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Abstract

Understanding the time series dynamics of a multivariate dimensional depen-

dency structure is a challenging task. A multivariate covariance driven Gaussian

or mixed normal time varying models are limited in capturing important data fea-

tures such as heavy tails, asymmetry, and nonlinear dependencies. This research

aims at tackling this problem by proposing and analysing a hidden Markov model

(HMM) for hierarchical Archimedean copulae (HAC). The HAC constitute a wide

class of models for multivariate dimensional dependencies, and HMM is a statistical

technique for describing regime switching dynamics. HMM applied to HAC �exibly

models multivariate dimensional non-Gaussian time series.

We apply the expectation maximization (EM) algorithm for parameter estima-

tion. Consistency results for both parameters and HAC structures are established
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in an HMM framework. The model is calibrated to exchange rate data with a VaR

application. This example is motivated by a local adaptive analysis that yields a

time varying HAC model. We compare the forecasting performance with other clas-

sical dynamic models. In another, second, application we model a rainfall process.

This task is of particular theoretical and practical interest because of the speci�c

structure and required untypical treatment of precipitation data.

Keywords: Hidden Markov Model, Hierarchical Archimedean Copulae, Multivariate Dis-

tribution, Dynamic Dependency Structure

JEL classi�cation: C13, C14, G50

1 Introduction

Modeling multi-dimensional time series is an often underestimated exercise of routine

econometrical and statistical work. This slightly pejorative attitude towards day to day

statistical analysis is unjusti�ed since actually the calibration of time series models in

multi dimensions for standard data sizes is not only di�cult on the numerical side but

also on the mathematical side. Computationally speaking, integrated models for multi

dimensional time series become more involved when the parameter space is too large.

Consequently the mathematical and econometrical aspect become more di�cult since the

parameter space become to complex, especially when time variation of these is added.

An example is the multivariate GARCH(1,1) BEKK model that for even two dimensions

has an associated parameter space of dimension 12. For moderate sample sizes, the

parameter space dimension might be in the range of the sample size or even bigger. This

data situation has evoked a new strand of literature on dimension reduction via penalty

methods.

In this paper we take a di�erent route, by calibrating an integrated dynamic model with

unknown dependency structure among the d dimensional time series variables. More pre-

cisely, the unknown dependency structure may vary within a set of given dependencies.
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These dependency structures might have been selected via a preliminary study as de-

scribed e.g. in Härdle, Herwartz and Spokoiny (2003). The speci�c dependence at each

time t is unknown to the data analyst, but depends on the dependency pattern at time

t− 1. Therefore, hidden Markov models (HMM) naturally come into play. This leaves us

with the task of specifying the set of dependencies.

An approach based on assuming a multivariate Gaussian or mixed normals is handicapped

in capturing important types of data features such as heavy tails, asymmetry, and nonlin-

ear dependencies. Such a simpli�cation is certainly in practical questions concerning the

tails too restrictive and might lead to biased results. Copulae are one possible approach to

solving these problems. Moreover, copulae allow us to separate the marginal distributions

and the dependency model, see Sklar (1959). In recent decades, copula-based models

have gained popularity in various �elds like �nance, insurance, biology, hydrology, etc.

Nevertheless, many basic multivariate copulae are still too restrictive and the extension

to many parameters leads initially to a nonparametric density estimation problem that

su�ers of course from the curse of dimensionality. A natural compromise is the class of

hierarchical Archimedean copulae (HAC). An HAC allows a rich copula structure with

a �nite number of parameters. Recent research has demonstrated their �exibility see

McNeil and Ne²lehová (2009), Okhrin, Okhrin and Schmid (2013), Whelan (2004).

Insights into the dynamics of a copulae has been o�ered by Chen and Fan (2005) assum-

ing an underlying Markovian structure, and a speci�c class of copulae functions for the

temporal dependence; Patton (2004) considers an asset-allocation problem with a time-

varying parameter of bivariate copulae; while Rodriguez (2007) studies �nancial contagion

using switching-parameter bivariate copulae. Similarly, Okimoto (2008) provides strong

empirical evidence that a Markov switching multivariate normal model is not appropriate

for the dependence structures in international equity markets.

Moreover, an adaptive method isolating time varying dependency structure via a lo-

cal change point method (LCP), has been proposed in Giacomini, Härdle and Spokoiny

(2009), Härdle, Okhrin and Okhrin (2013). Figure 1 presents an analysis of HAC for ex-

change rate data using LCP on a moving window, where the window sizes are adaptively
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selected by the LCP algorithm. It plots the changes of estimated structure (upper panel)

and parameters (lower panel) in each window over time. In particular the upper panel

y-axis corresponds to dependency structures picked by estimation of a three dimensional

copulae, and the lower panel y-axis shows the estimated two dependency parameters

(value converted to Kendall's τ) corresponding to the estimated structure. In more de-

tails, we have three dimensional exchange rates series: P (GBP/EUR), Y(JPY/EUR),

D(USD/EUR), and the label P(DY) means then the structure D and Y have stronger

dependency than other possible pairs. For a more detailed introduction to HAC and their

structures, please refer to Section 2.1. One observes that the structure very often remains

the same for a long time, and the parameters are only slowly varying over time. This indi-

cates that the dynamics of HAC functions is likely to be driven by a Markovian sequence

seemingly determining the structures and parameter values. This observation motivate

us to pursue a di�erent path of modeling the dynamics. Instead of taking a local point of

view, we adopt a global dynamic model HMM for the change of both the tree structure

and the parameters of the HAC along the time horizon. In this situation, the not directly

observable underlying Markov process X determines the state of distributions of Y .

HMM has been widely applied to speech recognition, see Rabiner (1989), molecular biol-

ogy, and digital communications over unknown channels. Markov switching models are

introduced to economic literature by Hamilton (1989), where the trend component of a

univariate nonstationary time series is changing according to an underlying Markov chain.

Later it was extended and combined with many di�erent time series model, see e.g. Pel-

letier (2006). For estimation and inference issues in HMM, see Bickel, Ritov and Rydén

(1998) and Fuh (2003), among others.

In this paper, we propose a new type of dynamic model, called HMM HAC, by incor-

porating HAC into an HMM framework. The theoretical problems such as parameter

consistency and structure consistency are solved. The expectation maximization (EM)

algorithm is developed in this framework for parameter estimation. See Section 2 for the

model description, Section 3 for theorems about consistency and asymptotic normality.

EM algorithm and computation issues are in Section 4. Section 5 is for the simulation
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Figure 1: LCP for exchange rates: structure (upper) and parameters (lower, θ1(grey)
and θ2(black)) for Gumbel HAC. m0 = 40 (starting value for the window size in the
algorithm).

study, and Section 6 is for applications. The technical details are put into the Appendix.

2 Model Description

In this section, we introduce our model and estimation method. Subsection 2.1 brie�y

introduces the de�nition and properties of HAC, and Subection 2.2 introduces the HMM

HAC. Finally in the last subsection, we describe the estimation and algorithm we used.

2.1 Copulae

Let Z1, . . . , Zd be r.v. with continuous cumulative distribution function (cdf) F (·). The

Sklar theorem guarantees the existence and uniqueness of copula functions by stating:

Theorem 2.1 (Sklar's theorem). Let F be a multivariate distribution function with mar-

gins Fm
1 , . . . , F

m
d , then a copula C exists such that

F (z1, . . . , zd) = C{Fm
1 (z1), . . . , Fm

d (zd)}, z1, . . . , zd ∈ R.
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If Fm
i (·) are continuous for i = 1, . . . , d then C(·) is unique. Otherwise C(·) is uniquely

determined on Fm
1 (R)× · · · × Fm

d (R).

Conversely, if C(·) is a copula and Fm
1 , . . . , F

m
d are univariate distribution functions,

then the function F de�ned above is a multivariate distribution function with margins

Fm
1 , . . . , F

m
d .

The family of Archimedean copulae is very �exible and captures tail dependency, has an

explicit form, and are simple to estimate,

C(u1, . . . , uk) = φ{φ−1(u1) + · · ·+ φ−1(ud)}, u1, . . . , ud ∈ [0, 1], (1)

where φ(·) is de�ned as the generator of the copula and depends on a parameter θ, see

Nelsen (2006). φ(·) is d monotone, and φ(·) ∈ L = {φ(·) : [0;∞) → (0, 1] |φ(0) =

1, φ(∞) = 0; (−1)jφ(j) ≥ 0; j = 1, . . . , d − 2}. As an example, the Gumbel generator is

given by φ(x) = exp(−x1/θ) for 0 ≤ x <∞, 1 ≤ θ <∞.

In this work we consider less restrictive compositions of simple Archimedean copulae

leading to a Hierarchical Archimedean Copula (HAC) C(u1, . . . , ud;θθθ, s), where s =

{(. . . (i1 . . . ij1) . . . (. . .) . . .)} denotes the structure of HAC, with i` ∈ {1, . . . , d} being

a reordering of the indices of the variables and sj the structure of the subcopulae with

sd = s, and θθθ is the set of copula parameters. For example, the fully nested HAC (see

Figure 2, left) can be expressed by

C(u1, . . . , ud;θθθ, s = sd) = C{u1, . . . , ud; (θ1, . . . , θd−1)>, ((sd−1)d)}

= φd−1,θd−1
(φ−1

d−1,θd−1
◦ C{u1, . . . , ud−1; (θ1, . . . , θd−2)>, ((sd−2)(d− 1))}+ φ−1

d−1,θd−1
(ud)),

where s = {(. . . (12)3) . . . )d)}. On the RHS of Figure 2 we have the partially nested HAC

with s = ((12)(34)) in dimension d = 4. For more details of HAC, see Joe (1997), Whelan

(2004), Savu and Trede (2010), Okhrin et al. (2013).

It is worth noting though that not all generator functions can be mixed within one HAC.

We therefore concentrate on one single generator family within one HAC. This boils
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Figure 1: Fully and partially nested copulae of dimension d = 4 with structures s =

(((12)3)4) on the left and s = ((12)(34)) on the right

copulae. For example, the special case of HAC fully nested copula can be given by

C(u1, . . . , ud) = C1{C2(u1, . . . , ud−1), ud} = Á1{Á−1
1 ∘ C2(u1, . . . , ud−1) + Á−1

1 (ud)}

= Á1{Á−1
1 ∘ Á2(Á

−1
2 (C3(u1, . . . , ud−2)) + Á−1

2 (ud−1)) + Á−1
1 (ud)}. (2)

The composition can be applied recursively using different segmentations of variables

leading to more complex HACs. For notational convenience let the expression s =

{(. . . (i1 . . . ij1) . . . (. . . ) . . . )} denote the structure of a HAC, where iℓ ∈ {1, . . . , d} is

a reordering of the indices of the variables. sj denotes the structure of subcopulae with

sd = s. Further let the d-dimensional hierarchical Archimedean copula be denoted by

C(u1, . . . , ud; s,µµµ), where µµµ the set of copula parameters. For example the fully nested

HAC (2) can be expressed as

C(u1, . . . , ud; s = sd, µµµ) = C{u1, . . . , ud; ((sd−1)d), (µ1, . . . , µd−1)
⊤}

= Ád−1,µd−1
(Á−1

d−1,µd−1
∘ C{u1, . . . , ud−1; ((sd−2)(d− 1)), (µ1, . . . , µd−2)

⊤}

+ Á−1
d−1,µd−1

(ud)),

where s = {(. . . (12)3) . . . )d)}. In Figure 1 we present the fully nested HAC with structure

s = (((12)3)4) and partially nested with s = ((12)(34)) in dimension d = 4.

HAC are thoroughly analysed in Joe (1997), Whelan (2004), Savu and Trede (2006),

Embrechts, Lindskog and McNeil (2003).

Note that generators Ái within a HAC can come either from a single generator family or

from different generator families. If Ái’s belong to the same family, then the complete

monotonicity of Ái ∘ Ái+1 imposes some constraints on the parameters µ1, . . . , µd−1. The-

orem 4.4 of McNeil (2008) provides sufficient conditions on the generator functions to

5

Figure 2: Fully and partially nested copulae of dimension d = 4 with structures s =
(((12)3)4) on the left and s = ((12)(34)) on the right

down to binary structures, i.e., at each level of the hierarchy only two variables are joined

together. This makes in fact the architecture very �exible and yet parsimonious.

Note that for each HAC not only are the parameters unknown, but also the structure has

to be determined. We adopt the modi�ed computational steps of Okhrin et al. (2013) to

estimate the HAC structure and parameters. One estimates the marginal distributions

either parametrically or nonparametrically. Then (assuming that the marginal distribu-

tions are known) one selects the couple of variables with the strongest �t and denotes the

corresponding estimator of the parameter at the �rst level by θ̂1 and the set of indices of

the variables by I1. The selected couple is joined together to de�ne the pseudo-variables

z1 = C{(I1); θ̂1, φ1}. Next, one proceeds in the same way by considering the remaining

variables and the new pseudo-variable. At every level, the copula parameter is estimated

by assuming that the margins as well as the copula parameters at lower levels are known.

This algorithm allows us to determine the estimated structure of the copula recursively.

2.2 Incorporating HAC into HMM

A hidden Markov model is a parameterized time series model with an underlying Markov

chain viewed as missing data, as in Leroux (1992), Bickel et al. (1998), and Gao and Song

(2011). Speci�cally, in the HMM HAC framework, let {Xt, t ≥ 0} be a stationary Markov

chain of order one on a �nite state space D = {1, 2, . . . ,M}, with transition probability
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matrix P = {pij}i,j=1,...,M and initial distribution π = {πi}i=1,...,M .

P(X0 = i) = πi, (2)

P(Xt = j|Xt−1 = i) = pij (3)

= P(Xt = j|Xt−1 = i,Xt−2 = xt−2, . . . , X1 = x1, X0 = x0),

i, j = 1, . . . ,M

Let {Yt, t ≥ 0} be the associated observations, and they are adjoined with {Xt, t ≥ 0} in

such a way that given Xt = i, i = 1, . . . ,M , the distribution of Yt is �xed:

(Xt|X0:(t−1), Y0:(t−1))
L
= (Xt|Xt−1), (4)

(Yt|Y0:(t−1), X(0:t))
L
= (Yt|Xt), (5)

where Y0:(t−1) stands for {Y0, . . . , Yt−1}, t < T .

Let fj{·} be the conditional density of Yt given Xt = j with θθθ ∈ Θ, s ∈ S, j = 1, . . . ,M

being the unknown parameters. Here, {Xt, t ≥ 0} is the Markov chain, and given

X0, X1, . . . , XT , the Y0, Y1, . . . , YT are independent. Note that θθθ = (θθθ(1), . . . , θθθ(M)) ∈

R(d−1)M are the unknown dependency parameters, s = (s(1), . . . , s(M)) are the unknown

HAC structure. Denote their true values by θθθ∗ and s∗ respectively. Please see appendix

7.2 for more details.

For the time series y1, . . . , yT ∈ Rd (yt = (y1t, y2t, y3t, . . . , ydt)
>) and the unobservable

(or missing) x1, . . . , xT from the given hidden Markov model, de�ne πxt as the πi for

x0 = i, i = 1, . . . ,M , and pxt−1xt = pji for xt−1 = j and xt = i. The full likelihood for

{xt, yt}Tt=1 is then:

pT (y0:T ;x0:T ) = πx0

T∏
t=1

pxt−1xtfxt(yt), (6)
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and the likelihood for only the observations {yt}Tt=1 is calculated by marginalization:

pT (y0:T ) =
M∑
x0=1

· · ·
M∑

xT =1

πx0

T∏
t=1

pxt−1xtfxt(yt). (7)

The HAC is a parametrization of fxt(yt)(xt = i), which helps to properly understand the

dynamics of a multivariate distribution. Up to now, typical parameterizations have been

mixtures of log-concave or elliptical symmetric densities, such as those from Gamma or

Poisson families, which are not �exible enough to model multi dimensional time series.

The advantage of the copula is that it splits the multivariate distribution into its margins

and a pure dependency component. In other words, it captures the dependency between

variables eliminating the impact of the marginal distributions as introduced in the previous

subsection.

Furthermore, we incorporate this procedure into the HMM framework. We denote the

underlying Markov variable Xt as a dependency type variable. If xt = i, the parameters

(θθθ(i), s(i)) determined by state i = 1, . . . ,M take values on Θ × S, where S is a set of

discrete candidate states corresponding to di�erent dependency structures of the HAC,

and Θ is a compact set in Rd−1 wherein the HAC parameters take their values. Therefore,

fi(·) = c{Fm
1 (y1), Fm

2 (y2), . . . , Fm
d (yd), θθθ

(i), s(i)}fm
1 (y1)fm

2 (y2) · · · fm
d (yd), (8)

with fm
i (yi) the marginal densities, Fm

i (yi) the marginal cdf and c(·) the copula density,

which is de�ned in assumption A.4 in Section 3.

Let θθθ(i) = (θi1, . . . , θi,d−1)> be the dependency parameters of the copulae starting from

the lowest up to the highest level connected with a �xed state xt = i and corresponding

density fi(.). Re�ning the algorithm of Okhrin et al. (2013), the multistage maximum

likelihood estimator (θ̂θθ
(i)
, ŝ(i)) solves the system
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(
∂L1

∂θi1
, . . . ,

∂Ld−1

∂θid−1

)>
= 0, (9)

where Lj =
T∑
t=1

witlij(Yt), for j = 1, . . . , d− 1,

lij(Yt) = log
(
c
[
{F̂m

m(ytm)}m∈{1,...,j}; {θi`}`=1,...,j−1, s
(i)
m

] ∏
m∈{1,...,j}

f̂m
m(ytm)

)
for t = 1, . . . , T.

where j denote the layers of a tree structure, and F̂m
m(·) is an estimator (either nonpara-

metric with F̂m
m(x) = (T + 1)−1

∑T
t=1 1(Ytm ≤ x) or parametric F̂m

m(x) = Fm
m(x, α̂ααm)) of

the marginal cdf Fm
m(·). Note that nonparametric estimation of margins would lead to

semi-parametric nature of our estimation. The marginal densities f̂m
m(·) are estimated

parametrically or nonparametrically (kernel density estimation) corresponding to the es-

timation of the marginal distribution functions, and wit is the weight associated with

state i and time t, see (14). Chen and Fan (2006) and Okhrin et al. (2013) provide the

asymptotic behavior of the estimates.

2.3 Likelihood estimation

For the estimation of the HMM HAC model, we adopt the EM algorithm, see Dempster,

Laird and Rubin (1977), also known as the Baum�Welch algorithm in the context of

HMM. Recall the full likelihood pT (y0:T ;x0:T ) in (6) and the partial likelihood pT (y0:T ) in

(7), and the log likelihood:

log{pT (y0:T )} = log
{ M∑
x0=1

· · ·
M∑

xn=1

πx0

T∏
t=1

pxt−1xtfxt(yt;θθθ
(xt), s(xt))

}
. (10)

The EM algorithm suggests estimating a sequence of parameters g(r)
def
= (P(r), θθθ(r), s(r))

(for the rth iteration) by iterative maximization of Q(g; g(r)) with

Q(g; g(r))
def
= E g(r){log pT (Y0:T ;X0:T )|Y0:T = y0:T}.
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Namely, one carries out the following two steps:

• (a) E-step: compute Q(g; g(r)),

• (b) M-step: choose the update parameters g(r+1) = arg maxgQ(g; g(r)).

The essence of the EM algorithm is that Q(g; g(r)) can be used as a surrogate for

log pT (y0:T ;x0:T ; θ), see Cappé, Moulines and Rydén (2005).

In our setting, we may write Q(g; g(r)) as:

Q(g; g(r)) =
M∑
i=1

E g(r) [1{X0 = i} log{πifi(y0)}|Y0:T = y0:T ] (11)

+
T∑
t=1

M∑
i=1

E g(r) [1{Xt = i} log fi(yt)|Y0:T = y0:T ]

+
T∑
t=1

M∑
i=1

M∑
j=1

E g(r) [1{Xt = j}1{Xt−1 = i} log{pij}|Y0:T = y0:T ]

=
M∑
i=1

Pg(r)(X0 = i|Y0:T = y0:T ) log{πifi(y0)}

+
T∑
t=1

M∑
i=1

Pg(r)(Xt = i|Y0:T = y0:T ) log fi(yt)

+
T∑
t=1

M∑
i=1

M∑
j=1

Pg(r)(Xt−1 = i,Xt = j|Y0:T = y0:T ) log{pij}, (12)

where fi(·) is as in (8). The E-step, in which Pg(r)(Xt = i|Y0:T ),Pg(r)(Xt−1 = i,Xt = j|Y0:T )

are evaluated, is carried out by the forward-backward algorithm and the M-step is explicit

in the pij and the πi. Adding constraints to (12) yields

L(g, λ; g′) = Q(g; g′) +
M∑
i=1

λi(1−
M∑
j=1

pij). (13)

For the M-step, we need to take the �rst order partial derivative, and plug into (13).

So the dependency parameters θθθ and the structure parameters s need to be estimated
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iteratively, for θθθ(i) (θθθ(i) = {θi1, . . . , θi(d−1)}):

∂L(g, λ; g′)

∂θij
=

T∑
t=1

Pg′(Xt = i|Y0:T )∂ log fi(yt)/∂θij. (14)

To simplify the procedure, we adopt the HAC estimation method (9) with weights in

terms of wit
def
= Pg′(Xt = i|Y0:T ). We also �x πi, i = 1, . . . ,M as it in�uences only the

�rst observation x0 which may be considered also as given and �xed. Maximizing (12)

w.r.t. πi would return the �rst derivative with one observation y0. Also as the previous

information for the distribution of x0 is not available, our EM algorithm would not involve

updating πi. The estimation of the transition probabilities pij follows:

∂L(g, λ; g′)

∂pij
=

T∑
t=1

Pg′(Xt−1 = i,Xt = j|Y0:T )

pij
− λi, (15)

∂L(g, λ; g′)

∂λi
= 1−

M∑
j=1

pij. (16)

Equating (15) and (16) yields:

p̂ij =

∑T
t=1 Pg′(Xt−1 = i,Xt = j|Y0:T )∑T

t=1

∑M
l=1 Pg′(Xt−1 = i,Xt = l|Y0:T )

. (17)

3 Theoretical Results

In this section, we discuss the conditions needed for deriving consistency and asymptotic

properties of copulae function. We then state our main theoretical theorems. Throughout

the theory we concentrate on the most interesting case: semi-parametric estimation with

nonparametric margins.

Assumptions

A.1 {Xt} is stationary, strictly irreducible, and aperiodic Markov process of order one with

�nal discrete state, and {Yt}Tt=1 are conditionally independent given {Xt}Tt=1 and generated

from an HAC HMM model with parameters {s∗(i), θ∗(i), π∗, {p∗ij}i,j}, i, j = 1, · · · , d.
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It is worth noting that A.1 is the basic assumption on the evolution of a hidden Markov

chain. One key property is that given one realization of the path {Xt}, the conditional

distributions of {Yt}Tt=1 are totally �xed. But {Yt} will be dependent and even being

observed have a �nite mixture distribution from the given parametric family. The en-

volvement of {Xt} will later be linked to the dependency parameters of the state space

distribution of {Yt}.

A.2 The family of mixtures of at most M elements {f(y;θθθ(i), s(i)) : θθθ(i) ∈ Θ, s(i) ∈ S} is

identi�able w.r.t. the parameters and structures:

M∑
i=1

αif(y;θθθ(i), s(i)) =
M∑
i=1

α′if(y;θθθ′(i), s′(i)) a.e. (18)

then,
M∑
i=1

αjδθθθ(i),s(i) =
M∑
i=1

α′iδθθθ′(i),s′(i) , (19)

de�ning δθθθ(i),s(i) as the distribution function for a point mass in Θ associated with the

structure s(i), noting that θθθ(i) = θθθ′(i) is only meaningful when s(i) = s′(i).

The property of identi�ability is nothing else than the construction of a �nite mixture

model, McLanchlan and Peel (2000). As a copula is a special form of a multivariate distri-

bution, similar techniques may be applied to get identi�ability also in the case of copulae.

The family of copula mixtures has been thoroughly investigated in Caia, Chen, Fan and

Wang (2006) while developing estimation techniques. In that general case, one should be

careful, as the general copula class is very wide and its mixture identi�cation may cause

some problems because of the di�erent forms of the densities. The very construction of

the HAC narrows this class. Imposing the same generator functions on all levels of the

HAC, we restrict the family to the vector of parameters and the tree structure, see also

Okhrin et al. (2013). Moreover, we restrict the classes to only binary trees with distinct

parameters to avoid identi�ability issues induced by the case of the same parameter values

on each layers of a tree. Our preliminary numerical analysis shows that the HAC ful�lls

the identi�ability property for all the structures and parameters used in this study.

A.3 The true marginal distribution fm
m(·) ∈ C2, and the derivatives up to second order are
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bounded for allm = 1, · · · , d. Also√fm are absolute continuous. In case of nonparametric

estimation for fm
i (·) ∈ C2, one needs to also ensure the kernel function K(·) ∈ C2 has

support on a compact set B, is symmetric and has integrable �rst derivative.
∫
B
K(u)du =

1.

We would like to focus on the dependency parameter, therefore in the following setting,

we simply assume that the marginal processes yt1, yt2, · · · , ytd are identically distributed

respectively.

A.4 E{| log fi(y)|} < ∞, for i = 1, . . . ,M , ∀s(i) ∈ S. De�ne the copulae density function

c(u1, u2, . . . , ud, θθθ
(i), s(i))

def
= ∂dC(u1, u2, · · · , ud, , θθθ(i), s(i))/∂u1∂u2 · · · ∂ud, then

log c(u1, u2, · · · , ud, θθθ(i), s(i)) as well as its �rst and second partial derivatives w.r.t. vis

and θθθ are well de�ned for ((0, 1)d ×Θ). Also, their supreme in a compact set ((Ed)×Θ)

(Ed ∈ [0, 1]d) has �nite moments up to the order four.

A.5 For every θθθ ∈ Θ, and any particular structure considered s ∈ S,

E[ sup
‖θθθ′−θθθ‖<δ

{fi(Y1, θθθ
′, s)}+] <∞,

for some δ > 0.

A.6 The true point θθθ∗ is an interior point of Θ

A.7 Exist a constant δ0, such that P(sup‖θθθ′−θθθ‖<δ0 maxi,j E
{fi(Y1,θθθ′,s)}
{fj(Y1,θθθ′,s)} =∞|X1 = i) < 1

Denote as pT (y0:T ; v, ω) the density in (7) with parameters {v, ω} ∈ {V,Ω} as described

in the Appendix 7.2. De�ne θ̂θθ
(i)
, ŝ(i) as θ̂θθ

(i)
(v̂, ω̂) and ŝ(i)(v̂, ω̂) with (v̂, ω̂) being the point

where pT (y0:T ; v, ω) achieves its maximum value over the parameter space {V,Ω}.

It is known that HMM is not itself identi�able as the permutation of states would yield

the same value for pT (y0:T ; v, ω). We assume therefore θθθ∗(j)s and s∗(j)s to be distinct in

the sense that for any s∗(i) = s∗(j), i 6= j we have θθθ∗(i) 6= θθθ∗(j).

Theorem 3.1. Under A.1�A.6, we �nd the corresponding structure:

lim
T→∞

min
i∈1,...,M

P(ŝ(i) = s∗(i)) = 1. (20)
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Moreover,

Theorem 3.2. Assume A.1�A.6. The parameter θ̂θθ
(i)

satis�es, ∀ε > 0:

lim
T→∞

max
i∈1,...,M

P(|θ̂θθ(i) − θθθ∗(i)| > ε|ŝ(i) = s∗(i)) = 0. (21)

In addition, we can also establish asymptotic normality results for parameters.

Theorem 3.3. Assume A.1�A.6, given s∗(i) is correctly estimated, which an event with

probability tending to 1, we have

√
n{θ̂θθ(i) − θθθ∗(i)} → N(0,Σ∗), (22)

where Σ∗ is the asymptotic covariance function, de�ned as Σ∗
def
= B−1

Var(
√
nA)B−1,

where B,A are de�ned in the Appendix in (45).

Proofs are presented in the Appendix.

4 Simulation

The estimation performance of HMM HAC is evaluated in this section: subsection I

aims to investigate whether the performance of estimation is a�ected by 1. adopting

a nonparametric or parametric margins; 2. by introducing GARCH dependency in the

marginal time series. Subsection II presents results for a �ve dimensional time series

model. In subsection III we perform a horse race between the DCC method and our

HMM HAC method. All the simulations show that our algorithm converges after a few

iterations with moderate estimation errors, and the results are robust with respect to

di�erent estimation methods for margins. Moreover our method dominates the DCC one.

Regarding the selection of orders, in both simulations and applications, we have started

with a model with three states, which is suggested by the initial moving window analysis

described later. In applications the number of states will even be degenerated to two or

15



one for some windows. This suggests us three states are su�cient for model estimations.

However, one can consider general BIC or AIC criteria for selecting the number of states.

4.1 Simulation I

In this subsection, a three dimensional generating process has �xed marginal distributions:

Yt1, Yt2, Yt3 ∼ N(0, 1). For studying the e�ect of deGARCH step in our application, we

simulated also according to GARCH(1,1) model,

Y ′tj = µtj + σtjεtj with σ
2
tj = ωj + αjσ

2
t−1j + βj(Yt−1j − µt−1j)

2, (23)

with parameters ωj = 10−6, αj = 0.1, βj = 0.8, which standard normal residuals εt1, εt2, εt3 ∼

N(0, 1). The dependence structure is modeled through HAC with Gumbel generators. Let

us consider now a Monte Carlo setup where the setting employs realistic models. The

three states with M = 3 are taken as follows:

C{u1, C(u2, u3; θ
(1)
1 = 1.3); θ

(1)
2 = 1.05} for i = 1,

C{u2, C(u3, u1; θ
(2)
1 = 2.0); θ

(2)
2 = 1.35} for i = 2,

C{u3, C(u1, u2; θ
(3)
1 = 4.5); θ

(3)
2 = 2.85} for i = 3,

where the dependency parameters corresponds to the Kendall's τ ranging between 0.05

and 0.78 which is typical for �nancial data. The transition matrix is chosen as:

P =


0.982 0.010 0.008

0.008 0.984 0.008

0.003 0.002 0.995

 ,

and initial probabilities as π = (0.2, 0.1, 0.7) and sample size T = 2000. Figure 3 repre-

sents the underlying states and a marginal plot of the generated three dimensional time

series. No state switching patterns are evident from the marginal plots. Figure 4, how-

ever, clearly displays the switching of dependency patterns. The circles, triangles, and

16



crosses correspond to the observations from states i = 1, 2, 3 respectively.

Generally, the iteration procedure stops after around ten steps. Figure 5 presents the

deviations of the estimated states, the transition matrix, and the parameters from their

true values for �rst ten iterations of one sample. Since the starting values may in�uence

the results, a moving window estimation is proposed to decide the initial parameters. The

dashed black and solid black line show, respectively, how the estimators behave with the

initial values close to the true (dashed) and initial values obtained from the proposed

rolling window algorithm (solid). For the �close to the true initial states�, we mean true

structures with parameters all shifted up by 0.5 from the true ones. For �rolling window

algorithm� we estimate HAC for overlapping windows of width 100, and then took M

most frequent structures with averaged parameters as initial states. The left panel of

Figure 5 shows the (L1) di�erence (
∑d

i,j=1 |p̂ij − pij|) of the true transition matrix from

the estimated ones at each iteration, we see that for the three particular samples, the

values all converge to around 0.4, which are moderately small; the middle panel is the

sum of the estimated parameter errors of the four states with the correctly estimated

states, we see that the accumulated errors are di�erent w.r.t di�erent starting values;

the right panel represents the percentage of wrongly estimated states, in all cases the

percentage of wrongly estimated states are smaller than 8. One can see that our choice of

initial values can perform as well as the true one through showing small di�erences, and

our results from more iterations further con�rms this.
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Figure 3: The underlying sequence xt (upper left panel), marginal plots of (yt1, yt2, yt3)(t =
0, . . . , 1000).
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Figure 5: The transition matrix (left panel), parameters (middle panel), convergence of
states (right panel). Estimation starts from near true value (dashed); starts from values
obtained by rolling window (solid).
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Finally, we summarize our estimation results over 1000 repetitions. In Table 1, we re-

port the averaged estimation values with standard deviations (in bracket) and MSE (in

brackets) for the estimated states, the transition matrix, and the parameters. For the im-

pact of estimating the copula model on estimated standardized residuals (after GARCH

�tting, for example), we have also included the comparison of the estimation on the de-

GARCHed residuals. Also the estimation for di�erent ways of deciding starting values are

shown: "close to the true initial states" (True str), rolling window algorithm (Rol. Win.).

Apparently, nonparametric or parametric estimation of the margins does not make big

di�erences, this is also true for the pre-whitening step. Regarding the preciseness of the

estimation, we see for all parameters in di�erent states have small estimation errors except

for the parameter θ
(2)
2 . The standard deviations of design matrix are also relatively high.

This is due to our selected design matrix having very small o�-diagonal values, so for

some realizations we have too few observations for state 2 to achieve accurate estimated.

One sees in our simulation II nicer results with a di�erent transition matrix.

4.2 Simulation II

In this subsection, we consider a �ve dimensional model. The marginal distributions are

taken as: Yt1, Yt2, Yt3, Yt4, Yt5 ∼ N(0, 1). The dependence structure is modeled through

HAC with Gumbel generators as well. We set also three states (M = 3) :

C{C(u1, C(u2, C(u3, C(u5, u4; θ1 = 3.15); θ2 = 2.45); θ3 = 1.75); θ4 = 1.05)} for i = 1,

C{C(u3, C(u5, C(u2, C(u1, u4; θ1 = 3.15); θ2 = 2.45); θ3 = 1.75); θ4 = 1.05)} for i = 2,

C{C(u5, C(u4, C(u3, C(u1, u2; θ1 = 3.15); θ2 = 2.45); θ3 = 1.75); θ4 = 1.05)} for i = 3,

the transition matrix is chosen as:

P =


0.82 0.10 0.08

0.08 0.84 0.08

0.03 0.02 0.95

 ,

21



and the initial probabilities are π = (0.2, 0.1, 0.7), T = 2000. Figure 6 shows again

the pairwise scatterplots of observations generated from the above mentioned model.

Similarly, Table 2 and Figure 7 presents the estimation accuracy for this model. Although

the computation is more demanding when the dimension gets higher, we still can achieve

the same degree of accuracy as it is in the three dimensional case.
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Figure 6: The transition matrix (left panel), parameters (middle panel), convergence of
states (right panel). Estimation starts from near true value (dashed); starts from values
obtained by rolling window(solid).

True Param. Margins deGARCHing

C1

θ
(1)
1 1.05 1.019 (0.020, 0.001) 1.019 (0.020, 0.001)

θ
(1)
2 1.75 1.739 (0.077, 0.006) 1.741 (0.078, 0.006)

θ
(1)
3 2.45 2.584 (0.126, 0.034) 2.583 (0.126, 0.034)

θ
(1)
4 3.15 3.328 (0.194, 0.069) 3.318 (0.194, 0.066)

C2

θ
(2)
1 1.05 1.017 (0.021, 0.002) 1.017 (0.021, 0.002)

θ
(2)
2 1.75 1.795 (0.084, 0.009) 1.797 (0.084, 0.009)

θ
(2)
3 2.45 2.499 (0.120, 0.017) 2.499 (0.122, 0.017)

θ
(2)
4 3.15 3.381 (0.216, 0.100) 3.369 (0.215, 0.094)

C3

θ
(3)
1 1.05 1.044 (0.017, 0.000) 1.045 (0.018, 0.000)

θ
(3)
2 1.75 1.745 (0.041, 0.002) 1.747 (0.041, 0.002)

θ
(3)
3 2.45 2.492 (0.065, 0.006) 2.492 (0.065, 0.006)

θ
(3)
4 3.15 3.189 (0.094, 0.010) 3.185 (0.095, 0.010)

rat. of correct states 0.915 (0.011) 0.915 (0.011)∑d
i,j=1 |p̂ij − pij| 0.133 (0.054) 0.133 (0.054)

rat. of correct structures 1 1

Table 2: The summary of estimation accuracy in �ve dimensional model.
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Figure 7: Snapshots of pairwise scatter plots of dependency structures (t = 0, . . . , 1000).
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True \ Estimated Sample size HMMGARCH HMM ID DCC
HMM GARCH

250
0.0911 (0.0362) 0.0912 (0.0382) 0.1958 (0.0929)

DCC 0.0607 (0.0241) 0.0723 (0.0320) 0.0782 (0.0309)
HMM ID 0.0908 (0.0359) 0.0867 (0.0345) 0.1424 (0.0271)
HMMGARCH

500
0.0935 (0.0334) 0.0968 (0.0386) 0.1724 (0.0455)

DCC 0.0541 (0.0194) 0.0672 (0.0325) 0.0774 (0.0254)
HMM ID 0.0936 (0.0331) 0.0924 (0.0326) 0.1515 (0.0239)
HMM GARCH

1000
0.0923 (0.0331) 0.0934 (0.0374) 0.1663 (0.0319)

DCC 0.0494 (0.0166) 0.0659 (0.0320) 0.0823 (0.0392)
HMM ID 0.0919 (0.0331) 0.0907 (0.0322) 0.1509 (0.0213)

Table 3: The estimated mean KS test statistics (standard deviation) of the forecast
distribution from the true model and the estimated model. Number of repetitions is
1000.

4.3 Simulation III

To compare the forecasting performance di�erence models, we simulate data from di�erent

true models: HMM GARCH, HMM id and DCC, from which we simulated 3 dimensional

time series with T − 1 observations. Then we �t di�erent models (HMM GARCH, HMM

id, HAC GARCH, HAC id and DCC) with T − 1 observations at hand, and compare the

distribution forecast one step ahead for the true and the estimated models. More speci�c,

for the distribution forecast comparison we calculated the sum yT1 + yT2 + yT3 (may be

thought as the return of an equally weighted portfolio).

Simulation of 1000 observations yT1 + yT2 + yT3 allows us to compare the forecast distri-

bution between the true model and estimated models. Further, we calculate Kolmogorov-

Smirnov (KS) test statistics to measure the di�erence between the forecast distribution

of observations from the true and the estimated model. The comparison has been done

by T = 200, 500, 1000 Table 3 reports the mean and the standard deviation of the KS

test statistics for di�erent model w.r.t. to the true one. We see obvious advantages of our

method over the DCC model in the sense that our HMM GARCH model are in all cases

closer to the forecast distribution of the true on average than the DCC model. Especially

when the data generating processes are HMM GARCH or HMM ID .
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5 Applications

To see how HMM HAC performs on a real data set, applications to �nancial and rainfall

data are o�ered. A good model for the dynamics of exchange rates gives insights into

exogenous economic conditions, such as the business cycle. It is also helpful for portfolio

risk management and decisions on asset allocation. We demonstrate the performance of

our proposed technique by applying it to forecasting the VaR of a portfolio and compare

it with multivariate GARCH models (DCC, BEKK, etc.) The backtesting results show

that the VaR calculated from HMM HAC performs signi�cantly better.

The second application is on modeling a rainfall process. HMM is a conventional model

for rainfall data, however, bringing HMM and HAC together for modeling the multivariate

rainfall process is an innovative modeling path.

5.1 Application I

5.1.1 Data

The data set consists of the daily values for the exchange rates JPY/EUR, GBP/EUR and

USD/EUR. The covered period is [4.1.1999; 14.8.2009], resulting in 2771 observations.

To eliminate intertemporal conditional heteroscedasticity, we �t to each marginal time

series of log-returns a univariate GARCH(1,1) process

Yj,t = µj,t + σj,tεj,t with σ
2
j,t = ωj + αjσ

2
j,t−1 + βj(Yj,t−1 − µj,t−1)2 (24)

and ω > 0, αj ≥ 0, βj ≥ 0, αj + βj < 1.

The residuals exhibit the typical behavior: they are not normally distributed, which

motivates nonparametric estimation of the margins. From the results of the Box�Ljung

test, whose p-values are 0.73, 0.01, and 0.87 for JPY/EUR, GBP/EUR and USD/EUR,

we conclude that the autocorrelation of the residuals is strongly signi�cant only for the

GBP/EUR rate. After this intertemporal correction, we work only with the residuals.

25



Pe
ar

so
n'

s 
co

re
la

tio
n

1999 2001 2003 2005 2007 2009

0.
0

0.
2

0.
4

0.
6

0.
8

Ke
nd

al
l's

 c
or

el
at

io
n

1999 2001 2003 2005 2007 2009

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 8: Rolling window estimators of Pearson's (left) and Kendall's (right) correlation
coe�cients between the GARCH(1,1) residuals of exchange rates: JPY and USD (solid
line), JPY and GBP (dashed line), GBP and USD (dotted line). The width of the rolling
window is set to 250 observations.

The dependency variation is measured by Kendall's and Pearson's correlation coe�cients:

Figure 8 shows the variation of both coe�cients calculated in a rolling window of width

r = 250. Their dynamic behavior is similar, but not identical. This motivates once more

a time varying copula based model.

5.1.2 Fitting an HMM model

Figures 1, 9, and 10 summarize the analysis using three methods: moving window, LCP,

and HMM HAC. LCP uses moving windows, with varying sizes. To be more speci�c, LCP

is a scaling technique which determines a local homogeneous window at each time point

Härdle et al. (2013). In contrast to LCP, HMMHAC is based on a global modeling concept

rather than a local one. One observes relatively smooth changes of the parameters, see

Figures 1 and 9. HMM HAC is as �exible as LCP, as can be seen from Figures 1, 9, and 10,

since the structure estimated also takes three values and is con�rmed by the variations of

structures estimated from LCP. Moreover, the moving window analysis or LCP can serve

as a guideline for choosing the initial values for our HMM HAC. Figure 11 displays the

number of states for HMM HAC for rolling windows with a length of 500 observations.

A VaR estimation example is to show the good performance of HMM HAC. We generate
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Figure 9: Rolling window for exchange rates: structure (upper) and dependency param-
eters (lower, θ1 (grey) and θ2 (black)) for Gumbel HAC. Rolling window size win = 250.
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Figure 10: HMM for exchange rates: structure (upper) and dependency parameters
(lower, θ1 (grey) and θ2 (black)) for Gumbel HAC.
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Figure 11: Plot of estimated number of states for each window

N = 104 paths with T = 2219 observations, and |W | = 1000 combinations of di�erent

portfolios, where W = {(1/3, 1/3, 1/3)>
⋃

[w = (w1, w2, w3)>]}, with wi = w′i/
∑3

i=1w
′
i,

w′i ∈ U(0, 1). The Pro�t Loss (P&L) function of a weighted portfolio based on assets

ytd is Lt+1
def
=
∑3

d=1wi(yt+1d − ytd), with weights w = (w1, w2, w3) ∈ W . The VaR of a

particular portfolio at level 0 < α < 1 is de�ned as V aR(α)
def
= F−1

L (α), where the α̂w is

estimated as a relative fraction of violations, see Table 4:

α̂w
def
= T−1

T∑
t=1

I{Lt < V̂ aRt(α)},

and the distance between α̂w and α is

ew
def
= (α̂w − α)/α.

If the portfolio distribution is i.i.d., and a well calibrated model is properly mimicking

the true underlying asset process, α̂w is close to its nominal level α. The performance is

measured through an average of αw over all |W | portfolios, see Table 4.

We considered four main models: HMM HAC for 500 observation windows for Gumbel

and rotated Gumbel; multiple rolling window with 250 observations windows; LCP with

m0 = 20 and m0 = 40 with Gumbel copulae (the LCP �nds the optimal length of window

in the past by a sequence of tests on windows of increasing sizes, m0 is a starting window
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Window\α 0.1 0.05 0.01
HMM, RGum 500 0.0980 0.0507 0.0128
HMM, Gum 500 0.0981 0.0512 0.0135
Rolwin, RGum 250 0.1037 0.0529 0.0151
Rolwin, Gum 250 0.1043 0.0539 0.0162
LCP, m0 = 40 468 0.0973 0.0520 0.0146
LCP, m0 = 20 235 0.1034 0.0537 0.0169
DCC 500 0.0743 0.0393 0.0163

Table 4: VaR backtesting results, ¯̂α, where �Gum� denotes the Gumbel copula and
�RGum� the rotated survival Gumbel one.

Window\α 0.1 0.05 0.01
HMM, RGum 500 -0.0204 (0.013) 0.0147 (0.012) 0.2827 (0.064)
HMM, Gum 500 -0.0191 (0.008) 0.0233 (0.018) 0.3521 (0.029)
Rolwin, RGum 250 0.0375 (0.009) 0.0576 (0.012) 0.5076 (0.074)
Rolwin, Gum 250 0.0426 (0.009) 0.0772 (0.030) 0.6210 (0.043)
LCP, m0 = 40 468 -0.0270 (0.010) 0.0391 (0.018) 0.4553 (0.037)
LCP, m0 = 20 235 0.0344 (0.009) 0.0735 (0.026) 0.6888 (0.050)
DCC 500 -0.2573 (0.015) -0.2140 (0.015) 0.6346 (0.091)

Table 5: Robustness relative to AW (DW )

size); and DCC, see Engle (2002), based on 500 observation windows. For all the models

we made an out of sample forecast. To better evaluate the performance, we calculated

the average and SD of eW :

AW =
1

|W |
∑
w∈W

ew, DW =

{
1

|W |
∑
w∈W

(ew − AW )2

}1/2

.

Tables 4 and 5 show the backtesting performance for the described models. One concludes

that HMM HAC performs better than the concurring moving window, LCP, or DCC, as

Aw and Dw are typically smaller in absolute value.

5.2 Application II

Rainfall models are used to forecast, to simulate and to price weather derivatives. The

di�culty in precipitation data is the nonzero point mass at zero and spatial relationships,

see Ailliot, Thompson and Thomson (2009) for Gaussian dependency among locations
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with HMM application.

In this application we extend it to a copula framework. Di�erent from application I,

the marginal distribution here will be varying over states. We propose two methods for

modeling the marginal distributions: one is to take ytk to be censored normal distributions,

with the following equation:

fm
k {ytk} =

 1− pxtk ytk = 0,

pxtk ϕ[{ytk − µxt(k)}/{σxt(k)}]/σxt(k) ytk > 0;

with k = 1, . . . , d as the location, ϕ(·) as the standard normal density, pxtk as the rainfall

occurrence probability for the location k and state xt, and µ
xt(k), σxt(k) the mean and

standard deviation parameters at time t for location k.

A second proposal for the marginal distributions are the gamma distributions:

fm
k {ytk} =

 1− pxtk ytk = 0,

pxtk γ{ytk;α(k)xt , β(k)xt} ytk > 0;

where again the α(k)xt , β(k)xt are the shape and scale parameters for state xt and location

k. We take the joint distribution function to be a truncated version of a continuous copula

function, with the copula density cd(·) denoted by

cd(µ, θ) =

 cc(µ, θ), ytk > 0,∀k,

∂Cc(µ, θ)/∂µk1 . . . ∂µkB , ki ∈ {ytki > 0}, i ∈ 1, . . . , E;
(25)

where E denotes the number of wet places among the d locations, the Cc are the continuous

copula functions, and cc are the continuous copula densities.

Assume that the daily rainfall observations from the same month are yearly indepen-

dent realizations of a common underlying hidden Markov model, whose states represents
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Figure 12: Map of Guangxi, Guangdong, Fujian in China

di�erent weather types. As an example, we take every June's daily rainfall.

log pT (y0:T , x0:T ; v × ω)

=
M∑
i=1

1{x0 = i} log{πifi(y0)}+
T∑
t=1

M∑
i=1

M∑
j=1

1{xt = j}1{xt−1 = i} log{pijfj(yt)}

+
∑
t∈B

M∑
i=1

[
1{xt = i}{log(πi)} −

M∑
j=1

1{xt = i}1{xt−1 = j} log(pji)

]
,

with B is the set of days which are the �rst day of June for each year. We use here 50

years of rainfall data from three locations in China: Guangxi, Guangdong, and Fujian

(Figure 12). The graphical correlation can naturally be captured by the �tting of di�erent

copulae state parameters.

Table 6 presents (with a truncated Gumbel) the estimated three states, the corresponding

di�erent marginal distributions and copula parameters, with estimated initial probability:

π̂Xt = (0.298, 0.660, 0.042) and estimated transition probability matrix:

P̂ =


0.590 0.321 0.298

0.188 0.742 0.660

0.329 0.271 0.042

 .

In our data situation, gamma distributions �t better as marginals. The states �ltered out

represent di�erent weather types. The third states are the most humid states, with a high
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Xt Shape Scale Occur Prob

1 (0.442,0.429,0.552) (139.33,116.70,169.66) (0.252,0.256,0.439)
2 (0.671,0.618,0.561) (273.83,253.25,427.46) (0.806,0.786,0.683)
3 (0.636,1.125,0.774) (381.09,264.83,514.08) (0.667,1.000,0.944)

Table 6: Rainfall occurrence probability and shape, scale parameters estimated from
HMM (data 1957�2006) .

Location True Ĉorr(Yt,1, Yt,2)

1−−2 0.308 0.300 (0.235, 0.373)
2−−3 0.261 0.411 (0.256, 0.586)
1−−3 0.203 0.130 (0.058, 0.215)

Table 7: True correlations, simulated averaged correlations from 1000 samples and their
5% con�dence intervals. 1 Fujian, 2 Guangdong, 3 Guangxi.

rainfall occurrence probabilities, while the second states are drier, and the �rst are the

driest. From the parameters of the gamma distributions, one sees the variance increases

from the �rst to the third states, which indicates a higher chance for heavy rainfall for

the humid states.

To validate our model, 1000 samples of arti�cial time series of 1500 observations were

generated from the �tted model and compared with the original data. Table 7 presents

the true Pearson correlation compared with the estimated ones from the generated time

series. The 5% con�dence intervals of the estimators cover the true correlation, which

implies that the simulated rainfall can describe the real correlation of the data quite well.

Figure 13 shows a marginal plot of the log survival function derived from the empirical

cdf of the real data and generated data. The log survival function is a transformation of

the marginal cdf Fm
k (ytk):

log{1− Fm
k (ytk)}. (26)

Again we see that the 95% con�dence interval can cover the true curve fairly well.

Table 7 contains the autocorrelations and cross-correlations of the real data and the

generated time series. Unfortunately, our generated time series does not show a similar

autocorrelation or cross-correlation. Since there is usually more than one signi�cant lag

of autocorrelation or cross-correlation, the simulated time series mostly only have one lag.
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Figure 13: Log-survivor-function (grey) and 95% prediction intervals (grey) of the sim-
ulated distribution for the �tted model with sample log-survivor-function superimposed
(black)

This is an issue also observed in Ailliot et al. (2009). The precipitation can be modelled

�rst by a vector autoregressive (VAR) type model, adjusted for zero observations. An

alternative could be imposing additional dependency structure on {Yt}.

6 Conclusion and Discussions

We propose a dynamic model for multivariate time series with non-Gaussian dependency.

Applying an HMM for general copulae leads to a rich clan of dynamic dependency struc-

tures. The proposed methodology is helpful in studying �nancial contagion at an extreme

level over time, and naturally it can help in deriving conditional risk measures, such as

CoVaR, Adrian and Brunnermeier (2011). We have shown that dynamic copula models

are well �tting �nancial markets as well as rainfall patterns.

In the �nalcial application, we performed degarching to remove the second order depen-

dencies in the marginal time series. As this is a
√
n step, it will not contaminate the �nal
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estimation, and our simulation study con�rms this. In the rainfall application, we extend

our to model to allow the marginal distribution's parameters also varying over states.

Typically it will adapt to nonstationary marginal time series with trend.

7 Appendix

7.1 Proof of Theorems 3.1 and 3.2

In the HMM HAC framework, let {Xt, t ≥ 0} with transition probability matrix P v,ω =

[pv,ωij ]i,j=1,...,M and initial distribution πv,ω = {πv,ωi }i=1,...,M , where {v, ω} ∈ {V,Ω} denotes

an element in the parameter space {V,Ω} which parametrizes this model, and q is the

number of continuous parameters (note that our parameter space is partly discrete (V ),

and partly continuous (Ω)). We introduce the event {v, ω} because Ω correspond to

events induced by continuous parameters θθθ, sj, pij, πi. Suppose that a real-valued addi-

tive component Bt,j =
∑t

k=0 Yk,j, j ∈ 1, . . . , d, with Bt = (Bt,1, Bt,2, . . . , Bt,d)
> and with

Yk = (Yk,1, Yk,2, . . . , Yk,d)
> a r.v. taking values on Rd, is adjoined to the chain such that

{(Xt, Bt), t ≥ 0} is a Markov chain on D × Rd and

P{(Xt, Bt) ∈ A× (B + b)|(Xt−1, Bt−1) = (i, b)} (27)

= P{(X1, B1) ∈ A×B|(X0, B0) = (i, 0)}

= P(i, A×B) =
∑
j∈A

∫
b∈B

pv×ωij fj{b;θθθ(j)(v × ω), s(j)(v × ω)}µ(db),

where B, b ⊆ Rd, A ⊆ D, fj{b;θθθ(j)(v, ω), s(j)(v, ω)} is the conditional density of Yt given

Xt−1, Xt with respect to a σ-�nite measure µ on Rd, and θθθ(v, ω) ∈ Θ, s(v, ω) ∈ S, j =

1, . . . ,M are the unknown parameters. That is, {Xt, t ≥ 0} is a Markov chain, given

X0, X1, . . . , XT , with Y1, . . . , YT being independent.{Bt, t ≥ 0} is called a hidden Markov

model if there is a Markov chain {Xt, t ≥ 0} such that the process {(Xt, Bt), t ≥ 0} satis�es

(27). Note that in (27), the usual parameterization θθθ(j)(v, ω) = θθθ(j), and s(j)(v, ω) = s(j).

Recall the associated parameter space {V,Ω}, where V consists of a set of discrete �nite
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elements and Ω is associated with the parameters θθθ, [pij]i,j. De�ne s∗ and θθθ∗ associated

with the point {v0, ω0} in the parameter space, as in the following de�nitions:

qT (Y0:T ; v0, ω0)
def
= max

j∈0,...,M
pT (Y0:T |x1 = j; v0, ω0) (28)

H(v0, ω0)
def
= E v0,ω0{− log p(Y0|Y−1, Y−2, . . . ; v

0, ω0)},

where Y−1, . . . , Y−T are a �nite number of past values of the process.

H(v0, ω0, v, ω)
def
= E v0,ω0{log pT (Y0:T ; v, ω)}

Theorem 7.1 (Leroux (1992)). Under A.1�A.5,

lim
T→∞

T−1
E v0,ω0{log pT (Y0:T ; v0, ω0)} = −H(v0, ω0)

lim
T→∞

T−1 log pT (Y0:T ; v0, ω0) = −H(v0, ω0),

with probability 1, under (v0, ω0), and

lim
T→∞

T−1
E v0,ω0{log pT (Y0:T ; v, ω)} = H(v0, ω0, v, ω)

lim
T→∞

T−1 log pT (Y0:T ; v, ω) = H(v0, ω0, v, ω),

with probability 1, under (v0, ω0).

Lemma 7.2. ∀vi, uj, i, j ∈ 1, . . . ,M as weights, the di�erence between M linear combi-

nation of states would lead to

M∑
i=1

vif(y,θθθs(i) , s
(i)) 6=

M∑
j=1

µjf(y,θθθs′(j) , s
′(j)). (29)

Proof. For each s(i), i ∈ 1, . . . ,M associated with dependency parameter θθθs(i) ∈ Rd
+.

So
M∑
i=1

viδs(i) 6=
M∑
j=1

µjδs′(j) , a.e. (30)
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implies
M∑
i=1

viδs(i)δθθθs(i) 6=
M∑
j=1

µjδs′(j)δθθθs′(j) , a.e.. (31)

Also if (30), then the corresponding point in the parameter space (v, ω) would lead to

K(v0, ω0; v, ω), and (v, ω) would not be in the equivalent class of (v0, ω0) as long as the

point v and v0 are di�erent as (30) , (the equivalence class of v0 is de�ned in Leroux

(1992)), and the divergence between (v, ω) and (v0, ω0) is de�ned as K(v0, ω0; v, ω)
def
=

H(v0, ω0, v0, ω0) − H(v0, ω0, v, ω). It is connected to the log likelihood ratio process,

and one can prove that if either (30) or (31) holds (A.2), (29) will hold, and it will

lead to K(v0, ω0; v, ω) > 0. Namely, the divergence can distinguish points from di�erent

equivalent classes.

Next, we study whether plugging in nonparametric estimated margins would a�ect the

consistency results by analyzing the uniform convergence of f̂i(y).

Recall f̂i(y)
def
= c{F̂m

1 (y1), F̂m
2 (y2), . . . , F̂m

d (yd), θ̂θθ
(i)
, ŝ(i)}f̂m

1 (y1)f̂m
2 (y2) · · · f̂m

d (yd), we have ac-

cording to the uniform consistency of copulae density, for all t ∈ 1, . . . , T, i ∈ 1, . . . ,M

max
s(i)

sup
yt1,...,ytd∈Bd,θθθ(i)∈Θ

|ĉ(F̂m
1 (yt1), F̂m

2 (yt2), . . . , F̂m
d (ytd), θθθ

(i), s(i)) (32)

−c(Fm
1 (yt1), Fm

2 (yt2), . . . , Fm
d (ytd), θθθ

(i), s(i))|

≤
d∑
j=1

|c(Fm
1,η1

(yt1), Fm
2,η2

(yt2), . . . , Fm
d,ηd

(ytd)){F̂m
j (ytj)− Fm

j (ytj)}|, (33)

where Fm
j,ηj

(·) def
= Fm

j (·)+ηj[F (·)−Fm
j (·)], ηj = [0, 1], and Fm

j,ηj
(·) lies in the set of admission

function for Fm
j .

Bickel et al. (1998) states that as {Xt} is ergodic, then it following {Yt} is also ergodic.

It is known that any strictly irreducible and aperiodic Markov chain is going to be β−

mixing, Bradley (1986). Then the marginal distribution of Ytm,m = 1, · · · ,M follows a

process that is β mixing with the exponential decay rate, namely βt = O{t−b} for some

constant a. The temporal dependence of the marginal univariate time series Ytm be only
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inherited only from the underlying Markov chain as it is a measurable transformation

of Xt. {Yt} follow HMM HAC, then the mariginal distribution of Ytm would follow a

process that is β mixing with decay rate βt = O(b−t) for some constant b. Then following

the results of Liu and Wu (2010), under assumptions A1-A5, we will have Bickel and

Rosenblatt (1973) type of uniform consistency for the marginal kernel density estimation.

sup
y∈B
|f̂m
i (y)− fm

i (y)| = Op(1), (34)

Also according to Chen and Fan (2005),

√
n sup
y∈B
|F̂m
m(y)− Fm

m(y)| = Op(1). (35)

Finally we will have,

max
s

sup
y1,...,yd∈Bd,θθθ∈E

|ĉ(F̂m
1 (y1), F̂m

2 (y2), . . . , F̂m
d (yd), θθθ

(i), s(i))

−c(Fm
1 (y1), Fm

2 (y2), . . . , Fm
d (yd), θθθ

(i), s(i))| = Op(1)

Therefore, the multivariate distribution at each state would have the following property,

sup
y∈Bd

|f̂j(y)− fj(y)| = Op(1),

where B,Bd are compact sets. So the plug in estimation would not contaminate the

consistency results.

To prove the consistency of our estimation of this parameter, we restate the theorems of

consistency in Leroux (1992) for our parameter space. One needs to show that �rst for

the discrete subspace V c which does not contain any point of the equivalence class of v0,

for v ∈ V c and any arbitrary value of ω ∈ Ω, it holds, with probability 1,

lim
T→∞

[
min
v∈V c

log sup
ω∈Ω

pT (Y0:T ; v, ω)− log pT (Y0:T ; v0, ω0)

]
→ −∞. (36)
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The fact follows directly from lemma 7.2 (the identi�ability of the states parameters ),

and its consequence K(v0, ω0; v, ω) > 0. Theorem 3.1 is proved.

To prove Theorem 3.2, note that limT→∞maxi∈1,...,M P(|θ̂θθ(i) − θθθ∗(i)| > ε|ŝ(i) = s∗(i)) is

conditioning on the event {ŝ(i) = s∗(i)} which asymptotically holds with probability 1.

Therefore it is su�ce to prove, for any ŝ(i) = s(i)

lim
T→∞

min
i∈1,...,M

P(|θ̂θθ(i) − θθθ∗(i)| > ε) = 0. (37)

To show (37), one needs to show that for (V c,Ωc) which does not contain any point of

the equivalence class of (v0, ω0), we have, with probability 1,

lim
T→∞
{log sup

ω∈Ωc

pT (Y0:T ; v0, ω)− log pT (Y0:T ; v0, ω0)} → −∞, (38)

which is implied from the following statement: for any closed subset C of Ωc, there exists

a sequence of open subsets of Oωh
with h = 1, . . . , H with C ⊆ ∪Hh=1Oωh

, such that

lim
T→∞
{max

h
log sup

ω∈Oωh

pT (Y0:T ; v0, ω)− log pT (Y0:T ; v0, ω0)} → −∞. (39)

To prove (39), we have the modi�ed de�nition:

H(v0, ω0, v0, ω;Oωh
)

def
= lim

T
log sup

ω′∈ω0

qT (Y0:T , v
0, ω′)/T. (40)

It can be derived that

H(v0, ω0, v0, ω) < H(v0, ω0, v0, ω0), (41)

for (v0, ω) and (v0, ω0) does not lie in the same equivalence class. Then (41) is a con-

sequence of the identi�ability condition A.2, and this leads to: ∃ε > 0, Tε and Oω such
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that

E log sup
ω′∈Oω

qTε(v
0, ω′)/Tε < E log qTε(v

0, ω)/Tε + ε < H(v0, ω0, v0, ω0)− ε.

Also because log supω′∈Oω
pT (Y0:T , v

0, ω′)/T and log supω′∈Oω
qT (Y0:T , v

0, ω′)/T have the

same limit value, there exists a constant ε > 0,

lim
T→∞

log sup
ω′∈Oωh

pT (y0:T , v
0, ω′)/T = H(v0, ω0, v0, ω;Oωh

) ≤ H(v0, ω0, v0, ω0)− ε.

Now (39) follows.

7.2 Proof of Theorem 3.3

Recall from the last subsection, under A.3,

sup
y∈B
|f̂m
i (y)− fm

i (y)| = Op(1) (42)

√
n sup
y∈B
|F̂m
m(y)− Fm

m(y)| = Op(1). (43)

Let Utm
def
= Fm

m(Ytm), Ũtm
def
= F̂m

m(Ytm), and Ut
def
= (Ut1, · · · , Utd). De�ne the log likelihood

LT (θθθ) = LT (θθθ,U0:T )
def
= log pT (y0:T ), in our case we are working with LT (θθθ, Ũ0:T ). Relying

on the LAN property proved in Bickel et al. (1998), under A.1-A.7,

LT (θθθ∗ + T−1/2θθθ,U1:T )− LT (θθθ∗,U1:T ) = T−1/2θθθ>∂LT (θθθ∗) + T−1θθθ>∂2LT (θθθ∗)θθθ/2 +RT (θθθ),

(44)

where RT (θθθ) tends to zero in probability uniformly of the compact subset of parameter

space of θθθ.

Next we need to prove that uniformly over θθθ

LT (θθθ∗ + T−1/2θθθ,U1:T )− LT (θθθ∗,U1:T )− LT (θθθ∗ + n−1/2θθθ, Ũ1:T ) + LT (θθθ∗, Ũ1:T )

−T−1/2θθθ>
∑
t

∑
m

Wm(Utm) = Op{RT (θθθ)},
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where

Wm(Utm)
def
=

∫
v1,··· ,vd

{1(Utm ≤ vm)−vm}(E ∂atbm/∂θθθ|θθθ=θθθ∗)c(v1, · · · , vd, θθθ∗(m), s∗(m))dv1 · · · dvd

. at(·) and bm(·) are functions de�ned later in the proof.

Similarly, we have

LT (θθθ∗, Ũ1:T )− LT (θθθ∗,U1:T )

= log(

∑M
x0=1 · · ·

∑M
xT =1 πx0

∏T
t=1 pxt−1xt f̃xt(yt)∑M

x0=1 · · ·
∑M

xT =1 πx0
∏T

t=1 pxt−1xtfxt(yt)
)

=

∑M
x0=1 · · ·

∑M
xT =1 πx0

∏T
t=1 pxt−1xt f̃xt(yt)−

∑M
x0=1 · · ·

∑M
xT =1 πx0

∏T
t=1 pxt−1xtfxt(yt)∑M

x0=1 · · ·
∑M

xT =1 πx0
∏T

t=1 pxt−1xtfxt(yt)
+ Op(1)

def
=

∑
t

M∑
x0=1

· · ·
M∑

xT =1

ãt(θθθ
∗){f̃xt(yt)− fxt(yt)}+ Op(1),

where ãt(θθθ
∗) =

πx0
∏t0−1

t=0 pxt−1xt f̃xt (yt)
∏T

t=t0
pxt−1xtfxt (yt)∑M

x0=1···
∑M

xT=1 πx0
∏T

t=1 pxt−1xtfxt (yt)
.

As

f̃xt(yt)− fxt(yt) = c(Ũ0:T , θθθ
∗(xt), s∗(xt))

d∏
m=1

fm
m − c(U0:T , θθθ

∗(xt), s∗(xt))
d∏
j=1

fm
j

=
∑
m

cum{Fm
1 (y1t), F

m
2 (y2t), · · · , Fm

d (ydt), θθθ
∗(xt), s∗(xt)}{F̂m

m(ymt)− Fm
m(ymt)}

d∏
j=1

fm
j + Op(1)

def
=

∑
m

b̃m(θθθ(xt)){F̂m
m(ymt)− Fm

m(ymt)}+ Op(1),

where b̃m(θθθ(xt))
def
= cum{Fm(y1t), F

m(y2t), · · · , Fm(ydt), θθθ
(xt), s(xt)}∏d

j=1 f
m
j , and cum de-

notes the partial derivative of the copulae density w.r.t. um.

40



Then it follows that

LT (θθθ∗ + T−1/2θθθ,U1:T )− LT (θθθ∗,U1:T )− LT (θθθ∗ + T−1/2θθθ, Ũ1:T ) + LT (θθθ∗, Ũ1:T )

= T−1/2θθθ>
M∑
x0=1

· · ·
M∑

xT =1

∑
t

[∑
m

∂ãtb̃m/∂θθθ{F̂m(ymt)− Fm(ymt)}
]

+Op(T
−1/2)

= T−1/2θθθ>
∑
t

∑
m

Wm(Utm) + Op(T
−1/2)

So let

B
def
= E{∂2LT (θθθ∗,U1:T )}

A
def
= {∂LT (θθθ∗,U1:T ) +

∑
t

∑
m

Wm(Utm)}, (45)

Finally we have the estimated θ̂θθ can be represented by θ̂θθ−θθθ∗ = B−1A+Op(T−1/2) coming

from Bickel et al. (1998).
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(a) the simulated rainfall time series.
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Figure 14: Autocorrelations and cross-correlations of the simulated rainfall and original
time series
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