{T-t}} \\
& \log \frac{\mathrm{E}_{t}\left\{\exp \left(-a_{j} \sum_{s \in \mathcal{S}_{j}, s \neq s^{\prime}} \alpha_{j t+1 s} W_{t+1 s} R^{T-(t+1)}\right) \Theta_{j t+1}\right\}}{\mathrm{E}_{t}\left\{\exp \left(-a_{j} \sum_{s \in \mathcal{S}_{j}} \alpha_{j t+1 s} W_{t+1 s} R^{T-(t+1)}\right) \Theta_{j t+1}\right\}}, \\
\Theta_{j t}= & \exp \left(a_{j} R^{T-t} \sum_{s \in \mathcal{S}_{j}} \alpha_{j t+1 s} W_{t s}\right) \\
& \mathrm{E}_{t}\left\{\exp \left(-a_{j} R^{T-(t+1)} \sum_{s \in \mathcal{S}_{j}} \alpha_{j t+1 s} W_{t+1 s}\right) \Theta_{j t+1}\right\} \\
\text { with } R= & 1+r, 0 \leq t<T-1
\end{aligned}
$$

Investor's Inverse Supply

$$
\begin{aligned}
W_{T-1 s^{\prime}}= & \frac{1}{a_{m} R \alpha_{m T s^{\prime}}} \log \frac{\mathrm{E}_{T-1}\left\{\exp \left(a_{m} \sum_{s \in \mathcal{S}} \alpha_{m T s} W_{T s}\right)\right\}}{\mathrm{E}_{T-1}\left\{\exp \left(a_{m} \sum_{s \neq s^{\prime} s \in \mathcal{S}} \alpha_{m T s} W_{T s}\right)\right\}} \\
W_{t s^{\prime}}= & \frac{1}{a_{m} \alpha_{m t+1 s^{\prime}} R^{T-t}} \\
& \log \frac{\mathrm{E}_{t}\left\{\exp \left(a_{m} \sum_{s \in \mathcal{S}} \alpha_{m t+1 s} W_{t+1 s} R^{T-(t+1)}\right) \Theta_{m, t+1}\right\}}{\mathrm{E}_{t}\left\{\exp \left(a_{m} \sum_{s \neq s^{\prime} s \in \mathcal{S}} \alpha_{m t+1 s} W_{t+1 s} R^{T-(t+1)}\right) \Theta_{m, t+1}\right\}}, \\
\text { with } R= & 1+r, 0 \leq t<T-1, \Theta_{m, T}=1, \\
\Theta_{m, t}= & \exp \left(-a_{m} R^{T-t} \sum_{s \in \mathcal{S}} \alpha_{m t+1 s} W_{t s}\right) \\
& \mathrm{E}_{t}\left\{\exp \left(a_{m} R^{T-(t+1)} \sum_{s \in \mathcal{S}} \alpha_{m t+1 s} W_{t+1 s}\right) \Theta_{m t+1}\right\}
\end{aligned}
$$

Investor: single site vs multi-site

Proposition
In a single period model if $W_{T, s^{\prime}}$ and $\left(W_{T, s}\right)_{s \in \mathcal{S} \backslash\left\{s^{\prime}\right\}}$ are positive (negative) associated, then for $a_{m}>0$ and given $\left(\alpha_{m, T, s}\right)_{s \in \mathcal{S} \backslash\left\{s^{\prime}\right\}}$ of the same sign, investors supply for weather bond in $s^{\prime} W_{T-1, s^{\prime}}\left(\alpha_{m, T, s^{\prime}}\right)$ shifts upwards (downwards) in comparison to the single-site case.

Buyer: single site vs multi-site

Proposition
If
$\operatorname{Cov}\left[U_{j}\left(\alpha_{j, T, s^{\prime}} W_{T, s^{\prime}}\right), U_{j}\left\{\left(W_{T, s} \alpha_{j, T, s}\right)_{s \in \mathcal{S}_{j} \backslash\left\{s^{\prime}\right\}}\right\}\right] \geq(\leq)$
$\underline{\operatorname{Cov}\left\{U_{j}\left(I_{j}\right), U_{j}\left(\alpha_{j, T, s^{\prime}} W_{T, s^{\prime}}\right)\right\} \operatorname{Cov}\left[U_{j}\left(I_{j}\right), U_{j}\left\{\left(W_{T, s} \alpha_{j, T, s}\right)_{s \in \mathcal{S}_{j} \backslash\left\{s^{\prime}\right\}}\right\}\right]}$
$\mathrm{E}\left\{U_{j}\left(I_{j}\right)\right\}^{2}$
$-\frac{\mathrm{E}\left[\bar{U}_{j}\left(I_{j}\right) \bar{U}_{j}\left(\alpha_{j, T, s^{\prime}} W_{T, s^{\prime}}\right) \bar{U}_{j}\left\{\left(W_{T, s} \alpha_{j, T, s}\right)_{s \in \mathcal{S}_{j} \backslash\left\{s^{\prime}\right\}}\right\}\right]}{\mathrm{E}\left\{U_{j}\left(I_{j}\right)\right\}}$
then for $a_{j}>0, j \in J$ and given $\left(\alpha_{j, T, s}\right)_{s \in \mathcal{S}_{j} \backslash\left\{s^{\prime}\right\}}$ of the same sign buyers demand for WD in s^{\prime} shifts downwards (upwards) compared to the single-site case.

```
> continue to 5.2
```

Pricing Chinese Rain

Single site vs multi-site

\square investor: $+(-)$ dependencies in underlying weather risks \rightarrow $\downarrow(\uparrow)$ supply due to higher (lower) risks she bears.
\square buyer: $\uparrow \downarrow$ demand depending on the sign of (1). This condition can be checked for a concrete application.

Market Clearance

$$
\sum_{j \in \mathcal{J}} \alpha_{j, t, s}^{*}=\alpha_{m, t, s}^{*}, \quad \text { for } \quad 0 \leq t \leq T
$$

equilibrium prices $\left(W_{t, s}^{*}\right)_{s \in \mathcal{S}}^{t=1, \ldots, T}$ equilibrium quantities $\left(\alpha_{k, t, s}^{*}\right)_{s \in \mathcal{S}}^{t=1, \ldots, T}$ with $k=\{j, m\}$ which clear the market for set of
 buyers $j \in \mathcal{J}$, and set of stations $s \in \mathcal{S}$.

A multi-site rainfall model

Wilks (1998)
Rainfall amount $R_{s^{\prime}, t}$ at time t in station s^{\prime} :

$$
\begin{equation*}
R_{s^{\prime}, t}=r_{s^{\prime}, t} X_{s^{\prime}, t}, \tag{2}
\end{equation*}
$$

where
$\square X_{s^{\prime}, t}$ rainfall occurrence at t in s^{\prime}

$$
X_{t}=\left\{\begin{array}{l}
1\left(\text { wet }, \geq X_{\min }\right) \\
0\left(\text { dry },<X_{\min }\right)
\end{array}\right.
$$

$\square r_{s^{\prime}, t}$ is positive rainfall amount.

Spatial dependence of $\left\{X_{s, t}\right\}_{s \in \mathcal{S}, t=1, \ldots, T}$

Threshold probability

$$
p_{c r i t, s^{\prime}, t}=\left\{\begin{array}{ll}
p_{01, s^{\prime}, t} & \text { if } X_{s^{\prime}, t-1}=0, \\
p_{11, s^{\prime}, t} & \text { if } X_{s^{\prime}, t-1}=1,
\end{array},\right.
$$

where

$$
\begin{aligned}
& p_{01, s^{\prime}, t}=P\left(X_{s^{\prime}, t}=1 \mid X_{s^{\prime}, t-1}=0\right) \\
& p_{11, s^{\prime}, t}=P\left(X_{s^{\prime}, t}=1 \mid X_{s^{\prime}, t-1}=1\right)
\end{aligned}
$$

Spatial dependence of $\left\{X_{s, t}\right\}_{s \in \mathcal{S}, t=1, \ldots, T}$

$X_{s^{\prime}, t}$ generated as

$$
X_{s^{\prime}, t}=\left\{\begin{array}{l}
1 \text { if } w_{s^{\prime}, t} \leq \Phi^{-1}\left(p_{\text {crit }, s^{\prime}, t}\right) \\
0 \text { if } w_{s^{\prime}, t}>\Phi^{-1}\left(p_{\text {crit }, s^{\prime}, t}\right)
\end{array}\right.
$$

$\Phi(\cdot)$ cdf of standard normal distribution, $\left\{w_{s, t}\right\}_{s \in \mathcal{S}} \sim N\left(0_{|\mathcal{S}|}, \Sigma\right)$, with $\Sigma_{s, s^{\prime}}=\operatorname{Corr}\left(w_{s, t}, w_{s^{\prime}, t}\right)$ such that the empirical correlations $\operatorname{Corr}\left(X_{s, t}, X_{s^{\prime}, t}\right)$ of the rainfall occurrences are mimicked in the generated rainfall occurrence series.

```
> continue to 3.8
```


Spatial dependence of $\left\{r_{s, t}\right\}_{s \in \mathcal{S}, t=1, \ldots, T}$

Rainfall amount generated as

$$
\begin{equation*}
r_{s, t}=r_{\min }-\beta_{s, t} \log \Phi\left(v_{s, t}\right) \tag{3}
\end{equation*}
$$

where

$$
\beta_{s, t}= \begin{cases}\beta_{1, s, t} & \text { if } \Phi\left(w_{s, t}\right) / p_{s, c r i t} \leq \alpha_{s, t}, \tag{4}\\ \beta_{2, s, t} & \text { if } \Phi\left(w_{s, t}\right) / p_{s, c r i t}>\alpha_{s, t}\end{cases}
$$

and $v_{s, t}$ are normal covariates correlated such that the generated rainfall time series mimic the empirical correlation in the rainfall data.

Stations

> continue to simulation
Pricing Chinese Rain

Empirical rainfall I

Test the order of Markov chain using BIC (Katz, 1983):

Order/BIC	Changde	Enshi	Yichang
0	70.83	60.02	19.86
1	53.21	43.21	4.531
2	53.47	44.69	9.032
3	65.64	59.72	33.38

Table 1: BIC criterion for different orders of Markov models for rainfall occurrences.

Empirical rainfall II

Parameter	Changde	Enshi	Yichang
$\hat{p}_{01, \cdot, t \in \text { May }}$	0.38	0.27	0.17
$\hat{p}_{11, \cdot, t \in \text { May }}$	0.60	0.53	0.65

Table 2: Transitional probabilities to wet states for rainfall occurrences in May.

Empirical rainfall III

The estimated correlations of wet day occurrences in May ("wet" is $>0.1 \mathrm{~mm}$ precipitation) $\widehat{\operatorname{Corr}}\left(X_{s, t}, X_{s^{\prime}, t}\right)$ (black) and $\operatorname{Corr}\left(w_{\cdot, t}, w_{s^{\prime}, t}\right)(\mathrm{red})$ what is $w_{s_{l}, t}$:

	Changde	Enshi	Yichang
Changde	-	0.420 .65	-0.010
Enshi	-	-	-0.040
Yichang	-	-	-

Table 3: Parameters for the generation of the rainfall occurrences in May.

Empirical rainfall IV

The multi-site rainfall amount $r_{s, t} \mid X_{s, t}=1$ follows a mixture of two exponential distributions with mixing parameter $\alpha_{s, t}$ and means $\beta_{1, s, t}, \beta_{2, s, t}$ with pdf $f_{t}\left(r_{s, t}=r \mid X_{s, t}=1, \beta_{1, s, t}, \beta_{2, s, t}, \alpha_{s, t}\right)=\alpha_{s, t} / \beta_{1, s, t} \exp \left(-r / \beta_{1, s, t}\right)$ $+\left(1-\alpha_{s, t}\right) / \beta_{2, s, t} \exp \left(-r / \beta_{2, s, t}\right)$

Parameter	Changde	Enshi	Yichang
$\alpha_{\cdot, t \in \text { May }}$	0.73	0.60	0.67
$\beta_{1,,, t \in \text { May }}$	16.02	13.84	8.99
$\beta_{2,,, t \in \text { May }}$	0.73	0.85	0.90

Table 4: Estimated parameters of the mixture of exponential distributions.

Empirical rainfall V

The estimated rainfall amount correlations $\widehat{\operatorname{Corr}}\left(R_{s, t}, R_{s^{\prime}, t}\right)$ (black) and $\operatorname{Corr}\left(v_{\cdot, t}, v_{s^{\prime}, t}\right)(\mathrm{red})$ what is $v_{s^{\prime}, t}$:

	Changde	Enshi	Yichang
Changde	-	0.260 .31	-0.010
Enshi	-	-	-0.020
Yichang	-	-	-

Table 5: Parameters for the generation of the rainfall amounts in May.

Income-Rainfall Relationship

Indices: cumulative rainfall (RX) and wet day index (WX).
$\square R X_{\tau_{1}, \tau_{2}, s}=\sum_{t=\tau_{1}}^{\tau_{2}} R_{t s}$ total rainfall in $\left[\tau_{1}, \tau_{2}\right]$.

- important for planting and nutrition season
- positive correlation with crop volumes
\rightarrow price RX futures for May
$\boxtimes W X_{\tau_{1}, \tau_{2}, s}=\sum_{t=\tau_{1}}^{\tau_{2}} X_{t s}$ number of wet days over $\left[\tau_{1}, \tau_{2}\right]$
- important for harvesting, excess rainfall damage
- crop volume distribution is better if $W X_{\tau_{1}, \tau_{2}, s \in \mathcal{S}_{j}}<W X_{\text {crit }}$
\rightarrow price call options on WX futures for August with $W X_{\text {crit }}=5$ mm and $K=5$ days.

Income-Rainfall Relationship

$\square \mathrm{WX}: \forall j \in \mathcal{J} \subset$ go to simulation

$$
\iota_{j}=\left\{\begin{array}{l}
\mathcal{N}\left(\mu^{+}, \sigma^{+}\right), \text {if } \forall s W X_{\tau_{1}, \tau_{2}, s \in \mathcal{S}_{j}}<W X_{c r i t}, \\
\mathcal{N}\left(\mu^{0}, \sigma^{0}\right), \text { if } \exists s W X_{\tau_{1}, \tau_{2}, s \in \mathcal{S}_{j}}<W X_{c r i t}, \\
\mathcal{N}\left(\mu^{-}, \sigma^{-}\right), \text {otherwise },
\end{array}\right.
$$

$\square \mathrm{RX}$: insurers income $I_{j} \sim \mathcal{N}\left(\mu^{+}, \sigma^{+}\right) \forall j \in \mathcal{J}$

	Changde	Enshi	Yichang
I_{1}	$\rho_{11}=0.5$	$\rho_{12}=0.5$	$\rho_{13}=0.0$
I_{2}	$\rho_{21}=0.5$	$\rho_{22}=0.0$	$\rho_{23}=0.5$

Table 6: ρ-values used for simulation.
\checkmark set $\mu^{+}=500, \mu^{0}=100, \mu^{-}=50$ and $\sigma^{+}=\sigma^{0}=\sigma^{-}=100$.

Stylized Economy

$\square 2$ representative crop insurance companies, 1 representative investor
$\square 3$ traded stations in China
$\square r_{t}=r=5 \%$ p.a.,
\square profit $\Pi\left(W_{T}, P_{T}\right)$, with P_{T} constant.

Single Period: Investor's Supply and Insurers' Demand

Occurrences of wet days in Changde and Enshi are positive correlated
\rightarrow payoffs of WX calls are positive associated,
\rightarrow investor's supply $\downarrow \backsim$ show Prop. 1
In (1) show (1) evaluated for $0<\alpha_{j T s} \leq 100$ LHS $<$ RHS
\rightarrow buyer's demand \uparrow

Single Period: Investor's Supply and Insurers' Demand

Figure 2: Supply/demand for WX call on Changde, $K=5$. Pricing Chinese Rain

Single Period WX call trading: Prices

Figure 3: Prices of call options for different strikes K in a single-period WX call trading.

Two-Period vs Single Period RX future trading: Equilibrium Prices

Figure 4: Single period (dashed) and two-period (solid) equilibrium prices for RX futures in May.

Two-Period RX future trading: Insurers' Income

Figure 5: Income distribution of insurer 1 (left) and insurer 2 (right) at single and multiple sites two-period RX futures trading. Note: improvement of insurer 2 is better since payoffs of her RX futures (Changde and Yichang) are uncorrelated, for insurer 1 (Changde and Enshi) they are positive correlated. Pricing Chinese Rain

Conclusion
 Summary

\square pricing of rainfall WD in a multi-site, multi-period setting
\square agents trade with multiple sites simultaneously
\square Insurer is better off with WD in terms of her utility

Literature

(R. Benitez, T. Kuosmanen, R. Olschewski and G.van Kooten Conservation payments under risk: a stochastic dominance approach
American Journal of Agricultural Economics 88(1): 1-15, 2006.
围 D. Cox and V. Isham
A simple spatial-temporal model of rainfall
Proceedings of the Royal Society of London 415(1849): 317-328, 1988.
Q H. Föllmer, A. Schied
Stochastic Finance de Gruyter, Berlin, 2002

Pricing Chinese Rain

Literature

國 R．W．Katz
An application of chain－dependent processes to meteorology Journal of Applied Probability 14（3）：598－603， 1977.

T．Kim，H．Ahn，G．Chung and C．Yoo
Stochastic multi－site generation of daily rainfall occurrence in south Florida
Stochastic Environmental Research and Risk Assessment 22： 705－717， 2008.
雷 Y．Lee and S．Oren
A multi－period equilibrium pricing model of weather derivatives Energy Syst 1：3－30， 2010.

Pricing Chinese Rain

Literature

䍰 M．Odening，O．Mußhoff，W．Xu
Analysis of rainfall derivatives using daily precipitation models： opportunities and pitfalls
Journal of Agricultural and Resource Economics 29（3）： 387－403， 2004.
圊 F．Perez－Gonzalez and H．Yun
Risk management and firm value：evidence from weather derivatives
AFA 2010 Atlanta Meetings Paper， 2010.
围 R．Stern and R．Coe
A model fitting analysis of rainfall data Jour．Roy．Stat．Soc．147：1－34， 1984.

Literature

D. D. Wilks

Multisite generalization of a daily stochastic precipitation generation model
Journal of Hydrology 210: 178-191, 1998.
囯 D. Vedenov and B. Barnett
Efficiency of weather derivatives as primary crop insurance instruments
Agricultural Finance Review 67 (1): 135-156, 2007.

Pricing Chinese Rain

a Multi-Site, Multi-Period Equilibrium Model

Wolfgang Karl Härdle
Maria Osipenko
Ladislaus von Bortkiewicz

Chair of Statistics
C.A.S.E. Centre for Applied Statistics and Economics
School of Business and Economics and Faculty of Agriculture and Horticulture
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de

