Realized Copula

Matthias R. Fengler
Ostap Okhrin

Ladislaus von Bortkiewicz
Chair of Statistics
C.A.S.E. - Center for Applied Statistics and Economics

Humboldt-Universität zu Berlin
Chair of Financial Econometrics Universität St. Gallen

Realized Variance of Google-IBM-Oracle

Trades

Figure 1: Realized kernel (variance) of Google-IBM-Oracle.

RV: Exploiting intra-day information

Literature of the past 10 yrs on high-frequency data shows:
\square daily realized (co)variance (RV, RCov) computed from intra-day data serves as an accurate measures of conditional (co)variance of daily returns;
\square no specific model is needed (like GARCH);
\square can treat an inherently latent variable like an observed one;
\square shows excellent forecasting performance.
Heavily discussed in derivatives pricing, portfolio optimization, risk-management, and volatility forecasting.

Dependency

1. 19.10 .1987

Black Monday
2. 16.10 .1989

Berlin Wall
3. 19.08. 1991

Kremlin
4. 17.03.2008, 19.09.2008, 10.10.2008, .10.2008, 15.10.2008, 29.10.2008

Crisis

Copulae

Copulae is a convenient tool to capture nonlinear dependence.

Motivation
 Copulae

Copulae is a convenient tool to capture nonlinear dependence. Multivariate RCov models have an underlying Gaussian structure.

Copulae

Copulae is a convenient tool to capture nonlinear dependence. Multivariate RCov models have an underlying Gaussian structure.

How can we suitably combine intra-day RCov information into a non-Gaussian model framework?

Copulae

Copulae is a convenient tool to capture nonlinear dependence. Multivariate RCov models have an underlying Gaussian structure.

How can we suitably combine intra-day RCov information into a non-Gaussian model framework?

realized copula (RCop)

Outline

1. Motivation \checkmark
2. Copula and realized copula
3. Benchmark models
4. Empirical Part
5. References

Copulae

A copula is a multivariate distribution with all univariate margins being $U(0,1)$.

Theorem (Sklar, 1959)

Let X_{1}, \ldots, X_{d} be random variables with marginal distribution functions F_{1}, \ldots, F_{d} and joint distribution function F. Then there exists a d-dimensional copula $C:[0,1]^{d} \rightarrow[0,1]$ such that $\forall x_{1}, \ldots, x_{d} \in \overline{\mathbb{R}}=[-\infty, \infty]$

$$
F\left(x_{1}, \ldots, x_{d}\right)=C\left\{F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right\}
$$

Motivation

Archimedean copula $C:[0,1]^{d} \rightarrow[0,1]$ defined as

$$
\begin{equation*}
C\left(u_{1}, \ldots, u_{d}\right)=\phi\left\{\phi^{-1}\left(u_{1}\right)+\cdots+\phi^{-1}\left(u_{d}\right)\right\}, \tag{1}
\end{equation*}
$$

where $\phi:[0, \infty) \rightarrow[0,1]$ is strictly decreasing with $\phi(0)=1$, $\phi(\infty)=0$ and ϕ^{-1} its (pseudo)inverse.

Example

$$
\begin{aligned}
\phi_{\text {Gumbel }}(u, \theta) & =\exp \left\{-u^{1 / \theta}\right\}, \text { where } 1 \leq \theta<\infty \\
\phi_{\text {Clayton }}(u, \theta) & =(\theta u+1)^{-1 / \theta}, \text { where } \theta \in[-1, \infty) \backslash\{0\}
\end{aligned}
$$

Rotated copula as an example of a non-Archimedean copula:

$$
C_{\text {rot }}\left(u_{1}, u_{2}\right)=C\left(1-u_{1}, 1-u_{2}\right)+u_{1}+u_{2}-1
$$

which in term of copula density is given through $c_{\text {rot }}\left(u_{1}, \ldots, u_{d}\right)=c\left(1-u_{1}, \ldots, 1-u_{d}\right)$

Realized Copula, I

Lemma (Hoeffding)

Suppose there are two random variables X_{i} and X_{j} with marginal distributions F_{i} and F_{j} and joint distribution $F_{i j}$ and finite second moments

$$
\begin{aligned}
\sigma_{i j}(\theta) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left\{F_{i, j}\left(x_{i}, x_{j}, \theta\right)-F_{i}\left(x_{i}\right) F_{j}\left(x_{j}\right)\right\} d x_{i} d x_{j} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[C_{\theta}\left\{F_{i}\left(x_{i}\right), F_{j}\left(x_{j}\right)\right\}-F_{i}\left(x_{i}\right) F_{j}\left(x_{j}\right)\right] d x_{i} d x_{j}
\end{aligned}
$$

Realized Copula, II

For the notion of realized copula, we define θ implicitly through

$$
\begin{aligned}
h_{i j, t} & =\mathrm{f}_{i j}\left(\theta_{t}\right) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[C_{\theta_{t}}\left\{F_{i, t}\left(x_{i}\right), F_{j, t}\left(x_{j}\right)\right\}-F_{i, t}\left(x_{i}\right) F_{j, t}\left(x_{j}\right)\right] d x_{i} d x_{j}
\end{aligned}
$$

where $h_{i j, t}$ denotes an element of the RCov matrix measured at day t.

This moment condition, together with the assumptions on the copula and the marginal distributions, identifies the ex-post daily distribution as materialized in RCov.

Method-of-moments estimator, I

Let $d=2$, with one off-diagonal element $h_{12, t}$ in the RCov. An estimate of θ_{t} is given by

$$
\widehat{\theta}_{t}^{\mathrm{MM}}=\mathrm{f}_{12}^{-1}\left(h_{12, t}\right)
$$

Similar to method-of-moments approaches where the copula parameter of an Archimedean copula is estimated from Kendall's tau (Genest and Rivest, 1993).

Method-of-moments estimator, II

For $d>2$, define

$$
\mathrm{g}_{i j}(\theta)=h_{i j, t}-\mathrm{f}_{i j}(\theta)
$$

where $i<j$ and $i, j=1, \ldots, d$.
Stacking all $g_{i j}$ into a vector g of size $d(d-1) / 2$, we define the estimator as

$$
\widehat{\theta}_{t}^{\mathrm{MM}}=\arg \min _{\theta} \mathbf{g}^{\top}(\theta) \Omega \mathbf{g}(\theta)
$$

with Ω denoting a $d(d-1) / 2$-dimensional pd weight matrix. A conventional choice would be the unit matrix $\mathbf{I}_{d(d-1) / 2}$.

Ad hoc estimator

Under Gaussianity, Kendall's τ is $\tau_{i j, t}^{G}=\frac{2}{\pi} \arcsin \rho_{i j, t}$, and generally, for general Archimedean copulae (Genest and Rivest, 1993):

$$
\tau \equiv \mathrm{f}_{\tau}(\theta)=4 \int_{0}^{1} \phi_{\theta}^{-1}(v) /\left(\phi_{\theta}^{-1}\right)^{\prime}(v) d v+1
$$

family	ϕ_{θ}	f_{τ}
Gumbel	$\exp \left\{-x^{1 / \theta}\right\}$	$1-1 / \theta$
Clayton	$(\theta x+1)^{-\mathbf{1} / \theta}$	$\theta /(2+\theta)$

We define an ad-hoc estimator by

$$
\widehat{\theta}_{t}^{\text {ad hoc }}=\frac{2}{d(d-1)} \sum_{i<j} \mathrm{f}_{\tau}^{-1}\left(\widehat{\tau}_{i j, t}^{G}\right)
$$

Figure 2: ${ }^{\circ}$ Gumbel Copula, $\theta-\widehat{\theta}$ as function in θ. Top to bottom: 2dim, 3dim. $n=1000, N=1000$. Shaded area is the simulation based 95% interval.

Forecasting framework for RCop

Let $P_{t}=\left(P_{1 t}, \ldots, P_{d t}\right)^{\top}$ and $r_{t}=P_{t}-P_{t-1}, t=1, \ldots, T$ be daily log-prices and their log-returns with

$$
r_{t+1} \sim F_{r_{t+1} \mid \mathcal{F}_{t}}\left(\widehat{H}_{t+1 \mid t}\right)
$$

where $\widehat{H}_{t+1 \mid t}$ is an \mathcal{F}_{t}-measurable forecast of the RC matrix of r_{t} and

$$
F_{r_{t+1} \mid \mathcal{F}_{t}}\left(\widehat{H}_{t+1 \mid t}\right)=C_{\widehat{\theta}_{t+1 \mid t}}\left\{F_{1, t}\left(\widehat{h}_{1, t+1 \mid t}\right), \ldots, F_{d, t}\left(\widehat{h}_{d, t+1 \mid t}\right)\right\}
$$

As reported in Andersen et al. (2001) returns standardized by ex post RV are close to standard normal, we thus assume that

$$
F_{j, t}\left(\widehat{h}_{j, t+1 \mid t}\right)=\boldsymbol{N}\left(0, \widehat{h}_{j, t+1 \mid t}\right)
$$

Forecasting framework

Consider the following multivariate forecasting rule:

$$
\left(\begin{array}{c}
\log \widehat{h}_{1, t+1 \mid t} \\
\vdots \\
\log \widehat{h}_{d, t+1 \mid t} \\
\widehat{\theta}_{\boldsymbol{t}+1 \mid \boldsymbol{t}}
\end{array}\right)=\mathbb{E}_{t}\left(\begin{array}{c}
\log h_{1, t+1} \\
\vdots \\
\log h_{d, t+1} \\
\theta_{\boldsymbol{t}+1}
\end{array}\right)=\left(\begin{array}{c}
\beta_{0}^{1}+\beta_{\mathrm{D}}^{1} \log h_{t}^{\mathrm{D}}+\beta_{\mathrm{W}}^{1} \log h_{t}^{\mathrm{W}}+\beta_{\mathrm{M}}^{1} \log h_{t}^{\mathrm{M}} \\
\vdots \\
\beta_{0}^{d}+\beta_{\mathrm{D}}^{d} \log h_{t}^{\mathrm{D}}+\beta_{\mathrm{W}}^{d} \log h_{t}^{\mathrm{W}}+\beta_{\mathrm{M}}^{d} \log h_{t}^{\mathrm{M}} \\
\alpha_{0}+\alpha_{\mathrm{D}} \theta_{t}^{\mathrm{D}}+\alpha_{\mathrm{W}} \theta_{t}^{\mathrm{W}}+\alpha_{\mathrm{M}} \theta_{t}^{\mathrm{M}}
\end{array}\right),
$$

where $x_{t}^{\mathrm{D}}=x_{t}$ are daily, $x_{t}^{\mathrm{w}}=\frac{1}{5} \sum_{i=0}^{4} x_{t-i}$ weekly, and $x_{t}^{\mathrm{M}}=\frac{1}{21} \sum_{i=0}^{20} x_{t-i}$ monthly averages of past realizations of x_{t}.

Borrowed from the heterogenous autoregressive model (HAR) of Corsi (2009); extended here to the copula parameter.

Realized Copula

Empirical application

Compare one day ahead VaR forecasting performance of RCop against a number of standard benchmark models:
\square models based on daily data

- naive rolling window
- local adaptive estimation
\square models based on intra-day data (RV models)
- Logm-model
- Cholesky factorization

Rolling window and adaptive estimation

Naive approach:
\square estimate copula parameter on a fixed rolling window

LCP:
\square adaptively estimate largest interval where homogeneity hypothesis is accepted
\checkmark Local Change Point detection (LCP): sequentially test whether θ_{t} is constant (i.e. $\theta_{t}=\theta$) within some interval I (local parametric assumption).

Local Change Point Detection

1. define the family of nested intervals $I_{0} \subset I_{1} \subset I_{2} \subset \ldots \subset I_{K}=I_{K+1}$ with length m_{k} as

$$
I_{k}=\left[t_{0}-m_{k}, t_{0}\right]
$$

2. define $\mathfrak{T}_{k}=\left[t_{0}-m_{k}, t_{0}-m_{k-1}\right]$

- Go to details
I_{k+1}

Data used in this study

$\square d=3$
\square daily (Yahoo Finance) and tick trades (LOBSTER) prices for the two portfolios

- IBM, Google, Oracle;
- IBM, Pfizer, Exxon
\square timespan $=$ [02.01.2009 till 31.12.2010] ($n=470$ days) for tick data and $n=800$ days for daily data
\square cleaning high-frequency data as in BNHLS (2008): 9:45-16:00, one stock exchange, multiple quotes or trades with same time stamp, negative spread, etc.
\square Rotated Gumbel and Clayton copulae.

Basis

Let $Y=\left(Y_{1}, \ldots, Y_{d}\right)^{\top}$ be a d-dim efficient (log)price process

$$
d Y_{t}=\mu_{t} d t+\sigma_{t} d W_{t}
$$

The market microstructure effect is modeled through an additive component

$$
\begin{aligned}
P_{j t} & =Y_{j t}+U_{j t}, \text { with } \boldsymbol{E}\left(U_{j t}\right)=0 \\
\sum_{h}\left|h \Omega_{h}\right| & <\infty, \text { where } \Omega_{j h}=\operatorname{Cov}\left(U_{j t}, U_{j, t-h}\right)
\end{aligned}
$$

Usual aim: Estimate the quadratic variation of Y, i.e. $[Y]=\int_{0}^{1} \Sigma_{u} d u$, with $\Sigma=\sigma \sigma^{\top}$.

Naive Estimator (realized co/variance)

Synchronization - last traded: for time t, the log-price for asset j is given by $P_{j, t^{*}}$ with $t^{*}=\max \left\{t_{j, i} \mid t_{j, i} \leq t, \forall i=1, \ldots, N_{j}\right\}$. $M=M(m)$ number of subintervals of length m (in seconds)

$$
\begin{aligned}
\mathrm{RC}_{t_{1}, m_{, j 1}, j_{2}}(P) & =\sum_{i=1}^{M}\left(P_{j_{1}, t_{i}}-P_{j_{1}, t_{i-1}}\right)\left(P_{j_{2}, t_{i}}-P_{j_{2}, t_{i-1}}\right), \\
\mathrm{RC}_{t_{1}, m}(P) & =\left\{\mathrm{RC}_{m, j_{1}, j_{2}}\right\}_{j_{1}, j_{2}}, \text { for } j_{1}, j_{2}=1, \ldots, d
\end{aligned}
$$

Realized Kernels, BNHLS (2011, JoE)

Synchronization - refresh time sampling

Leads to new high-frequency vector of returns $p_{i}=P_{\tau_{i}}-P_{\tau_{i-1}}$, where $i=1, \ldots, n$ and n is the of refresh time observations.

Realized Variance of Google-IBM-Oracle

Trades

Figure 3: Realized kernel (variance) of Google-IBM-Oracle.

Realized Covariance of Google-IBM-Oracle

Trades

Figure 4: Realized Kernel (covariance) of Google-IBM-Oracle.

Realized Correlation of Google-IBM-Oracle

Realized Correlations

Figure 5: Realized Kernel (correlation) of Google-IBM-Oracle.

Realized Correlation of IBM-Pfizer-Exxon

Realized Correlations

Figure 6: Realized Kernel (correlation) of IBM-Pfizer-Exxon.

Descriptive Statistics

	min.	median	mean	max.	std.
RV(Google)	$2.277 \mathrm{e}-5$	$1.714 \mathrm{e}-4$	$2.503 \mathrm{e}-4$	0.003	$0.269 \mathrm{e}-3$
RV(IBM)	$1.431 \mathrm{e}-5$	$1.048 \mathrm{e}-4$	$1.704 \mathrm{e}-4$	0.001	$0.180 \mathrm{e}-3$
RV(Oracle)	$5.220 \mathrm{e}-5$	$2.208 \mathrm{e}-4$	$3.082 \mathrm{e}-4$	0.002	$0.253 \mathrm{e}-3$
RC(Google,IBM)	$1.978 \mathrm{e}-6$	$5.758 \mathrm{e}-5$	$9.112 \mathrm{e}-5$	0.001	$0.110 \mathrm{e}-3$
RC(Google,Oracle)	$5.359 \mathrm{e}-6$	$7.628 \mathrm{e}-5$	$1.112 \mathrm{e}-4$	0.001	$0.128 \mathrm{e}-3$
RC(IBM,Oracle)	$2.106 \mathrm{e}-6$	$6.749 \mathrm{e}-5$	$1.015 \mathrm{e}-4$	0.001	$0.113 \mathrm{e}-3$
RV(IBM)	$1.474 \mathrm{e}-5$	$1.014 \mathrm{e}-4$	$1.704 \mathrm{e}-4$	$0.194 \mathrm{e}-4$	$1.820 \mathrm{e}-4$
RV(Pfizer)	$2.819 \mathrm{e}-5$	$2.067 \mathrm{e}-4$	$2.837 \mathrm{e}-4$	$0.311 \mathrm{e}-4$	$2.467 \mathrm{e}-4$
RV(Exxon)	$2.455 \mathrm{e}-5$	$1.281 \mathrm{e}-4$	$1.810 \mathrm{e}-4$	$0.229 \mathrm{e}-4$	$1.786 \mathrm{e}-4$
RC(IBM,Pfizer)	$-1.550 \mathrm{e}-6$	$4.069 \mathrm{e}-5$	$6.553 \mathrm{e}-5$	$0.161 \mathrm{e}-4$	$9.599 \mathrm{e}-5$
RC(IBM,Exxon)	$4.231 \mathrm{e}-8$	$5.198 \mathrm{e}-5$	$8.442 \mathrm{e}-5$	$0.111 \mathrm{e}-4$	$1.010 \mathrm{e}-4$
RC(Pfizer,Exxon)	$-3.858 \mathrm{e}-6$	$4.691 \mathrm{e}-5$	$7.187 \mathrm{e}-5$	$0.112 \mathrm{e}-4$	$8.744 \mathrm{e}-5$

Table 1: Descriptive statistics of the realized kernels (Var and Cov).

LCP for Google-IBM-Oracle

Figure 7: All copulae for Google-IBM-Oracle portfolio.

LCP for IBM-Pfizer-Exxon

Figure 8: All copulae for IBM-Pfizer-Exxon portfolio.

Gaussian models

Recent suggestions in the multivariate RV literature: the matrix-log model (Bauer and Vorkink, 2010) and the Cholesky factorization (Chiriac and Voev, 2011).

For the logm-model, apply the logm to the RV matrix

$$
A_{t}=\operatorname{logm}\left(H_{t}\right)
$$

and apply the vech-operator

$$
a_{t}=\operatorname{vech}\left(A_{t}\right)
$$

which yields a $d(d+1) / 2$ vector a_{t}.

To this vector the same HAR-forecasting rule is applied.
Predictions $\widehat{a}_{t+1 \mid t}$ are converted to positive-definite predicted covariance matrices by applying the reverse vech-operator and the matrix exponential:

$$
\widehat{H}_{t+1 \mid t}=\operatorname{expm}\left(\widehat{A}_{t+1 \mid t}\right)
$$

Likewise, for the Cholesky decomposition, find a matrix A such that

$$
H=A A^{\top} .
$$

For predicitons, use a HAR model on the vector obtained from the vech-operation, and convert predicted Cholesky factors back:

$$
\widehat{H}_{t+1 \mid t}=\widehat{A}_{t+1 \mid t} \widehat{A}_{t+1 \mid t}^{\top} .
$$

Overview on models

\square daily models: LCP ($m_{0}=40$) and rolling window ($w=250$)
$\square 2$ methods of copula estimation (MM, ad hoc)
$\square 2$ copula functions (rotated Gumbel, Clayton)
$\square 2$ RV Gaussian Models (Chiriac and Voev (2011); Bauer and Vorkink (2010))

Value at Risk (VaR), I

Let $a=\left\{a_{1}, \ldots, a_{d}\right\}, a_{i} \in \mathbb{Z}$ be the portfolio. The value V_{t} of a is given by

$$
V_{t}=\sum_{j=1}^{d} a_{j} S_{j, t}
$$

and the profit and loss ($P \& L$) function of the portfolio

$$
L_{t+1}=\left(V_{t+1}-V_{t}\right)=\sum_{j=1}^{d} a_{j} S_{j, t}\left\{\exp \left(X_{j, t+1}\right)-1\right\}
$$

where $w_{j}=a_{j, t} S_{j, t} / \sum_{i=1}^{d}\left(a_{i, t} S_{i, t}\right)$ and $w_{i}=1 / d, 1, \ldots, d$.

VaR, II

The distribution function of L is given by

$$
F_{L}(x)=P(L \leq x)
$$

The Value-at-Risk at level α from w is defined as the α-quantile from F_{L} :

$$
\operatorname{VaR}(\alpha)=F_{L}^{-1}(\alpha)
$$

Backtesting: estimated values of the VaR are compared with the true $\left\{I_{t}\right\}$ of the function L_{t}, an exceedance occurring for each I_{t} smaller than $\widehat{\operatorname{VaR}}_{t}(\alpha)$. The exceedances ratio $\widehat{\alpha}$ is given by:

$$
\widehat{\alpha}=\frac{1}{T} \sum_{t=r}^{T} \mathbf{I}\left\{I_{t}<\widehat{\operatorname{VaR}}_{t}(\alpha)\right\} .
$$

rGumbel, LCP

Gauss (Bauer and Vorkink; 2010)

Gauss (Chiriac and Voev; 2011)

rGumbel, MM

rGumbel, ad hoc

VaR Performance for Google-IBM-Oracle

model $\backslash \alpha$	0.01	0.05	0.1
LCP $m_{0}=40$ (rGumbel)	$0.0258(0.028)$	$0.0369(0.300)$	$0.0775(0.200)$
ROL $w=250$ (rGumbel)	$0.0221(0.083)$	$0.0332(0.177)$	$0.0664(0.051)$
MM (rGumbel)	$\mathbf{0 . 0 1 4 8 (0 . 4 6 2)}$	$0.0590(0.506)$	$\mathbf{0 . 0 9 9 6 (0 . 9 8 3)}$
ad hoc (rGumbel)	$\mathbf{0 . 0 1 4 8 (0 . 4 6 2)}$	$0.0590(0.506)$	$\mathbf{0 . 0 9 9 6}(0.983)$
LCP $m_{0}=40$ (Clayton)	$0.0258(0.028)$	$\mathbf{0 . 0 5 1 7}(0.900)$	$0.0849(0.395)$
ROL $w=250$ (Clayton)	$0.0221(0.083)$	$0.0443(0.659)$	$0.0738(0.133)$
MM (Clayton)	$\mathbf{0 . 0 1 4 8 (0 . 4 6 2)}$	$0.0554(0.690)$	$0.0959(0.822)$
ad hoc (Clayton)	$\mathbf{0 . 0 1 4 8 (0 . 4 6 2)}$	$0.0554(0.690)$	$0.0886(0.522)$
Gauss (Bauer and Vorkink; 2010)	$0.0406(1 \mathrm{e}-04)$	$0.0738(0.092)$	$0.1218(0.246)$
Gauss (Chiriac and Voev; 2011)	$0.0369(6 \mathrm{e}-04)$	$0.0812(0.030)$	$0.1255(0.177)$

Table 2: VaR performance $(\widehat{\alpha})$ for the Google-IBM-Oracle portfolio. pvalues of the Kupiec test in brackets.

VaR Performance for IBM-Pfizer-Exxon

model $\backslash \alpha$	0.01	0.05	0.1
LCP $m_{0}=40$ (rGumbel)	$\mathbf{0 . 0 1 1 1}(0.861)$	$0.0443(0.659)$	$0.0701(0.084)$
ROL $w=250$ (rGumbel)	$\mathbf{0 . 0 1 1 1}(0.861)$	$0.0332(0.177)$	$0.0517(0.003)$
MM (rGumbel)	$0.0074(0.649)$	$0.0554(0.691)$	$\mathbf{0 . 1 0 3 3 (0 . 8 5 6)}$
ad hoc (rGumbel)	$0.0074(0.649)$	$\mathbf{0 . 0 5 1 7}(0.900)$	$\mathbf{0 . 1 0 3 3}(0.856)$
LCP $m_{0}=40$ (Clayton)	$0.0185(0.211)$	$0.0554(0.690)$	$0.0923(0.667)$
ROL $w=250$ (Clayton)	$\mathbf{0 . 0 1 1 1 (0 . 8 6 1)}$	$0.0369(0.300)$	$0.0590(0.015)$
MM (Clayton)	$0.0074(0.649)$	$0.0554(0.690)$	$\mathbf{0 . 1 0 3 3}(0.856)$
ad hoc (Clayton)	$0.0074(0.649)$	$0.0554(0.690)$	$\mathbf{0 . 1 0 3 3 (0 . 8 5 6)}$
Gauss (Bauer and Vorkink; 2010)	$0.0369(0.000)$	$0.0738(0.092)$	$0.1107(0.563)$
Gauss (Chiriac and Voev; 2011)	$0.0406(0.000)$	$0.0738(0.092)$	$0.1144(0.439)$

Table 3: VaR performance ($\widehat{\alpha}$) for the IBM-Pfizer-Exxon portfolio. p-values of the Kupiec test in brackets.

Conclusions

\square We introduce the notion of realized copula.
\square We suggest a forecasting framework for RCop and thus extend the literature on multivariate RCov models.
\square Empirically, we find that model relying on daily data are too inert for good forecasts.
\square Standard RCov model are more adaptive, but are dominated by copula models.
\square RCop unites both advantages and shows nice forecasting performance.

References

$\theta \mathrm{H} . \mathrm{Joe}$
Multivariate Models and Concept Dependence
Chapman \& Hall, 1997
\otimes V. Spokoiny
Local Parametric Methods in Nonparametric Estimation Springer Verlag, 2009
圊 E. Giacomini, W. Härdle and V. Spokoiny Inhomogeneous Dependence Modeling with Time-Varying Copulae Journal of Business and Economic Statistics, 27(2), 2009
國 O. Okhrin and Y. Okhrin and W. Schmid
On the Structure and Estimation of Hierarchical Archimedean
Copulas
under revision in Journal of Econometrics, 2009

Appendix

\square Realized kernels
\square ML estimation
\square Details on LCP
\square Kupiec (1995) test

Basis

Let $Y=\left(Y_{1}, \ldots, Y_{d}\right)^{\top}$ be a d-dim efficient (log)price process

$$
d Y_{t}=\mu_{t} d t+\sigma_{t} d W_{t}
$$

The market microstructure effect is modeled through an additive component

$$
\begin{aligned}
P_{j t} & =Y_{j t}+U_{j t}, \text { with } \boldsymbol{E}\left(U_{j t}\right)=0 \\
\sum_{h}\left|h \Omega_{h}\right| & <\infty, \text { where } \Omega_{j h}=\operatorname{Cov}\left(U_{j t}, U_{j, t-h}\right)
\end{aligned}
$$

Usual aim: Estimate the quadratic variation of Y, i.e. $[Y]=\int_{0}^{1} \Sigma_{u} d u$, with $\Sigma=\sigma \sigma^{\top}$.

Naive Estimator (realized co/variance)

Synchronization - last traded: for time t, the log-price for asset j is given by $P_{j, t^{*}}$ with $t^{*}=\max \left\{t_{j, i} \mid t_{j, i} \leq t, \forall i=1, \ldots, N_{j}\right\}$. $M=M(m)$ number of subintervals of length m (in seconds)

$$
\begin{aligned}
\mathrm{RC}_{t_{1}, m, j_{1}, j_{2}}(P) & =\sum_{i=1}^{M}\left(P_{j_{1}, t_{i}}-P_{j_{1}, t_{i-1}}\right)\left(P_{j_{2}, t_{i}}-P_{j_{2}, t_{i-1}}\right), \\
\mathrm{RC}_{t_{1}, m}(P) & =\left\{\mathrm{RC}_{m, j_{1}, j_{2}}\right\}_{j_{1}, j_{2}}, \text { for } j_{1}, j_{2}=1, \ldots, d
\end{aligned}
$$

Realized Kernels, BNHLS (2011, JoE)

Synchronization - refresh time sampling

$$
\begin{aligned}
\tau_{1} & =\max \left\{t_{1,1}, \ldots, t_{d, 1}\right\} \\
\tau_{i+1} & =\arg \min \left\{t_{j, k_{j}} \mid t_{j, k_{j}}>\tau_{i}, \forall j \in 1 \ldots d\right\}
\end{aligned}
$$

Leads to new high-frequency vector of returns $p_{i}=P_{\tau_{i}}-P_{\tau_{i-1}}$, where $i=1, \ldots, n$ and n is the of refresh time observations.

Realized Kernels

The multivariate realized kernel is defined as

$$
K(P)=\sum_{h=-H}^{H} k\left(\frac{|h|}{H+1}\right) \Gamma_{h},
$$

with Γ_{h} being a matrix of autocovariances given by

$$
\Gamma_{h}=\left\{\begin{array}{l}
\sum_{j=|h|+1}^{n} p_{j} p_{j-h}^{\top}, h \geq 0 \\
\sum_{j=|h|+1}^{n} p_{j-h} p_{j}^{\top}, h<0
\end{array}\right.
$$

and $k(x)$ being a weight function of the Parzen kernel, defined through

$$
k(x)= \begin{cases}1-6 x^{2}+6 x^{3} & 0 \leq x \leq 1 / 2 \\ 2(1-x)^{3} & 1 / 2 \leq x \leq 1 \\ 0 & x>1\end{cases}
$$

Realized Kernels

The multivariate bandwidth parameter

$$
H=\left[d^{-1} \sum_{j=1}^{d} H_{j}\right]
$$

where $H_{j}, j=1, \ldots, d$ is chosen by mean squared error criteria as

$$
H_{j}=c^{*} \xi_{j}^{4 / 5} n^{3 / 5}
$$

with $c^{*}=\left\{k^{\prime \prime}(0)^{2} / \int_{0}^{1} k(x)^{2} d x\right\}^{1 / 5}$, which is equal to $c^{*}=3.511678$ for Parzen kernel.
$\xi^{2}=\omega / \sqrt{I Q}$ denotes the noise-to-signal ratio, where ω^{2} is the measure of microstructural noise variance and $I Q$ is the integrated quarticity as defined in Barndorff-Nielsen and Shephard (2002).

ML estimation of copula parameters

For a sample of observations $\left\{x_{t}\right\}_{t=1}^{\prime}$ and
$\vartheta=\left(\delta_{1}, \ldots, \delta_{d} ; \theta\right) \in \mathbb{R}^{d+1}$ the likelihood function is

$$
L\left(\vartheta ; x_{1}, \ldots, x_{T}\right)=\prod_{t=1}^{T} f\left(x_{1, t}, \ldots, x_{d, t} ; \delta_{1}, \ldots, \delta_{d} ; \theta\right)
$$

and the corresponding log-likelihood function

$$
\begin{aligned}
\ell\left(\vartheta ; x_{1}, \ldots, x_{T}\right) & =\sum_{t=1}^{T} \log c\left\{F_{X_{1}}\left(x_{1, t}, \delta_{1}\right), \ldots, F_{X_{d}}\left(x_{d, t}, \delta_{d}\right) ; \theta\right\} \\
& +\sum_{t=1}^{T} \sum_{j=1}^{d} \log f_{j}\left(x_{j, t}, \delta_{j}\right)
\end{aligned}
$$

"Oracle" choice: largest interval $I=\left[t_{0}-m_{k^{*}}, t_{0}\right]$ where the small modelling bias condition (SMB)

$$
\triangle_{I}(\theta)=\sum_{t \in I} \mathcal{K}\left\{C\left(\cdot ; \theta_{t}\right), C(\cdot ; \theta)\right\} \leq \triangle
$$

holds for some $\Delta \geq 0 . m_{k^{*}}$ is the ideal scale, θ is ideally estimated from $I=\left[t_{0}-m_{k^{*}}, t_{0}\right]$ and $\mathcal{K}(\cdot, \cdot)$ is the Kullback-Leibler divergence

$$
\mathcal{K}\left\{C\left(\cdot ; \theta_{t}\right), C(\cdot ; \theta)\right\}=\boldsymbol{E}_{\theta_{t}} \log \frac{c\left(\cdot ; \theta_{t}\right)}{c(\cdot ; \theta)}
$$

Under the SMB condition on $I_{k^{*}}$ and assuming that $\max _{k \leq k^{*}} \boldsymbol{E}_{\theta_{t}}\left|\mathcal{L}\left(\widetilde{\theta}_{k}\right)-\mathcal{L}(\theta)\right|^{r} \leq \mathcal{R}_{r}\left(\theta_{t}\right)$, we obtain

$$
\begin{aligned}
& E_{\theta_{t}} \log \left\{1+\frac{\left|\mathcal{L}\left(\widetilde{\theta}_{\widehat{k}}\right)-\mathcal{L}(\theta)\right|^{r}}{\mathcal{R}_{r}(\theta)}\right\} \leq 1+\Delta \\
& E_{\theta_{t}} \log \left\{1+\frac{\left|\mathcal{L}\left(\widetilde{\theta}_{\widehat{k}}\right)-\mathcal{L}\left(\widehat{\theta}_{\widehat{k}}\right)\right|^{r}}{\mathcal{R}_{r}(\theta)}\right\} \leq 1+\Delta
\end{aligned}
$$

where \widehat{a}_{l} is an adaptive estimator on I and \widetilde{a}_{l} is any other parametric estimator on I.

Test of homogeneity

Interval $I=\left[t_{0}-m, t_{0}\right], \mathfrak{T} \subset I$

$$
\begin{aligned}
& H_{0}: \forall \tau \in \mathfrak{T}, \theta_{t}=\theta, \forall t \in J=\left[\tau, t_{0}\right], \forall t \in J^{c}=J \backslash J \\
& H_{1}: \quad \exists \tau \in \mathfrak{T}, \theta_{t}=\theta_{1} ; \forall t \in J, \theta_{t}=\theta_{2} \neq \theta_{1} ; \forall t \in J^{c}
\end{aligned}
$$

Test of homogeneity

Likelihood ratio test statistic for fixed change point location:

$$
\begin{aligned}
T_{l, \tau} & =\max _{\theta_{1}, \theta_{2}}\left\{L_{J}\left(\theta_{1}\right)+L_{J c}\left(\theta_{2}\right)\right\}-\max _{\theta} L_{l}(\theta) \\
& =M L_{J}+M L_{J c}-M L_{l}
\end{aligned}
$$

Test statistic for unknown change point location:

$$
T_{I}=\max _{\tau \in \widetilde{\mathcal{T}}_{1}} T_{l, \tau}
$$

Reject H_{0} if for a critical value ζ_{I}

$$
T_{1}>\zeta_{1}
$$

Selection of I_{k} and ζ_{k}

\square set of numbers m_{k} defining the length of I_{k} and \mathfrak{T}_{k} are in the form of a geometric grid
$\square m_{k}=\left[m_{0} c^{k}\right]$ for $k=1,2, \ldots, K, m_{0} \in\{20,40\}, c=1.25$ and $K=10$, where $[x]$ means the integer part of x
$\square I_{k}=\left[t_{0}-m_{k}, t_{0}\right]$ and $\mathfrak{T}_{k}=\left[t_{0}-m_{k}, t_{0}-m_{k-1}\right]$ for $k=1,2, \ldots, K$
(Mystery Parameters)

Sequential choice of ζ_{k}

\square after k steps there are two cases: change point at some step $\ell \leq k$ or no change points.
\square let \mathcal{B}_{ℓ} be the event meaning the rejection at step ℓ

$$
\mathcal{B}_{\ell}=\left\{T_{1} \leq \zeta_{1}, \ldots, T_{\ell-1} \leq \zeta_{\ell-1}, T_{\ell}>\zeta_{\ell}\right\}
$$

and $\left(\widehat{\theta}_{k}\right)=\left(\widetilde{\theta}_{\ell-1}\right)$ on \mathcal{B}_{ℓ} for $\ell=1, \ldots, k$.
\square we find sequentially such a minimal value of ζ_{ℓ} that ensures the inequality

$$
\max _{k=1, \ldots, K} \boldsymbol{E}_{\theta^{*}}\left[\left|\mathcal{L}\left(\widetilde{\theta}_{k}\right)-\mathcal{L}\left(\widetilde{\theta}_{\ell-1}\right)\right|^{r} \mathbf{I}\left(\mathcal{B}_{\ell}\right)\right] \leq \rho \mathcal{R}_{r}\left(\theta^{*}\right) k /(K-1)
$$

Kupiec (1995) test

LR test based on the binomial model.
$H_{0}: \widehat{\alpha}=\alpha$ with test statistic

$$
L R_{u c}=2 \log \frac{\widehat{\alpha}^{N}(1-\widehat{\alpha})^{T-N}}{\alpha^{N}(1-\alpha)^{T-N}}
$$

