Fitting copula to Data

Ostap Okhrin

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

Outline

- 1. Motivation \checkmark
- 2. Hierarchical Archimedean copulae
- 3. Recovering the Structure
- 4. GoF
- 5. Bibliography

Gaussian Copula

$$C_{\delta}^{G}(u_{1}, u_{2}) = \Phi_{\delta} \{ \Phi^{-1}(u_{1}), \Phi^{-1}(u_{2}) \}$$

=
$$\int_{-\infty}^{\Phi^{-1}(u_{1})} \int_{-\infty}^{\Phi^{-1}(u_{2})} \frac{1}{2\pi\sqrt{1-\delta^{2}}} \exp \left\{ \frac{-(s^{2}-2\delta st+t^{2})}{2(1-\delta^{2})} \right\} ds dt,$$

- 🖸 Gaussian copula contains the dependence structure
- normal marginal distribution + Gaussian copula = multivariate normal distributions
- non-normal marginal distribution + Gaussian copula = meta-Gaussian distributions
- allows to generate joint symmetric dependence, but no tail dependence

0 - 3

Archimedean Copula

Multivariate Archimedean copula $C : [0,1]^d \rightarrow [0,1]$ defined as

$$C(u_1,\ldots,u_d) = \phi\{\phi^{-1}(u_1) + \cdots + \phi^{-1}(u_d)\},$$
 (1)

where $\phi: [0,\infty) \to [0,1]$ is continuous and strictly decreasing with $\phi(0) = 1$, $\phi(\infty) = 0$ and ϕ^{-1} its pseudo-inverse.

Example

 $\begin{array}{lll} \phi_{\textit{Gumbel}}(u,\theta) &=& \exp\{-u^{1/\theta}\}, \text{ where } 1 \leq \theta < \infty \\ \phi_{\textit{Clayton}}(u,\theta) &=& (\theta u + 1)^{-1/\theta}, \text{ where } \theta \in [-1,\infty) \backslash \{0\} \end{array}$

Disadvantages: too restrictive, single parameter, exchangeable

HAC Properties

- 1-1

Hierarchical Archimedean Copulae

Simple AC with s=(1234) $C(u_1, u_2, u_3, u_4) = C_1(u_1, u_2, u_3, u_4)$

AC with s=((123)4) $C(u_1, u_2, u_3, u_4) = C_1 \{C_2(u_1, u_2, u_3), u_4\}$ x₁ x₂ x₃ x₄

Fully nested AC with s=(((12)3)4) $C(u_1, u_2, u_3, u_4) = C_1[C_2\{C_3(u_1, u_2), u_3\}, u_4]$

Partially Nested AC with s=((12)(34)) $C(u_1, u_2, u_3, u_4) = C_1\{C_2(u_1, u_2), C_3(u_3, u_4)\}$

Theoretical motivation

Let *M* be the cdf of a positive random variable and ϕ denotes its Laplace transform, i.e. $\phi(t) = \int_0^\infty e^{-tw} dM(w)$. For an arbitrary cdf *F* there exists a unique cdf *G*, such that

$$F(x) = \int_0^\infty G^\alpha(x) dM(\alpha) = \phi\{-\ln G(x)\}.$$

Now consider a k-variate cumulative distribution function F with margins F_1, \ldots, F_d . Then it holds for $G_j = \exp\{-\phi^{-1}(F_j)\}$ that

$$\int_{0}^{\infty} G_{1}^{\alpha}(x_{1}) \cdots G_{d}^{\alpha}(x_{d}) dM(\alpha) = \phi \left\{ -\sum_{i=1}^{d} \ln G_{i}(x_{i}) \right\} = \phi \left[\sum_{i=1}^{d} \phi^{-1} \{F_{i}(x_{i})\} \right].$$

$$C(u_{1}, \dots, u_{d}) = \int_{0}^{\infty} \dots \int_{0}^{\infty} G_{1}^{\alpha_{1}}(u_{1}) G_{2}^{\alpha_{1}}(u_{2}) dM_{1}(\alpha_{1}, \alpha_{2}) \ G_{3}^{\alpha_{2}}(u_{3}) dM_{2}(\alpha_{2}, \alpha_{3}) \dots \ G_{d}^{\alpha_{d-1}}(u_{d}) dM_{d-1}(\alpha_{d-1}).$$
HAC Properties

6

Recovering the structure (theory)

To guarantee that C is a HAC we assume that $\phi_{d-i}^{-1}\circ\phi_{d-j}\in\mathcal{L}^*$, i< j with

 $\mathcal{L}^* = \{ \omega : [0,\infty) \to [0,\infty) \, | \, \omega(0) = 0, \, \omega(\infty) = \infty, \, (-1)^{j-1} \omega^{(j)} \ge 0, \, j \ge 1 \}.$

■ for most of the generator functions the parameters should decrease from the lowest level to the highest

Theorem

Let F be an arbitrary multivariate distribution function based on HAC. Then F can be uniquely recovered from the marginal distribution functions and all bivariate copula functions.

HAC Properties

Estimation Issues

$$F_j(x; \widehat{\alpha}_j) = F_j(x; \arg \max_{\alpha} \sum_{i=1}^n \log f_j(X_{ji}, \alpha)),$$

$$\widehat{F}_j(x) = \frac{1}{n+1} \sum_{i=1}^n I(X_{ji} \le x),$$

$$\widetilde{F}_j(x) = \frac{1}{n+1} \sum_{i=1}^n K\left(\frac{x - X_{ji}}{h}\right)$$

for $j = 1, \ldots, k$, where $\varkappa : \mathbb{R} \to \mathbb{R}$, $\int \varkappa = 1$, $K(x) = \int_{-\infty}^{x} \varkappa(t) dt$ and h > 0 is the bandwidth.

$$\check{F}_j(x) = \{\widehat{F}_j(x), \widetilde{F}_j(x), F_j(x; \widehat{\alpha}_j)\}$$

F

HAC Properties -

Estimation Issues

$$\left(\frac{\partial \mathcal{L}_1}{\partial \boldsymbol{\theta}_1^{\top}}, \dots, \frac{\partial \mathcal{L}_p}{\partial \boldsymbol{\theta}_p^{\top}}\right)^{\top} = \mathbf{0},$$

where
$$\mathcal{L}_j = \sum_{i=1}^n l_j(\mathbf{X}_i)$$

 $l_j(\mathbf{X}_i) = \log \left[c(\{\phi_\ell, \boldsymbol{\theta}_\ell\}_{\ell=1,...,j}; s_j)(\{\check{F}_m(x_{mi})\}_{m\in s_j}) \right]$
for $j = 1, ..., p$.

HAC Properties -----

Estimation Issues

Nonparametric Estimation

$$\widehat{C}(u_1,\ldots,u_d) = \frac{1}{n} \sum_{i=1}^n \prod_{j=1}^d I\{\breve{F}_j(X_{ji}) \le u_j\}$$
$$\widetilde{C}(u_1,\ldots,u_d) = \frac{1}{n} \sum_{i=1}^n \prod_{j=1}^d K_j \left\{ \frac{u_j - \breve{F}_j(X_{ji})}{h_j} \right\}$$

where $\breve{F}_j(x) = \{\widehat{F}_j(x), \ \widetilde{F}_j(x), \ F_j(x, \widehat{\alpha}), \ F_j(x)\}$

HAC Properties -

K-distribution

Let $V = C\{F_1(X_1), \ldots, F_d(X_d)\}$ and let K(t) denote the distribution function (K-distribution) of the random variable V.

We consider a HAC of the form $C_1\{u_1, C_2(u_2, \ldots, u_d)\}$. Let $U_i \sim U[0, 1]$ and let $V_2 = C_2(U_2, \ldots, U_d) \sim K_2$.

Theorem

Let $U_1 \sim U[0,1]$, $V_2 \sim K_2$ and let $P(U_1 \leq x, V_2 \leq y) = C_1\{x, K_2(y)\}$ with $C_1(a, b) = \phi \{\phi^{-1}(a) + \phi^{-1}(b)\}$ for $a, b \in [0,1]$. Under certain regularity conditions the distribution function K_1 of the random variable $V_1 = C_1(U_1, V_2)$ is given by

$$\begin{split} \mathcal{K}_1(t) &= t - \int_0^{\phi^{-1}(t)} \phi' \big\{ \phi^{-1}(t) + \phi^{-1} \circ \mathcal{K}_2 \circ \phi(u) - u \big\} du \\ & \text{for} \quad t \in [0,1]. \end{split}$$

HAC Properties

Gumbel copula

$$egin{array}{rcl} \phi_{ heta}(t) &=& \exp(-t^{1/ heta}), \ \phi_{ heta}^{-1}(t) &=& \{-\log(t)\}^{ heta}, \ \phi_{ heta}'(t) &=& -rac{1}{ heta}\exp(-t^{1/ heta})t^{-1+1/ heta}. \end{array}$$

Following Genest and Rivest (1993), K for the simple 2-dim Archimedean copula with generator ϕ is given by $K(t) = t - \phi^{-1}(t)\phi'\{\phi^{-1}(t)\}$. Thus

$$K_2(t, heta) = t - rac{t}{ heta}\log(t)$$

Recovering the Structure

Figure 1: K distribution for three-dimensional HAC with Gumbel generators

2-7

Goodness-of-Fit Tests

 $H_0: C \in \mathcal{C}_0$, against $H_1: C \notin \mathcal{C}_0$, where $C_0 = \{C_{\theta} : \theta \in \Theta\}$ is a known parametric family of copulae.

$$S = n \int_{[0,1]^d} \{\widehat{C}(u_1, \dots, u_d) - C(u_1, \dots, u_d, \widehat{\theta})\}^2 d\widehat{C}(u_1, \dots, u_d),$$

$$T = \sup_{u_1, \dots, u_d \in [0,1]} \sqrt{n} |\widehat{C}(u_1, \dots, u_d) - C(u_1, \dots, u_d, \widehat{\theta})|,$$

$$S_K = n \int_0^1 \{\widehat{K}(v) - K(v, \theta)\}^2 dv,$$

$$T_K = \sup_{v \in [0,1]} |\widehat{K}(v) - K(v, \theta)|.$$
where $\widehat{K}(v) = \frac{1}{n} \sum_{i=1}^n I\{V_i \le v\}.$
HAC Properties

6

Simulation Study

- 1. F : two methods of estimation of margins (parametric and nonparametric);
- 2. C_0 : hypothesised copula models under H_0 (three models);
- 3. C : copula model from which the data were generated (three models with 3, 3 and 15 levels of dependence respectively);
- 4. n: size of each sample drawn from C (two possibilities, n = 50 and n = 150).

 $\rightsquigarrow 2 \times 3 \times (3 + 3 + 15) \times 2 = 252$ models with 100 repetitions

HAC Properties

Figure 2: Levels of goodness-of-fit tests for different sample size, for parametric margins.

				10					
				AC					
			<i>n</i> =	50			<i>n</i> =	150	
θ		Т		S		Т		S	
		emp.	par.	emp.	par.	emp.	par.	emp.	par.
	HAC	0.88	0.51	0.83	0.38	0.93	0.36	0.90	0.35
$\theta(0.25)$	AC	0.88	0.51	0.89	0.50	0.95	0.32	0.90	0.34
	Gauss	0.71	0.29	0.56	0.22	0.69	0.11	0.43	0.08
	HAC	0.90	0.38	0.94	0.30	0.87	0.35	0.88	0.27
$\theta(0.5)$	AC	0.96	0.55	0.95	0.45	0.90	0.45	0.92	0.35
	Gauss	0.76	0.30	0.65	0.19	0.47	0.13	0.31	0.02
	HAC	0.93	0.29	0.93	0.15	0.89	0.27	0.89	0.10
$\theta(0.75)$	AC	0.93	0.29	0.93	0.22	0.90	0.25	0.91	0.13
	G au ss	0.77	0.19	0.65	0.10	0.57	0.11	0.24	0.05

Table 1: Non-rejection rate of the different models, where the sample is drawn from the simple AC

				HAC					
			n =	50			<i>n</i> =	150	
θ		Т		S		Т		S	
		emp.	par.	emp.	par.	emp.	par.	emp.	par.
	HAC	0.88	0.29	0.90	0.24	0.96	0.31	0.92	0.26
$\theta(0.25, 0.5)$	AC	0.91	0.26	0.93	0.36	0.54	0.13	0.53	0.07
	Gauss	0.82	0.20	0.69	0.19	0.57	0.14	0.37	0.04
	HAC	0.93	0.21	0.92	0.13	0.88	0.18	0.88	0.09
$\theta(0.25, 0.75)$	AC	0.46	0.14	0.54	0.07	0.00	0.00	0.00	0.00
	Gauss	0.84	0.19	0.71	0.13	0.52	0.10	0.42	0.01
	HAC	0.86	0.31	0.87	0.18	0.91	0.20	0.94	0.08
$\theta(0.5, 0.75)$	AC	0.89	0.36	0.92	0.28	0.44	0.04	0.47	0.02
	G au ss	0.70	0.19	0.55	0.12	0.50	0.11	0.30	0.05

Table 2: Non-rejection rate of the different models, where the sample is drawn from the $\ensuremath{\mathsf{HAC}}$

				Gauss					
			<i>n</i> =	50			<i>n</i> =	150	
Σ		Т		S		Т		S	
		emp.	par.	emp.	par.	emp.	par.	emp.	par.
	HAC	0.89	0.20	0.93	0.11	0.78	0.08	0.81	0.02
$\Sigma(0.25, 0.25, 0.75)$	AC	0.43	0.13	0.47	0.09	0.00	0.00	0.00	0.00
	Gauss	0.88	0.22	0.89	0.12	0.87	0.11	0.86	0.03
	HAC	0.92	0.20	0.91	0.14	0.76	0.07	0.69	0.04
$\Sigma(0.25, 0.75, 0.25)$	AC	0.39	0.12	0.39	0.04	0.00	0.00	0.00	0.00
	Gauss	0.90	0.18	0.87	0.13	0.92	0.12	0.94	0.10
Σ(0.75, 0.25, 0.25)	HAC	0.89	0.30	0.93	0.16	0.78	0.10	0.75	0.04
	AC	0.51	0.16	0.46	0.07	0.00	0.00	0.00	0.00
	G au ss	0.91	0.28	0.90	0.17	0.88	0.13	0.86	0.06

Table 3: Non-rejection rate of the different models, where the sample is drawn from the Gaussian copula

Data and Copula

🖸 daily returns of Bank of America, Citigroup, Santander

: timespan = [29.09.2000 - 16.02.2001] (n = 100)

 ARMA(1,1)-GARCH(1,1)-residuals are conditionally distributed with estimated copula

$$\begin{aligned} R_{tj} &= \mu_j + \gamma_j R_{t-1,j} + \zeta_j \sigma_{t-1,j} \varepsilon_{t-1,j} + \sigma_{tj} \varepsilon_{tj}, \\ \sigma_{tj}^2 &= \omega_j + \alpha_j \sigma_{t-1,j}^2 + \beta_j \sigma_{t-1,j}^2 \varepsilon_{t-1,j}^2 \\ \varepsilon &\sim C\{F_1(x_1), \dots, F_d(x_d); \theta_t\} \end{aligned}$$

where F_1, \ldots, F_d are marginal distributions and θ_t are the copula parameters and $\omega > 0$, $\alpha_j \ge 0$, $\beta_j \ge 0$, $\alpha_j + \beta_j < 1$, $|\zeta| < 1$.

HAC Properties

Figure 3: Stock prices for Bank of America, Citigroup and Santander (from top to bottom).

HAC Properties

2-15

	$\widehat{\mu}_j$	$\widehat{\gamma}_j$	$\widehat{\zeta}_{j}$	$\widehat{\omega}_j$	$\widehat{\alpha}_j$	$\widehat{\beta}_{j}$
Bank of America	1.87e-3	0.22	-0.23	3.46e-4	0.55	0.17
(0.57, 0.83)	(2.59e-3)	(0.64)	(0.65)	(1.37e-04)	(0.28)	(0.16)
Citigroup	0.11e-3	0.31	-0.46	2.67e-4	0.09	0.47
(0.57, 0.79)	(1.48e-3)	(0.29)	(0.29)	(5.53e-04)	(0.17)	(1.01)
Santander	1.35e-3	0.43	-0.56	4.51e-10	0.01	0.98
(0.91, 0.78)	(0.91e-3)	(0.15)	(0.17)	(1.38e-05)	(0.02)	(0.05)

Table 4: Fitting of univariate ARMA(1,1)-GARCH(1,1) to asset returns. The standard deviation of the parameters, which are quiet big because of the small sample size, are given in parentheses. Each second row provides the *p*-values of the Box-Ljung test (BL) for autocorrelations and Kolmogorov-Smirnov test (KS) for testing of normality of the residuals.

Figure 4: Scatterplots from ARMA-GARCH residuals (upper triangular) and from residuals mapped on unit square by the cdf (lower triangular).

2-17

	T ₁₀₀	S ₁₀₀	estimates
HAC	0.3191	0.1237	$C\{C(u_1, u_2; 1.996), u_3; 1.256\}$
AC	0.0012	0.0002	$C(u_1, u_2, u_3; 1.276)$
Gauss	0.0160	0.0078	C_N { u_1, u_2, u_3 ; Σ (0.697, 0.215, 0.312)}

Table 5: p-values of both GoFs and estimates of the models under different H_0 hypotheses.

Recovering the Structure -

The value V_t of the portfolio $w = \{w_1, \ldots, w_d\}, w_i \in \mathbb{Z}$ is given by

$$V_t = \sum_{j=1}^d w_j X_{tj} \tag{2}$$

2 - 19

and the profit and loss (P&L) function of the portfolio

$$L_{t+1} = (V_{t+1} - V_t) = \sum_{j=1}^d w_j X_{tj} \{ \exp(R_{t+1,j}) - 1 \}$$
(3)

The distribution function of L is given by

$$F_L(x) = P(L \le x). \tag{4}$$

As usual the Value-at-Risk at level α from a portfolio w:

$$VaR(\alpha) = F_L^{-1}(\alpha).$$
(5)

HAC Properties -

Figure 5: Profit and loss function and VaR based on different models.

α	$\widehat{\alpha}_{HAC}$	$\widehat{\alpha}_{AC}$	$\widehat{lpha}_{\textit{Gauss}}$
0.10	0.091	0.122	0.081
0.05	0.040	0.061	0.031
0.01	0.000	0.010	0.000

Table 6: Backtesting for the estimation of VaR under different alternatives.

A. Charpentier, J. Segers, Tails of multivariate Archimedean copulae, Journal of Multivariate Analysis 100 (2009) 1521-1537.
P. Barbe, C. Genest, K. Ghoudi, B. Rémillard, <i>On Kendall's Process,</i> <i>Jurnal of Multivariate Analysis</i> 58 (1996) 197-229.
A. Sklar, Fonctions dé Repartition á n Dimension et Leurs Marges, Publ. Inst. Stat. Univ. Paris 8 (1959) 299-231

H. Joe,

Multivariate Models and Concept Dependence Chapman & Hall, 1997

HAC Properties -

Bibliography ·

O. Okhrin, Y. Okhrin, W. Schmid Properties of Hierarchical Archimedean Copulas, submitted for publication.
O. Okhrin, Y. Okhrin, W. Schmid On the Structure and Estimation of Hierarchical Archimedean Copulas, under revision in Journal of Econometrics.
M. Odening, O. Okhrin, W. Xu <i>Systemic Nature of Weather Risk</i> , to appear in <i>Agricultural Finance Review</i> .
B. Choroś, W. Härdle, O. Okhrin HAC and CDO, submitted for publication.
W. Härdle, O. Okhrin, Y. Okhrin <i>Time Varying HAC,</i> <i>submitted for publication.</i>
W. Härdle, O. Okhrin De copulis non est disputandum,

HAC Properties - AStA: 94(1), 2010, pp. 1-31

