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Abstract

Pricing kernels implicit in option prices play a key role in assessing the risk

aversion over equity returns. We deal with nonparametric estimation of the pricing

kernel (PK) given by the ratio of the risk-neutral density estimator and the histor-

ical density (HD). The former density can be represented as the second derivative

w.r.t. the European call option price function, which we estimate by nonparametric

regression. HD is estimated nonparametrically too. In this framework, we develop

the asymptotic distribution theory of the Empirical Pricing Kernel (EPK) in the

L∞ sense. Particularly, to evaluate the overall variation of the pricing kernel, we

develop a uniform confidence band of the EPK. Furthermore, as an alternative to

the asymptotic approach, we propose a bootstrap confidence band. The developed

theory is helpful for testing parametric specifications of pricing kernels and has a

direct extension to estimating risk aversion patterns. The established results are

assessed and compared in a Monte-Carlo study. As a real application, we test risk

aversion over time induced by the EPK.

Keywords: Empirical Pricing Kernel; Confidence Band; Bootstrap; Kernel Smooth-

ing; Nonparametric Fitting

JEL classification: C00; C14; J01; J31

1 Introduction

A challenging task in financial econometrics is to understand investors’ attitudes towards

market risk in its evolution over time. Such a study naturally involves stochastic discount

factors, empirical pricing kernels (EPK) and state price densities, see Cochrane (2001).

Asset pricing kernels (PKs) summarize investors’ risk preferences and the so called “EPK

paradox” exhibits when PKs are estimated from data, as several studies including Aı̈t-

Sahalia and Lo (2000), Rosenberg and Engle (2002), Brown and Jackwerth (2004) have

shown. Although in all these studies the EPK paradox (non-monotonicity) became evi-

dent, a test for the non-monotone behavior of the pricing kernel has not been devised yet.
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A uniform confidence band is a very simple tool for such shape inspection. Confidence

bands drawn around an EPK based on asymptotic theory and bootstrap is the subject of

our paper. In addition, we relate critical values of our test to changing market conditions

given by exogenous time series.

The common difficulty is that the investors’ preference is implicit in the goods traded in

the market and thus can not be directly observed from the path of returns. A profound

martingale based pricing theory provides us one approach to tackle the problem from a

probabilistic perspective. An important concept involved is the State Price Density (SPD)

or Arrow-Debreu prices reflecting fair prices of one unit gain or loss for the whole market.

Under no arbitrage assumption, there exists at least one SPD, and when a market is

complete, this SPD is unique. Assuming a market is complete, pricing is done by taking

expected payoff under the risk neutral measure, which is related to the pdf of the historical

measure by multiplying with a stochastic discount factor, see Section 2 for a detailed

illustration. From an economic perspective, the price is formed according to the utility

maximization theory, which admits that the risk preference of consumers is connected to

the shape of utility functions. Specifically, a concave, convex or linear utility function

describes the risk averse, risk seeking or risk neutral behavior. Importantly, a stochastic

discount factor can be expressed via a utility function (Marginal Rate of Substitution),

which links the shape of pricing kernel to the risk patterns of investors, see Kahneman

and Tversky (1979), Jackwerth (2000), Rosenberg and Engle (2002) and others.

The above mentioned theory allows us to relate price processes of assets to risk preference

of investors. This amounts to fitting a flexible model and making inference on the dynam-

ics of EPKs over time. A well-known but restrictive approach is to assume the underlying

following a geometric Brownian motion. In this setting, SPDs and HDs are log normal

distributions with different drifts, and the parametrization of PK coincides with the con-

ditional expectation of marginal utilities when assuming a power utility function. Thus

it is decreasing in return and implies overall risk-averse behavior. However, across differ-

ent markets, one observes quite often a non-decreasing pattern for EPKs, a phenomenon

called the EPK paradox, see Chabi-Yo, Garcia and Renault (2008), Christoffersen, Heston
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Figure 1: Examples of estimated inter-temporal pricing kernels (as functions of money-

ness) with fixed maturity 0.00833 (3 days) in years respectively on 17-Jan-2006 (blue),

18-Apr-2006 (red), 16-May-2006 (magenta), 13-June-2006 (violet), see Grith, Härdle and

Park (2013).

and Jacobs (2011).

Two plots of pricing kernels are shown in Figure 1 and Figure 2. Figure 1 depicts inter-

temporal pricing kernels with fixed maturity, while Figure 2 depicts pricing kernels with

two different maturities and their confidence bands. The figures are shown on return scale.

The curves present a bump in the middle and a switch from convexity to concavity in all

cases. Especially, this shows that very unlikely the bands contain a monotone decreasing

curve.

Besides the shape of the confidence bands, the time varying coverage probability of a

uniform confidence band has implications on risk attitudes of investors. At a fixed point

in time, it helps us to test against alternatives for a PK and thus yields insights into time

varying risk patterns. The extracted time varying parameter, realized either from a low

dimensional model for PKs or given by the coverage probability, may thus be econom-

ically analyzed in connection with exogenous macroeconomic business cycle indicators,

4



0.96 0.98 1 1.02 1.04 1.06
−8

−6

−4

−2

0

2

4

6

8

10

Figure 2: Examples of estimated inter-temporal pricing kernels with various maturities

in years: 0.02222 (8 days, red) 0.1 (36 days, black) on 12-Jan-2006 and their confidence

bands.

e.g. credit spread, yield curve, etc., see also Grith, Härdle and Park (2013).

To our knowledge, there are no comparable approaches developed for uniform testing

of the shape of EPK or of any continuous transformations of it. Golubev, Härdle and

Timofeev (2012) suggest a test of monotonicity of the PK, while other literature on

testing PKs, for example, Jagannathan and Wang (1996), Wang (2002), Wang (2003),

serves different purposes like verifying the significance of pricing errors. In contrary to

these papers we do not address the issue of mispricing, but provide a solid statistical tool

to testing the validity of any parametric shape of the PK.

Several econometric studies are concerned with estimating PKs by estimating a SPD and

HD separately. See section 2 for details. It is stressed in Aı̈t-Sahalia and Lo (1998) that

nonparametric inference from pricing kernels gives unbiased insights into the properties of

asset markets. The stochastic fluctuation of EPK as measured by the maximum deviation

has not been studied yet. Nevertheless, the asymptotic distribution of the maximum

deviation and the uniform confidence band linked to it are very useful for model check.
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Uniform confidence bands for smooth curves have first been developed for kernel density

estimators by Bickel and Rosenblatt (1973), extension to regression smoothing can be

found in Liero (1982) and Härdle (1989). But only recently, the results have been carried

over to derivative smoothing by Claeskens and Van Keilegom (2003). Our theoretical path

follows largely their results, but our results are applied to a ratio estimator instead of a

local polynomial estimator. Also we have a realistic data situation that relates coverage

to economic indicators. In addition we perform the smoothing in an implied volatility

space which brings by itself an interesting modification of the results of that paper.

The paper is organized as follows: In Section 2, we describe the theoretical connection

between utility functions and pricing kernels. In Section 3, we present a nonparametric

framework for the estimation of both the HD and the SPD and derive the asymptotic

distribution of the maximum deviation. In Section 4, we simulate the asymptotic behavior

of the uniform confidence band and compare it with the bootstrap method. Moreover, we

also compare the results with other parametric estimation procedures. In Section 5, we

conclude and discuss our results.

2 Empirical Pricing Kernel Estimation

Consider an arbitrary risky financial security with the price process {St}t∈[0,T ]. The

interest rate process r is deterministic. We assume that the market is complete, so there

exists a unique risk neutral measure. By the change-of-measure argument the price at

time t for the nonnegative payoff ψ(ST ) is

Pt
def
= EQ

[
e−rτψ(ST )

]
= E

[
e−rτψ(ST )K(ST )

]
, (1)

where K(ST ) is defined as the pricing kernel or stochastic discount factor at time t, E is the

expectation under the historical measure PST |St(x) and EQ is the expectation under the

risk neutral measure QST |St(x), τ is the time to maturity. Thus the price of the security

at time point t equals the expected net present value of its future payoffs, computed with
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respect to the risk-neutral measure. More explicitly,

Pt =

∫ +∞

0

e−rτψ(x)q(x)dx =

∫ +∞

0

e−rτψ(x)K(x)p(x)dx, (2)

where p(x) and q(x) are the pdf of the historical measure and the risk neutral density or

state price density (SPD) of ST , respectively. Note that p(x) and q(x) are conditional on

the current price St and potentially may depend on other parameters as discussed below.

We skip the indication of conditioning to keep the notation simple. Thus all expectations

hereafter are conditional on St if not stated otherwise.

It follows from (2), that K = q
p

and both the pdf of the future payoff and the SPD are

required to compute the pricing kernel. Several approaches are available to determine the

EPK explicitly. First, we can impose strict parametric restrictions on the dynamics of the

asset prices and on the distribution of the future payoff. Mixture normal distributions

are an example, see Jackwerth (2000). In the case of more complex stochastic processes,

usually no explicit solution is available. A possible technique though is to use the Brow-

nian motion setup as a prior model. Subsequently the SPD is estimated by minimizing

the distance to the prior SPD subject to the constraints characterizing the underlying

securities, see Rubinstein (1994) and Jackwerth and Rubinstein (1996).

Another important perspective of specifying PK is done via the utility function in the

consumption based pricing model, see Heaton and Lucas (1992).

Let the aim of the investor be to solve the problem:

max
Wt

{u(Wt) + E[βu(WT )]},

where u(·) denotes the utility function, Wt the wealth and β the subjective discount factor.

The current price of an asset is

Pt = E[βtψ(ST )], (3)

where βt is the stochastic discount factor and it equals the inter-temporal marginal rate

of substitution. If both ways of pricing in (1) and (3) are admissible, then they lead to the

same price in a complete market. Then the stochastic discount factor is given by β u′(s)
u′(St)
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and is proportional to the PK. This implies that by fixing the utility of the investor we can

determine the PK, which is related to the standard risk aversion measures. In practice,

however, usually the opposite procedure is applied. The PK is estimated via a ratio of

q̂ and p̂ and used to determine the utility function or the risk aversion coefficient of the

investor. Assessment of the temporal dynamics of the latter allows for inferences on the

market risk behavior.

2.1 EPK and option pricing

EPK is calibrated from the data via an estimation of the ratio of the SPD q and the

HD p respectively. In this section we describe the details for this calibration. The latter

can easily be estimated either parametrically or nonparametrically from the time series

of payoffs. On the contrary, the SPD depends on risk preferences and therefore the past

observed stock price time series do not contain enough information. Option prices do

reflect preferences and, therefore, can be used to estimate the SPD q. Let C(St, X, τ, r, σ
2)

denote the European call-option price as a function of the strike price X, price St, maturity

τ , interest rate r and volatility σ. Following Breeden and Litzenberger (1978) the SPD

can be determined from the pricing equation by

q(ST ) = erτ
∂2C

∂X2

∣∣∣
X=ST

. (4)

This result is very general and is valid for all European call options with the payoff

function (ST−X)+ and with the single assumption that the price is twice differentiable. No

additional restrictions on the stochastic process for the underlying or on the preferences of

market participants are needed. In a Black-Scholes (BS) framework, where the underlying

asset price St follows a geometric Brownian motion, the European options are priced via:

C(St, X, τ, r, σ
2) = StΦ(d1)−XerτΦ(d2),

where d1 and d2 are known functions of σ2, τ , X and St. This implies that both q(ST )

and p(ST ) are the densities of lognormal distributions:

q(ST ) =
1

ST
√

2πσ2τ
exp

[
−{log(ST/St)− (r − σ2/2)τ}2

2σ2τ

]
(5)
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and p(ST ) with µ replacing r in (5).

The restrictive parametric form of BS model may often induce modeling bias when fitted

to the data, especially it is not possible to reflect the implicit volatility smile (surface) as a

function of X and τ via (5), see Renault (1997). The latter may be derived in a stochastic

volatility model, such as those of Heston or Bates type. In order to study unbiased risk

patterns, we need to guarantee models for the pricing kernel that are rich enough to reflect

local risk aversion in time and space. This leads naturally to a smoothing approach.

We now describe how to estimate q(·) nonparametrically. Consider call options with ma-

turity τ . We consider the following heteroscedastic nonparametric model for the observed

option prices Yi

Yi = Cτ (Xi) + σ(Xi)εi, i = 1, . . . , nq, (6)

where Yi denotes the observed option price, Xi the strike price and Cτ (·) is a smooth

function of the strike price. For simplicity of notation, we write C(·) for Cτ (·). The

informational content of the model is similar to that of Yuan (2009). We argue that

the perceived errors are due to neglected heterogeneity factors, rather than mispricings

exploited by arbitrage strategies, see Renault (1997). Thus the pricing errors εi are

assumed to be i.i.d. in the cross section. Figure 3 depicts the call option prices used to

calculate a SPD. The observations are distributed, with different variances, at discrete

grid points of strike prices.

As from (4), estimation of q(·) boils down to the estimation of the second derivative

of C(·). The following local polynomial approach allows us to estimate C(·) and the

derivatives of C(·) simultaneously. Assuming that C(X) is continuously differentiable of

order d = 3, it can be locally approximated by

C(X,X0) =
d∑
j=0

Cj(X0)(X0 −X)j, (7)

where Cj(X) = C(j)(X)/j!, j = 0, . . . , d. See Cleveland (1979), Fan (1992), Fan (1993),

Ruppert and Wand (1994) for more details. By assuming a local Gaussian quasi-likelihood

model with L{Y,C(X)} = {Y − C(X)}2/{2σ2(X)} and maximizing the local likelihood,

9



6200 6400 6600 6800 7000 7200 7400
0

100

200

300

400

500

600

Figure 3: Plot of call option prices against strike prices 20010117

the function C(·) can be approximated by Ĉ(X,X0) with:

Ĉ(X) = arg max
C(X)

1

nq

nq∑
i=1

wiKhnq
(Xi −X)L{Yi, C(X,Xi)}, (8)

where C(X) = {C0(X), C1(X), . . . , Cd(X)}>, Khnq
(Xi − X) = K{(Xi − X)/hnq}/hnq

is a kernel function with bounded support and a bandwidth sequence hnq . Following

Aı̈t-Sahalia and Duarte (2003) and Yuan (2009) the weights wi may reflect the relative

liquidity of different options, putting more weight on more heavily traded options. To

simplify the exposition we assume wi = 1 for all i. The above maximum likelihood

approach is equivalent to a minimum weighted square loss approach, since maximizing

the local Gaussian likelihood function leads numerically to the same solution as minimizing

the weighted least squares. The advantage of the likelihood framework is that it can be

easily adapted to non-Gaussian distributions and to heteroscedastic pricing equations.

Solving the above optimization problem in (8) is equivalent to solving:

Anq(X)
def
=

1

nq

nq∑
i=1

Khnq
(Xi −X)

∂Q{Yi, C(X,Xi)}
∂C

Xi = 0, (9)

with Xi
def
= (1, Xi − X, (Xi − X)2, (Xi − X)3)>. We are concerned with 2!Ĉ2(x) =

∂2C(X)
∂X2

∣∣
X=x

, which is shown by Breeden and Litzenberger (1978) to be proportional to
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q(x). Note that the described procedure does not guarantee the feasibility of the estima-

tor as a density. The constrained estimator of Aı̈t-Sahalia and Duarte (2003) makes the

large sample results below invalid. Therefore, we rely on the consistency and asymptotic

validity of q̂ as a density estimator. This approach is justified by large samples avail-

able in financial applications. A multiplicative renormalizing of the estimator will shift

the EPK curve and the corresponding confidence bands, while keeping the results of the

monotonicity test unchanged. Furthermore, the renormalization introduces a bias, which

is difficult to tackle analytically. Additional improvement of the estimator is elaborated

in Section 3.1.

Note that we assume the parameter C(·) and σ(·) to be orthogonal to each other. Thus we

can estimate them separately as in a single parameter case. The following lemma states

the results on the existence of the solution and its consistency.

Lemma 1. Under conditions (A1) − (A7), there exists a sequence of solutions to the

equations

Anq(x) = 0,

with x being an element of a compact set E, such that

sup
x∈E
|q̂(x)− q(x)| = O

[
h−2nq
{log nq/(nqhnq)}1/2 + h2nq

]
a.s.

Proof. The statement follows from Theorem 2.1 of Claeskens and Van Keilegom (2003).

The HD p(x) can be estimated separately from the SPD using historical prices St, . . . , St+np+τ−1

(t+ np + τ − 1 < T ) of the underlying asset. The nonparametric kernel estimator of p(x)

is given similarly to Aı̈t-Sahalia and Lo (2000) by

p̂return(x) = n−1p

np−1∑
j=0

Khnp
{x− log(St+j+τ/St+j)} ,

where Khnp
is a kernel function with bounded support and the bandwidth hnp . This kernel

should necessarily coincide with the kernel for estimating SPD q(·). Also as in Aı̈t-Sahalia
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and Lo (2000), the density of log-returns can be estimated as:

p̂return(x) = St exp(x)p̂{St exp(x)}.

Alternatively, to eliminate the impact of serial dependence of overlapping returns over τ

periods, we can simulate independent pathes of the price process and use it to estimate

the density of ST , then np will become the number of paths simulated for the time T .

Under assumption (A5), we know that

sup
x∈E
|p̂(x)− p(x)| = O{(nphnp/ log np)

−1/2 + h2np
} a.s. (10)

Remark The uniform convergence results for estimation of HD in the i.i.d case follows

from Bickel and Rosenblatt (1973), and recently extended by Liu and Wu (2010) (Theorem

2.3) to the serial dependent data case.

The EPK is then given by the ratio of the estimated SPD and the HD p(x) i.e. K̂(x) =

q̂(x)/p̂(x). The next lemma provides the linearization of the ratio, which is important for

further statements about the uniform confidence band of the EPK.

Lemma 2. Under conditions (A1)− (A7) it holds

sup
x∈E
|K̂(x)−K(x)|

= sup
x∈E

∣∣ q̂(x)− q(x)

p(x)
− p̂(x)− p(x)

p(x)
· q(x)

p(x)
− {q̂(x)− q(x)}{p̂(x)− p(x)}

p2(x)

∣∣
+O[max{(nphnp/ log np)

−1/2 + h2np
, h−2nq
{nqhnq/ log nq}−1/2 + h2nq

}] a.s.. (11)

This lemma implies that the stochastic deviation of K̂ from K can be linearized into a

stochastic part containing the estimator of the SPD and a deterministic part containing

E[p̂(x)]. The uniform convergence can be proved by dealing separately with the two

parts. The convergence of the deterministic part is shown by imposing mild smoothness

conditions, while the convergence of the stochastic part is proved by following the approach

of Claeskens and Van Keilegom (2003). Theorem 1 formalizes this uniform convergence

of the EPK.

Theorem 1. Under conditions (A1)− (A7), it holds

sup
x∈E
|K̂(x)−K(x)| = O[max{(nphnp/ log np)

−1/2+h2np
, h−2nq
{nqhnq/ log nq}−1/2+h2nq

}] a.s.
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The proof is given in the appendix. The theoretical optimal rate of bandwidth follows by

minimizing the bias and variance term together in Theorem 1 leading to (nq log nq)
−1/9. In

our simulation and applications, we use the bandwidth sequence which minimizes coverage

error by performing a grid search, see Claeskens and Van Keilegom (2003).

3 Confidence intervals and confidence bands

Confidence intervals characterize the precision of the EPK for a given fixed value of the

payoff. This allows to make inference about the PK at each particular strike price, but does

not allow conclusions about the global shape. The confidence bands, however, characterize

the whole EPK curve and offer therefore the possibility to test for shape characteristics.

In particular, it is a way to check the persistence of the bump as observed. Given a certain

shape, one may verify the restriction imposed by the power utility and obtain insights

on the market risk aversion. In addition, the confidence bands can be used to measure

the global variability of the EPK. Also, the proportion of the BS-based EPK covered

in nonparametric bands can be used as a measure of global risk aversion. The global

variability is measured by the variance function of EPK and the BS-based EPK means

the parametric fitting achieved by assuming that the underlying follows the geometric

Brownian motion.

A confidence interval for the EPK at a fixed value x requires the asymptotic distribution of

p̂(x) and q̂(x). Hereafter, we use L to denote the convergence in law. Under (A1)− (A7):

√
nphnp{p̂(x)− p(x)} L−→ N{0, p(x)

∫
K2(u)du} (12)

and √
nqh5nq

{q̂(x)− q(x)} L−→ N{0, σ2
q (x)}, (13)

where σ2
q (x) = [B(x)−1L−1TL−1](3,3), with B(x) equal to the product of the density fX(x)

of the strike price and the local Fisher information matrix I{C(x)}. The matrices L and

T are given by L
def
= [
∫
ui+jK(u)du]i,j and T

def
= [
∫
ui+jK2(u)du]i,j with i, j = 0, . . . , 3.
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This implies the asymptotic normality of the EPK at a fixed payoff x. More precisely√
nqh5q{K̂(x)−K(x)} L−→ N{0, σ2

q (x)/p2(x)}. (14)

The variance of K̂ = K̂(x) is given by

Var{K̂(x)} ≈ {p(x)}−2B−1(x)L−1TL−1. (15)

The above results on the limiting distribution of p̂, q̂ and K̂ can directly used to establish

confidence intervals and the Bonferroni-type confidence bands for the considered densities.

This approach, as argued by Eubank and Speckman (1993), are asymptotically conserva-

tive even though they do not explicitly account for potential bias. These bands are taken

as benchmarks for comparison purposes in the simulation study.

Let D̂nq(x) be the standardized process with the estimated variance of the EPK:

D̂nq(x)
def
= n1/2

q hnq

5/2{K̂(x)−K(x)} / [V̂ar{K̂(x)}]1/2.

Relying on the linearization in Lemma 2, we derive the confidence band for K.

Theorem 2. Under assumptions (A1)-(A5) it follows

P

[
(−2 log hnq)

1/2

{
sup
x∈E
|D̂nq(x)| − cnq

}
< z

]
−→ exp{−2 exp(−z)},

where cnq = (−2 log hnq)
1/2 + (−2 log hnq)

−1/2{xα + log(R/2π)}.

The (1− α)100% confidence band for the pricing kernel K is thus:

[f : sup
x∈E
{|K̂(x)− f(x)| / V̂ar(K̂)1/2} ≤ Lα],

where Lα
def
= 2!(nqh

5
nq

)−1/2cnq , xα = − log{−1/2 log(1− α)} and

R
def
= (L−1PL−1)3,3/(L

−1TL−1)3,3

with P
def
= [
∫
ui+jK ′(u)}2du− 1

2
{i(i− 1) + j(j − 1)}

∫
ui+j−2K2(u)du]i,j=0,...,3.

For the implementation with real data we need a consistent estimator of Var(K̂). For fixed

τ , we rely on the delta method and use the empirical sandwich estimator, see Carroll,

Ruppert and Welsh (1998). The latter method provides the variance estimator for the

parameters obtained from estimating equations given by (9).
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To estimate the variance function of the EPK we consider time series of the option prices

and the corresponding strike prices, (Xit, Yit), i = 1, · · · , nq; t = t + 1, · · · , t + τ , we

have

V̂ar{K̂(x)} = {p̂(x)}−2V (x)−1U(x)V (x)−1, (16)

where

V (x)
def
=

1

nqτ

nq∑
i=1

t+τ∑
j=t+1

K2
hnq

(Xij − x)

[
∂

∂C
Q{Yij ; Ĉ(x,Xij)}

]2
(H−1nq

Xij)(H
−1
nq

Xij)
>,(17)

U(x)
def
=

1

nqτ

nq∑
i=1

t+τ∑
j=t+1

K2
hnq

(Xij − x)

[
∂2

∂2C
Q{Yij ; Ĉ(x,Xij)}

]
(H−1nq

Xij)(H
−1
nq

Xij)
>,(18)

where Xij
def
= (1, · · · , (Xij − x)3)> and Hnq

def
= diag{1, . . . , h3nq

}. The estimator is consis-

tent in our setup as motivated in Appendix A.2 of Carroll et al. (1998).

It is important to note that the nonparametric estimators are biased, which leads to

potentially wrongly centered confidence bands and misleading coverages.

To overcome this problem we deploy the bias-correcting technique of Xia (1998), which

is based on the local polynomial estimation. It is used to correct the bias in estimated

SPD, while the bias in the HD is corrected using the additive bias correction method

mentioned in Jones, Linton and Nielsen (1995). In the next step we correct the bias in

the EPK using the linearization in Lemma 2. The estimated leading term bias for EPK

consists of the estimated bias of q̂(x) and of p̂(x) with a bigger bandwidth than what used

in estimation. This is the oversmoothing idea proposed by Eubank and Speckman (1993).

3.1 Bootstrap confidence bands

In this subsection, we discuss a bootstrap version of the confidence band to obtain possi-

bly better finite sample performance. The slow rate of convergence is known to us by Hall

(1991), who showed that for density estimators, the supremum of {q̂(x)− q(x)} converges

at the slow rate (log nq)
−1 to the Gumbel extreme value distribution. Therefore the con-

fidence band may exhibit poor performance in finite samples. An alternative approach is

to use the bootstrap method. Claeskens and Van Keilegom (2003) used smooth bootstrap
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for the numerical approximation to the critical value. Here we consider the bootstrap

technique of the leading term in Lemma 2

sup
x∈E
| q̂(x)− q(x)

p(x)
|.

We resample data from the smoothed bivariate distribution of (X, Y ) with the density

estimator given by estimator is:

f̂(x, y) =
σ̂X

nqhnqhnq σ̂Y

nq∑
i=1

K
{Xi − x

hnq

,
(Yi − y)σ̂X
hnq σ̂Y

}
,

where σ̂X and σ̂Y are the estimated standard deviations of the distributions of X and

Y . The motivation of using the smooth bootstrap procedure is that the Rosenblatt

transformation requires the resampled data (X∗, Y ∗) to be continuously distributed.

From the re-sampled data sets, we calculate the bootstrap analogue of the leading term

in Lemma 2:

sup
x∈E
| q̂
∗(x)− q̂(x)

p̂(x)
|.

One may argue that this resampling technique does not correctly reflect the bias arising in

estimating q. Therefore, Härdle and Marron (1991) use therefore a resampling procedure

based on a larger bandwidth. This refined bias correcting bootstrap method does not

need to be applied in our case, since our bandwidth conditions ensure a negligible bias.

Correspondingly, we define the one-step estimator for the stochastic deviation:

h2nq
{K̂∗(x)− K̂(x)} = −{p(x)}−2 {U ∗(x)−1H−1

nq
A∗nq

(x)}3,3,

with U ∗(x) and A∗nq
(x) as U(x) and Anq(x) defined previously with bootstrap data

(X∗i , Y
∗
i ) and the variance given by:

Var{K̂(x)} ≈ {p(x)}−2B(x)−1L−1PL−1, (19)

where B(x) is defined after equation (13).

Corollary 1. Assume conditions (A1)-(A7), a (1−α)100% bootstrap confidence band for

the EPK K(x) is:

[f(x) : sup
x∈E
{|K̂(x)− f(x)|V̂ ar(K̂)−1/2} ≤ L∗α],
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where the bound L∗α satisfies

P∗[−{U(x)−1H−1
nq

A∗nq
(x)}3,3/{B(x)−1L−1PL−1}3,3 ≤ L∗α] = 1− α.

The estimator V̂ ar(K̂) is computed in a similar fashion as in the previous section.

3.2 Confidence bands based on smoothing implied volatility

Although the nonparametric estimator of the PK is reasonable in theoretical sense, it

often fails to provide stable and economically treatable estimators with real data. One

way to stabilizing the empirical SPD is the use of data-driven local bandwidths (see Vieu

(1993)) or a multiple-testing-type adaptive technique of Lepski and Spokoiny (1997).

These alternative methods are tools of general purpose and address the bias-variance

trade-off locally. They are known to be either asymptotically optimal or to have a near

oracle property. Although the adaptive bandwidth provides us with optimal estimators,

it is still possible that the noise is too large and the algorithm fails to provide a curve with

a small bias and easy interpretation. This point is stressed in Rookley (1997): “implied

volatilities on the other hand tend to be less volatile and differences in implied volatilities

convey much more economic information than option prices alone, as implied volatilities

already embed much of the fundamental information available”.

We follow, however, an alternative approach and stabilize the empirical SPD by a two-

step procedure as in Rookley (1997) and Fengler (2005). At the first step, we estimate

the implied volatility (IV) function by a local polynomial regression. At the second step,

we plug the smoothed IV into the BS formula to obtain a semiparametric estimator of

the option price. This approach relies on a bijective transformation of the call prices

to the IV space and reflects the tendency of investors to quote the options in terms of

IV. Aı̈t-Sahalia and Lo (1998) used a similar semiparametric technique for dimension

reduction purposes. Note that the procedure does not require the BS model to hold, but

leads to finite sample improvements, while being asymptotically equivalent to the original

estimator (see Theorem 3). Thus we impose more assumptions on the functional form
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of the call price function and focus only on the nonparametric structure of the volatility

surface. Thus the noise is relevant only in the estimation of the volatility surface. However,

it is well recognized that the volatility is less noisy and its shape is more tractable and

easy to interpret economically. Moreover, we can improve our two-step procedure further

by adopting adaptive techniques for the volatility surface.

Formally we smooth the IV using a local polynomial regression in moneyness M , with

the implicit assumption on the pricing formula is homogenous of degree 1 w.r.t. the asset

price and the strike price as proved in Renault (1997). In the absence of dividends, the

moneyness is defined at time t as Mit = St/Xi. The heteroscedastic model for the IV is

given by:

σi = σ(Mit) +
√
η(Mit)υi, i = 1, . . . , nq, (20)

where υi are the i.i.d. errors with zero mean, unit variance and η(·) is the volatility

function. We make the same assumptions about the implied volatility σ(·) as we did for

the option prices C(·) in Section 2.1.

Defining the rescaled call option price c(Mit) = C(Xi)/St, we obtain from the BS formula

c(Mit) = c{Mit;σ(Mit)} = Φ{d1(Mit)} −
e−rτΦ{d2(Mit)}

Mit

,

where

d1(Mit) =
log(Mit) +

{
r + 1

2
σ(Mit)

2
}
τ

σ(Mit)
√
τ

, d2(Mit) = d1(Mit)− σ(Mit)
√
τ .

Combining the result of Breeden and Litzenberger (1978) with the expression for c(Mit)

leads to the SPD

q(x) = erτ
∂2C

∂X2

∣∣∣
X=x

= erτSt
∂2c

∂X2

∣∣∣
X=x

(21)

with

∂2c

∂X2
=

d2c

dM2

(
M

X

)2

+ 2
dc

dM

M

X2
. (22)

As it is shown in the appendix the derivatives in the last expression can be determined

explicitly and are functions of V
def
= σ(M), V ′

def
= ∂σ(M)/∂M and V ′′

def
= ∂2σ(M)/∂M2.
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We estimate the latter quantities by the nonparametric local polynomial regression for

the IV of the from

σ(Mit) ≈ V (M) + V ′(M)(Mit −M) +
1

2
V ′′(M)(Mit −M)2,

for M near Mit. The respective estimators are denoted by V̂ , V̂ ′ and V̂ ′′. Plugging the

results into (21)-(22) we obtain the estimator of SPD in the smoothed IV space. Assuming

that the IV process fulfills the (A1)− (A7) in the appendix instead of C(·), we conclude

that Theorem 2.1 of Claeskens and Van Keilegom (2003) holds also for V̂ , V̂ ′ and V̂ ′′.

Note that the convergence rate of V̂ and V̂ ′ is lower than of V̂ ′′. Relying on this fact, we

state the asymptotic behavior of q̂(x)− q(x) in the next theorem.

Theorem 3. Let σ(·) satisfy the assumptions (A1)-(A7). Then with M = St/x it holds√
nqh5nq

{q̂(x)− q(x)} L−→ N{0, r(M)2σ2
V (M)}, (23)

where

r(M)
def
= erτSt

M2

x2

[
ϕ{d1(M)}

{√
τ/2− log(M) + rτ

V (M)2
√
τ

}
− e−rτϕ{d2(M)}

{
−
√
τ/2− log(M) + rτ

V (M)2
√
τ

}
/M
]

and σ2
V (M)

def
= [BV (M)−1L−1TL−1](3,3), with σ2

V (M) defined as in (15).

Proof. The proof is given in the appendix.

Theorem 3 allows us to construct the confidence bands of the SPD estimated semipara-

metrically using the confidence bands for the IV. The variance of the estimator is obtained

by the delta method in the following way

Var{q̂(x)− q(x)} =
( ∂q

∂V ′′

)2
Var{V̂ ′′(M)− V ′′(M)}.

The variance Var{V̂ ′′(M) − V ′′(M)} is estimated using a sandwich estimator similarly

to (16), and ∂q
∂V ′′

= erτSt
M2

x2

[
ϕ{d1(M)}

{√
τ/2 − log(M)+rτ

V (M)2
√
τ

}
− e−rτϕ{d2(M)}

{
−
√
τ/2 −

log(M)+rτ
V (M)2

√
τ

}
/M
]
. Here we have proved that it is sufficient to consider only the variance of

the second derivative of V , as the other terms involved are of higher order.
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3.3 Extension to dependent data

In the previous sections we have assumed independent data in the estimation of both the

historical density and the SPD. Violation of this assumption may lead to misspecified

asymptotic results and wrong confidence bands. The assumption is, however, feasible

in our study for both densities. The confidence bands for a simple density estimator of

time series data are analysed by Liu and Wu (2010, see Section 2.1) and can be directly

transferred to the historical density in our setup. Note however, that the impact of these

results on the confidence bands for the EPK is flattened by the higher convergence rate

of the historical density. Regarding the SPD note that assuming sufficient liquidity we

can use options only with a given maturity traded on a single day. This implies that the

data used to estimate SPD is not a time series data and there is no need to take the serial

correlation into account.

Nevertheless, to serve a general purpose estimation, it is still interesting to generalize our

theoretical results to dependent data. Liu and Wu (2010) developed uniform confidence

bands for kernel density estimators and Nadaraya-Watson estimation for a general class

of time series models. In this section we adopt their approach to our problem. We extend

the setup to time dependence and consider the model as in (6)

Yi = C(Xi) + σ(Xi)εi, i = 1, · · · , nq,

with the strike prices being a causal stationary process Xi = G(· · · , ηi−1, ηi), ηi are i.i.d.

and independent with εi.

We focus on the estimation of C(·) as in (8) and keep σ(·) known for the derivations in

this subsection. The physical dependence measure θ(i,γ)
def
= ‖Xi−X ′i‖γ = (E |Xi−X ′i|γ)1/γ,

where X ′i is a coupled process of Xi with η0 is replaced by an i.i.d. copy of η′0, i.e. X ′i =

G(η′0, · · · , ηi−1, ηi). Additionally define the dependence measure with coupled whole past

as Ψi,γ
def
= ‖G(η0, · · · , ηi−1, ηi)−G(η′0, · · · , η′i−1, η′i)‖γ. Suppose that ||Xi||κ ≤ ∞ for some

κ > 0. Let κ′ = min(κ, 2) such that Θnq =
∑nq

i=1 θ
κ′/2
(i,κ′). Define Znq

def
=
∑∞

k=−nq
(Θnq+k −

Θk)
2 and ξ̃i

def
= (· · · , εi−1, εi, · · · , ηi−1, ηi).
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(A8) Assume (||Xi||κ ≤ ∞ for κ > 0. The density of ηi is positive and uniformly bounded

over its whole support up to the third derivative. There exists a constant M < ∞

such that sup[|fXnq |ξ̃nq−1
(x)| + |f ′

Xnq |ξ̃nq−1
(x)| + |f ′′

Xnq |ξ̃nq−1
(x)|] ≤ M almost surely. εi has

bounded fourth moments. Ψnq ,γ = O(n−rq ) for some γ and r > δ1/(1− δ1), 0 < δ1 < 1/4.

There exists a constant δ such that 0 < δ ≤ δ1 < 1 and hnq = O(n−δq ), n−δq = O(hnq).

Furthermore θ(nq ,κ) = O(ρnq) for some κ > 0 and 0 < ρ < 1.

Let F̂nq(x) be the standardized process:

F̂nq(x)
def
= n1/2

q hnq

5/2{q̂(x)− q(x)} / [σ̂q(x)]1/2.

Theorem 4. Under assumptions (A1)-(A6), (A8), hnq = O{(nq log nq)
−1/9}, Znqh

3
nq

=

O(nq log nq), it follows

P

[
(−2 log hnq)

1/2

{
sup
x∈E
|F̂nq(x)| − cnq

}
< z

]
−→ exp{−2 exp(−z)},

where cnq = (−2 log hnq)
1/2 + (−2 log hnq)

−1/2{xα + log(R/2π)}.

Liu and Wu (2010) note an interesting dichotomy phenomenon, where the rate of conver-

gence is the consequence of an interplay between the strength of dependency and the band-

width hnq . Accordingly, we suggest to undersmooth as a smaller bandwidth would both

reduce the bias and the effect of dependency. The rate of hnq is set to O{(nq log nq)
−1/9}.

4 Monte-Carlo study

The practical performance of the above theoretical considerations is investigated via two

Monto-Carlo studies. The first simulation aims at evaluating the performance under the

BS hypothesis, while the second simulation setup does the same under a realistically

calibrated surface. The confidence bands are applied to DAX index options. We first

study the confidence bands under a BS null model (Section 4.1). Naturally, without

volatility smile, both the BS estimator and nonparametric estimator are expected to be

covered by the bands. While in the presence of volatility smile (Section 4.2), we expect

our tests to reject the BS hypothesis in most cases.
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4.1 How well is the BS model covered?

In the first setting, we calibrate a BS model on day 20010117 with the interest rate set

equal to the short rate r = 0.0481, S0 = 6500, strike prices in the interval [6000, 7400].

We refer to Aı̈t-Sahalia and Duarte (2003) on the sources of the noise and use an identical

simulation setting, with the noise being uniformly distributed in the interval [0, 6]. Figure

4 is a scatter plot of generated observations of European call option prices against strikes,

the data is clustered in discrete values of the strike price. Recall that bandwidths in the

following context are all selected to minimize pricing error using a leave-one-out approach

on the bivariate grid [1/np; 1]× [1/nq; 1].

Figure 5 shows a nonparametric estimator for the SPD and a parametric BS estimator.

The two estimators roughly coincide except for a small wiggle, thus the bands drawn

around the nonparametric curve also fully cover the parametric one. The accuracy is

evaluated by calculating the coverage probabilities and average area within the bands,

see Table 1(see the rows labeled “null”). The coverage probabilities is determined via 500

simulations, whenever the hypothesized curve calculated on a grid of 100. The coverage

probability approaches its nominal level with increasing sample size, but never reaches

it. This may well be attributed to the above mentioned poor convergence of Gaussian

maxima to the Gumbel distribution. The area within the bands reflects the stability of

the estimation procedure. The bands get narrower with increasing sample size.

The bias correction for the SPD follows the approach of Xia (1998). The HD is corrected

as in Jones et al. (1995). The bias correction for EPK relies on the linear term from

Lemma 2. The correction of the bands mimics the Bonferroni correction in Eubank and

Speckman (1993) and is based on the asymptotic confidence intervals in (13) and (14). We

conclude that the bias correction approach and the Bonferroni correction are not better

than the proposed method for all sample sizes.

HDs are estimated from simulated stock prices following geometric Brownian motion with

µ = 0.23. A BS EPK estimator could be tested using the above procedure. Due to bound-

ary effects, we concentrate on moneyness (Mt = St/X) in [0.95, 1.1]. Figure 6 displays
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Level Maturity Method nq = 300 450 600

5% (null) 3M EPK 0.782(2.54) 0.798(2.49) 0.802(2.38)

EPK (bias) 0.798(2.51) 0.800(2.43) 0.802(2.31)

EPK (Bonfer.) 0.673(2.98) 0.697(2.88) 0.754(2.76)

SPD 0.906(2.40) 0.914(2.20) 0.923(1.99)

SPD (Bonfer.) 0.873(2.68) 0.924(2.57) 0.929(2.44)

6M EPK 0.860(2.50) 0.875(2.43) 0.890(2.41)

EPK (bias) 0.862(2.53) 0.883(2.41) 0.899(2.42)

EPK (Bonfer.) 0.785(2.90) 0.801(2.67) 0.824(2.74)

SPD 0.896(2.44) 0.906(2.13) 0.920(2.07)

SPD (Bonfer.) 0.883(2.73) 0.894(2.69) 0.903(2.52)

10%(null) 3M EPK 0.706(2.47) 0.736(2.34) 0.762(2.23)

EPK (bias) 0.712(2.45) 0.737(2.33) 0.771(2.23)

EPK (Bonfer.) 0.673(2.33) 0.686(2.12) 0.734(2.01)

SPD 0.795(2.17) 0.812(2.06) 0.853(1.88)

SPD (Bonfer.) 0.764(2.12) 0.801(2.00) 0.833(1.98)

6M EPK 0.729(2.50) 0.774(2.23) 0.829(2.31)

EPK (bias) 0.713(2.47) 0.753(2.26) 0.835(2.30)

EPK (Bonfer.) 0.671(2.86) 0.745(2.88) 0.798(2.72)

SPD 0.800(2.34) 0.814(2.08) 0.860(1.94)

SPD (Bonfer.) 0.763(2.55) 0.800(2.46) 0.847(2.36)

5% (alter.) 3M EPK 0.512(2.43) 0.178(2.23) 0.050(2.02)

EPK (bias) 0.543(2.42) 0.235(2.27) 0.145(1.99)

EPK (Bonfer.) 0.372(2.51) 0.239(2.37) 0.099(2.12)

6M EPK 0.592(2.53) 0.410(2.17) 0.178(2.02)

EPK (bias) 0.541(2.49) 0.349(2.12) 0.251(2.01)

EPK (Bonfer.) 0.331(2.34) 0.136(2.16) 0.150(2.15)

10% (alter.) 3M EPK 0.258(2.12) 0.050(2.04) 0.030(2.01)

EPK (bias) 0.268(2.13) 0.043(2.01) 0.001(2.00)

EPK (Bonfer.) 0.148(2.78) 0.030(2.61) 0.001(2.54)

6M EPK 0.375(2.22) 0.410(2.13) 0.178(2.00)

EPK (bias) 0.362(2.21) 0.432(2.13) 0.176(2.01)

EPK (Bonfer.) 0.231(2.46) 0.221(2.35) 0.110(2.25)

Table 1: Averaged, coverage probability (area) of the uniform confidence band over 500

simulations in different cases. (bias) means bias correction, (Bonfer.) means Bonferoni

correction.
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Figure 4: Generated noisy BS call option prices against strike prices.

the nonparametric EPK with confidence band and the BS EPK covered in the band. We

observe that the BS EPK is strictly monotonically decreasing. The summary statistics

are given in Table 1, due to the additional source of randomness introduced through

the estimation of p(x), the coverage probabilities are less precise than the corresponding

coverage probabilities for SPD. Nevertheless, the probabilities are getting closer to their

nominal values and the bands get narrower when the sample size increases.

4.2 How well is the band in reality?

Section 4.1 studied the performance of the bands under the null hypothesis with BS

assumption, while this section is designed to investigate the performance of the bands

when the null hypothesis is violated by a realistic volatility smile observed in the market.

Keeping the parameters identical to the setup of the first study, we generated the data

with a smoothed volatility function based on data for or options traded on 20010117 with

τ = 3M,6M to maturity.

Figure 7 and 8 report the estimators for SPD and EPK. The bands do not cover the BS
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SPD and its uniform confidence band

Figure 5: Estimation of SPD (red), bands (black) and the BS SPD (blue), with hnq =

0.085, α = 0.05, nq = 300.

estimator. Correspondingly, Table 1 (see the rows labeled “alter.”) show the coverage

probabilities, which rapidly decrease when sample sizes are increasing. However, the area

within the bands does not change significantly when compared with the results of Section

4.1. We conclude that the confidence bands are useful for detecting the deviation from

the BS model.

Note that the suggested method works for other processes, for example, the Heston model,

which allows for flexible forms of the pricing kernels. The simulation study confirms the

good performance of the confidence bands. The results are not reported here for the

brevity of presentation.

5 An illustration with DAX data

This section aims at illustrating the functionality of our bands by checking the coverage

of BS EPK, which indicates how much the market risk behavior deviates from the BS

model. The procedure can be seen as a test of monotonicity of pricing kernels. The

available tests for monotonicity (Ghosal, Sen and van der Vaart (2000), Lee, Linton and
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Figure 6: Estimation of EPK (red), bands (black) and the BS EPK (blue), with hnq =

0.085, hnp = 0.060 and α = 0.05, np = 2000, nq = 300.

Whang (2009), Chetverikov (2012)) work for (regression) functions and not for derivative

estimation as required here. We take a dynamic point of view by considering the EPK

estimated at different dates.

5.1 Data

In contrast to previous studies that are mainly based on S&P500 data, we focus on

intraday European options on the DAX options. The source is the European Exchange

EUREX and data available by C.A.S.E., RDC SFB 649 (http://sfb649.wiwi.hu-berlin.de)

in Berlin. The extracted observations for our analysis cover the period between 1998 and

2008. The smoothing in volatility approach described in Section 3.2 is applied to estimate

the EPK (denoted as Rookley method). As we cannot find traded options with the same

maturity on each day, we consider options with maturity 15 days (10 trading days) across

several years. Specifically, we extract a time series of options for every month from Jan

2001 to Dec 2006; this adds up to 63 days.
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Figure 7: Plot of confidence bands (black), nonparametrically estimated SPD (red), the

fitted BS (blue) SPD with simulated volatility smile, nq = 300, hnq = 0.066, α = 0.05.

To make sure that the data correctly represents the market conditions, we use several

cleaning criteria. In our sample, we eliminate the observations with τ < 1D and IV > 0.7.

Also, we skip the option quotes violating general no-arbitrage condition i.e. S > C >

max{0, S − Xe−rτ}. Due to the put-call parity, both out-of-the-money call options and

in-the-money puts are used to compute the smoothed volatility surface. The median of

intra day stock prices is used to compute the SPD. We use a window of 500 returns for

nonparametric kernel density estimators of HD.

Figure 9 describes the relative position of the HD and SPD on a specific day, the EPK

peak is apparently created through the different probability mass contributions at different

moneyness states.

27



0.9 0.95 1 1.05 1.1 1.15
-1

-0.5

0

0.5

1

1.5

2

Figure 8: Plot of confidence bands (black), nonparametrically estimated EPK (red), the

fitted BS (blue) EPK with simulated volatility smile np = 2000, nq = 300, hnq = 0.063,

hnp = 0.011, α = 0.05.
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Figure 9: Plot of estimated SPD on 20060228 (Rookley, hnq = 0.063, black) and HD

(hnp = 0.0106, blue).
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5.2 Estimation of DAX EPK and its uniform confidence band
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(c) 060305, τ = 20D
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Figure 10: Estimated BS EPK (black), Rookley EPK (red), uniform confidence band

(blue), α = 0.05.

We consider two specifications for the pricing kernels. In the first specification, the BS

pricing kernels have a marginal rate of substitution with power utility function:

K(M) = β0M
−β1 , (24)

where β0 is a scaling factor and β1 determines the slope of pricing kernel. Thus the BS

calibration is realized by linearly regressing the (ordered) log-EPK on log-moneyness. In
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the second specification, we construct the nonparametric confidence bands as described

in Section 3.2. A sequence of EPKs and corresponding bands are shown in Figure 10. In

most of the cases, the BS EPKs are rejected via the confidence bands. The amount of

deviation from the hypothesized BS specification though provides us valuable information

about how risk hungry investors are. Besides, the area of between the bands varies over

time, which gives us insights into the variabilities of the prevailing risk patterns. In sum,

the bands do not only provide a simple test for hypothesizes EPKs, but also help us to

study the dynamics of risk patterns over time.
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Figure 11: Coverage probability (α = 0.05) estimated at 63 trading days and the DAX

index ( rescale to [0, 1]), τ = 3M .

5.3 Linking economic conditions to EPK dynamics

We use two different indicators for the deviation from a simple BS model. As an approxi-

mation to the coverage probability, we calculate the proportion of grid points of the band

which covers the BS EPK. As a second measure, we introduce the average width of the

confidence bands over the moneyness interval [0.95, 1.1] as a proxy for the area between

the confidence bands. This provides us with a measure of variability, see also Theorem 2.

The first risk pattern time series is given in Figure 11, where we display the DAX index
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Figure 12: First difference of Coverage probability and the DAX index return (standard-

ized).

(scaled to [0, 1]) together with the coverage probability. We discover that the coverage

probability becomes less volatile when the DAX index level is high. Figure 12 shows the

differenced time series. From a simple correlation analysis, we argue that the change in

coverage probability and DAX return (with a lag of 3M) are highly negatively correlated

(correlation −0.3543) when the DAX index goes down (200101-200302). On the contrary,

in the period when the DAX goes up, one observes a large positive correlation (0.3151).

What does this mean economically? This implies in a period of worsening economic

condition, a positive part of the monthly DAX returns induces a greater hunger for risk in

a delay horizon of 3 months. Positive returns have just the opposite effects. With boosting

and bullish markets, the positive correlation indicates a 3-month horizon of decreasing

risk aversion. The exercise we have done so far support these economic reasoning. Risk

aversion seems to be higher in recessions and lower in boom times. This corresponds to

the findings in the economics literature. Economic agents (e.g., corporate firms, banks,

households) with higher risk aversion tend to hold more liquid assets, driving down the

interest rate. At the same time, the higher risk aversion calls for a higher rate of return

on risky assets. A lower interest rate and a higher rate on risky assets generate a higher

risk premium, Gilchrist and Zakrajek (2012).
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As far as the average width of the bands is concerned, we may conclude from Figure 13

and Figure 14 that in periods of clearly bullish or bearish momentum, the volatility of

the width of the confidence band is higher. This may be caused by the uncertainty of

the market participants about the long-term persistence of the trend. The lag effect on

risk hunger is also detectable for this constructed indicator. Over the whole observation

interval, the correlation between the monthly DAX return and the change in the average

width is −0.3230 for a 1M lag and −0.2717 for 3M.
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Figure 13: Area of the confidence bands (α = 0.05) estimated at 63 trading days and the

DAX index (rescaled to [0, 1]).

6 Conclusions

Pricing Kernels are important elements in understanding investment behavior since they

reflect the relative weights given by investors’ states of nature (Arrow-Debreu securities).

Pricing kernels may be deduced in either parametric or nonparametric approaches. Para-

metric approaches like a simple BS model are too restrictive to account for the dynamics

of the risk patterns, which induces the well-known EPK paradox. Nonparametric ap-

proaches allow more flexibility and reduce the modeling bias. Simple tools like uniform

confidence bands help us to conduct tests against any parametric assumption of the EPKs
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Figure 14: First Difference of Area and the DAX index return (standardized).

i.e. shape inspection. Considering the numerical stability, we smooth the IV surface via

the Rookley’s method, and obtain SPD estimator.

We have studied systematically the methodology of constructing the uniform bands for

both semiparametric or nonparametric estimators. Based on the confidence bands, we

explored two indicators to measure risk aversion over time and linked it with DAX index;

the first one is the coverage probability measuring the proportion of the BS curve covered

in bands, while the second one is the area indicator measuring the variability of the

estimator. We found out that there are strong correlations between DAX index and our

indicators with lag effects. The smooth bootstrap is also studied without a significant

improvement in finite sample performance. One interest further extension is employing

robust smoothers to improve the bootstrap performance.

7 Appendix

Assumptions:

(A1) hnq → 0 in such a way that {log nq/(nqhnq)}1/2 · h3nq
→ 0, and the optimal rate
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bandwidth, to guarantee undersmoothing, would be O{(log nq · nq)−1/9}.

(A2) The kernel functions K ∈ C(1)[−1, 1] (adopted for estimating both HD p(x) and

SPD q(x)) are symmetric and takes value 0 on the boundary.

(A3) For the likelihood function L ∈ C(1)(E) it holds that infx∈E L(x) > 0. C(x) ∈

C(4)(E). Additionally the third partial derivatives of L(Y,C) with respect to C exists

and is continuous in C for every y. The Fisher information I(C(x)) has a continuous

derivative and infx∈E I{C(x)} > 0.

(A4) There exists a neighborhood N(C(x)) such that

max
k=1,2

sup
x∈E
|| sup
C∈N{C(x)}

∂k

∂Ck
L(y;C)||λ <∞

for some λ ∈ (2,∞]. Furthermore

sup
x∈E

E[ sup
C∈N{C(x)}

| ∂
3

∂C3
L(y;C)|] <∞.

(A5) The HD of underlying p(x) is three times continuously differentiable and is bounded

by a positive constant from below on the compact set E.

(A6) Let anp = (nphnp/ log np)
−1/2 + h2np

from (10) and bnq = h−2nq
(nqhnq/ log nq)

−1/2 + h2nq

from Lemma 1. We assume that nq/np = O(1), h5nq
/hnp = O(1).

(A7) The pricing errors εi are independent and identically distributed random variables.

(A1) is a bandwidth assumption for estimating SPD. We can undersmooth to reduce

the bias. (A2) is the assumption on kernel function which facilitates the derivation of

results. In a typical setting, hnq is chosen to be as in (A1), while hnp is chosen to

be O(n
−1/5
p ), and hnq is larger than hnp . (A4) contains moment conditions defined via

likelihood functions. (A5) is an assumption imposed on the smoothness of p(x). In

our empirical setting, nq = 715, np = 200, thus for a typical data situations, (A6) is

reasonable. The assumptions (A1) and (A2) ensure anp/bnq = O(1).
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7.1 Proof of Lemma 2

Recall from Lemma 1 and (10) that

sup
x∈E
|p̂(x)− p(x)| = O{{log nq/(nqhnq)}1/2 + h2np

} = O(anp),

sup
x∈E
|q̂(x)− q(x)| = O[h−2nq

{log nq/(nqhnq)}1/2 + h2nq
] = O(bnq).

To determine the order of the EPK we linearize the ratio q(x)/p(x).

K̂(x)−K(x) =
q̂(x)

p̂(x)
− q(x)

p(x)
=
q̂(x)p(x)− p̂(x)q(x)

p2(x)
· 1

1 + p̂(x)−p(x)
p(x)

. (25)

We decompose the first factor as q̂(x)p(x) − p̂(x)q(x) = {q̂(x) − q(x)}p(x) − {p̂(x) −

p(x)}q(x), while for the second factor we use the first order Taylor expansion. Putting

together we obtain

sup
x∈E
|K̂(x)−K(x)| = sup

x∈E
| q̂(x)− q(x)

p(x)
− p̂(x)− p(x)

p(x)
· q(x)

p(x)

−{q̂(x)− q(x)}{p̂(x)− p(x)}
p2(x)

+
{p̂(x)− p(x)}2

p2(x)
· q(x)

p(x)
|.

The first two elements are of order O(bnq) and O(anp) respectively, while the last element

is of order O(anp). Summarizing we conclude that

sup
x∈E
|K̂(x)−K(x)| = O[max{anp , bnq}].

7.2 Proof of Theorem 2

The basic idea of the proof is to approximate the process

Dnq(x) = n1/2
q h5/2nq

{K̂(x)−K(x)}/[V̂ar{K̂(x)}]1/2

by a process with non-stochastic variance term, which will then be further approximated

by a process that can be treated with the tools of Claeskens and Van Keilegom (2003).

Here we have dropped for the simplicity of notation the q in nq and the nq in hnq . More

precisely, we define, as first approximation,

D(1)
n (x)

def
= n1/2h5/2{K̂(x)−K(x)}/{Var{K̂(x)}}1/2,
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where Var{K̂(x)} is given in (15). Lemma 2 ensures that the approximation by

n1/2h5/2{q̂(x)− q(x)}/{p(x)Var{K̂(x)}1/2} (26)

is uniformly of order Op{(log n)−1/2}. The process in equation (26) can be approximated

as in Claeskens and Van Keilegom (2003) by

2! exp(rτ)h2fX(x)−1/2 Var{K̂(x)}−1/2I{C(x)}−1/2
3∑
i=0

fX(x)−1/2I{C(x)}−1/2{L−1}3,i+1An,i(x)

(27)

For the definition of the local Fisher information, I{C(x)}, the matrix L and the process

Ani(x), we refer to section 3, and section 7. Define

Zni(x)
def
= (nh)1/2h−i[I{C(x)}fX(x)]−1/2Ani(x).

Then equation (27) can be written as

Fn(x)
def
= 2! exp(rτ)h2{fX(x)}−1/2 Var{K̂(x)}−1/2I{C(x)}−1/2

3∑
i=0

hi{L−1}3,i+1Zni(x)

Please note that L is not a function of x as Claeskens and Van Keilegom (2003) erroneously

write. Following their line of thoughts, we replace Zni(x) (uniformly) by

Z ′ni(x) = h1/2
∫
Kh(z − x)

(z − x
h

)
dz

In order to apply corollary A1 of (Bickel and Rosenblatt, 1973), define the covariance

function r(x) of the Gaussian process Fnq(x), and we know that

r(x) = Cov(Z ′nj(x), Z ′nj(0))

= C1 − C2|x|2 + O(|x|2),

for x ∈ E, where C1 and C2 are two constants, so the regularity conditions satisfies, the

result follows.

Finally, we have to show that supx∈E |V̂ar{K̂(x)} − Var{K̂(x)}| = Op(1).

sup
x∈E
|V̂ar{K̂(x)} − Var{K̂(x)}|

= sup
x∈E
|V̂ar

{ q̂(x)− q(x)

p(x)

}
− Var

{ q̂(x)− q(x)

p(x)

}
|+ Op{(nh)−(1/2+α)(log n)1+α},
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where 0 < α < 1.

According to corollary 2.1 in Claeskens and Van Keilegom (2003), for j = 3, k = 3,

sup
x∈E
|V̂ar{q̂(x)} − Var{q̂(x)}| = Op{(nh log n)−1/2}.

So we have,

sup
x∈E
|V̂ar{K̂(x)} − Var{K̂(x)}| = Op(1).

7.3 Expressions for the semiparametric estimator of SPD and

proof of Theorem 3

To proof the statement we show that
√
nqhnq(q̂(x) − q(x)) has asymptotically the same

distribution as
√
nqhnq{V̂ ′′(M)−V ′′(M)} with proper scaling. Thus we drive the following

equation.

q̂(x)− q(x) = erτSt
M2

x2

[
ϕ{d̂1(M)}

{√
τ/2− log(M) + rτ

V̂ (M)2
√
τ

}
(28)

−e−rτϕ{d̂2(M)}
{
−
√
τ/2− log(M) + rτ

V̂ (M)2
√
τ

}
/M
]
{V̂ ′′(M)− V ′′(M)}

+O{V̂ ′′(M)− V ′′(M)}, (29)

where d̂i and ĉ are the terms defined in Section 3.2 with V̂ (M) replaced by the true

function. We now describe how to derive (29) Taking the derivatives of c(Mit) with

respect to moneyness (M) and noting that both d1(Mit) and d2(Mit) depend on Mit we

obtain

dc

dM
= ϕ(d1)

dd1
dM
− e−rτ ϕ(d2)

M

dd2
dM

+ e−rτ
Φ(d2)

M2
,

d2c

dM2
= ϕ(d1)

{ d2d1
dM2

− d1
(

dd1
dM

)2}
−e
−rτϕ(d2)

M

{ d2d2
dM2

− 2

M

dd2
dM
− d2

(
dd2
dM

)2}
− 2e−rτΦ(d2)

M3

Computing the first and second order differentials for d1 and d2 using the notation V =

σ(M), V ′ = ∂σ(M)/∂M and V ′′ = ∂2σ(M)/∂M2, we obtain
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dd1
dM

=
1

MV
√
τ

+
{
− log(M) + rτ

V 2
√
τ

+
√
τ/2
}
V ′,

dd2
dM

=
1

MV
√
τ

+
{
− log(M) + rτ

V 2
√
τ

−
√
τ/2
}
V ′,

d2d1
dM2

= − 1

MV
√
τ

{ 1

M
+
V ′

V

}
+ V ′′

{√τ
2
− log(M) + rτ

V 2
√
τ

}
+V ′

{
2V ′

log(M) + rτ

V 3
√
τ

− 1

MV 2
√
τ

}
,

d2d2
dM2

= − 1

MV
√
τ

{ 1

M
+
V ′

V

}
+ V ′′

{
−
√
τ

2
− log(M) + rτ

V 2
√
τ

}
+V ′

{
2V ′

log(M) + rτ

V 3
√
τ

− 1

MV 2
√
τ

}
.

To prove (29), we know from (22) and (21) that

q(x)− q̂(x) =

(
d2c

dM2
− d2ĉ

dM2

)(
M

X

)2

+ 2

(
dc

dM

M

X2
− dĉ

dM

M

X2

)
. (30)

The stochastic terms involved are

d2c

dM2
− d2ĉ

dM2
=
{
ϕ(d1)

d2d1
dM2

− ϕ(d̂1)
d2d̂1
dM2

}
−
{
ϕ(d1)d1

(
dd1
dM

)2

− ϕ(d̂1)d̂1

(
dd̂1
dM

)2}
−
{e−rτϕ(d2)

M

d2d2
dM2

− e−rτϕ(d̂2)

M

d2d̂2
dM2

}
+
{e−rτϕ(d2)

M

2

M

dd2
dM
− e−rτϕ(d̂2)

M

2

M

dd̂2
dM

}
+
{e−rτϕ(d2)

M
d2

(
dd2
dM

)2

− e−rτϕ(d̂2)

M
d̂2

(
dd̂2
dM

)2}
−
{2e−rτΦ(d2)

M3
− 2e−rτΦ(d̂2)

M3

}
def
= gt1 − gt2 − gt3 + gt4 + gt5 − gt6

and

dc

dM
− dĉ

dM
=

{
ϕ(d1)

dd1
dM
− ϕ(d̂1)

dd̂1
dM

}
−
{
e−rτ

ϕ(d2)

M

dd2
dM
− e−rτ ϕ(d̂2)

M

dd̂2
dM

}
+
{
e−rτ

Φ(d2)

M2
− e−rτ Φ(d̂2)

M2

}
def
= g′t1 − g′t2 + g′t3.

Now we analyze each term obtaining,

gt1 =
d2d1
dM2

{
ϕ(d1)− ϕ(d̂1)

}
− ϕ(d̂1)

{ d2d̂1
dM2

− d2d1
dM2

}
gt2 = d1

(
dd1
dM

)2{
ϕ(d1)− ϕ(d̂1)

}
+

(
dd1
dM

)2

ϕ(d̂1)
{
d1 − d̂1

}
+d̂1ϕ(d̂1)

{( dd1
dM

)2

−
(

dd̂1
dM

)2}
,
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and similarly for gt3, gt4, gt5, gt6, g
′
t1, g

′
t2, g

′
t3. The further analysis of the rate boils down to

the analysis of the rates for dd̂1
dM
− dd1

dM
, d

2d1
dM2 − d2d̂1

dM2 , d1− d̂1, Φ(d1)−Φ(d̂1) and similar terms

for d2, as d2(M) = d1(M)− σ(M))
√
τ .

By the mean value theorem

Φ(d1)− Φ(d̂1) = ϕ(d0)(d1 − d̂1)

d1 − d̂1 =
{log(M) + rtτ}(V̂ − V )

V V̂
√
τ

+
√
τ(V − V̂ )/2

dd1
dM
− dd̂1

dM
=

V̂ − V
MV V̂

√
τ

+
{(log(M) + rτ)(V 2 − V̂ 2)

V 2V̂ 2
√
τ

+
√
τ/2
}
V ′

+
{(log(M) + rτ)

V̂ 2
√
τ

+
√
τ/2
}

(V̂ ′ − V ′),

= O(
{(log(M) + rτ)

V̂ 2
√
τ

+
√
τ/2
}

(V̂ ′ − V ′))

d2d1
dM2

− d2d̂1
dM2

= −
{ 1

M
√
τ

V̂ − V
V V̂

1

M
+

1

M

V̂ − V
V V̂
√
τ

V ′

V
+

1

MV̂
√
τ

V ′(V̂ − V ) + V (V ′ − V̂ ′)
V V̂ M

}
+
{
V ′′ − V̂ ′′

}{√τ
2
− log(M) + rτ

V 2
√
τ

}
+ V̂ ′′

{
− (log(M) + rτ)(V̂ 2 − V 2)

V 2V̂ 2
√
τ

}
+2V̂ 3{V ′2 − V̂ ′2} log(M) + rτ

V 3V̂ 3
√
τ

+ 2V̂ ′2{V̂ 3 − V 3} log(M) + rτ

V 3V̂ 3
√
τ

−
{
V 2(V ′ − V̂ ′) 1

MV 2V̂ 2
√
τ

+ V̂ ′(V 2 − V̂ 2)
1

MV 2V̂ 2
√
τ

}
= O(

{
V ′′ − V̂ ′′

}{√τ
2
− log(M) + rτ

V 2
√
τ

}
).

So the dominant term in the equation (30) is Ste
rτ

(
d2c
dM2 − d2ĉ

dM2

)(
M
X

)2

and this term is

dominated by gt1 and gt3.

q(x)− q̂(x) = O(Ste
rτ

(
M

X

)2{
ϕ(d1)

d2d1
dM2

− ϕ(d̂1)
d2d̂1
dM2

}
−
(
M

X

)2

Ste
rτ
{e−rτϕ(d2)

M

d2d2
dM2

− e−rτϕ(d̂2)

M

d2d̂2
dM2

}
)

= O(−Sterτ
(
M

X

)2

ϕ(d̂1)
{ d2d̂1

dM2
− d2d1

dM2

}
+Ste

rτe−rτ
(
M

X

)2

ϕ(d̂2)/M
{ d2d̂2

dM2
− d2d2

dM2

}
)

= O(−Sterτ
(
M

X

)2

ϕ(d̂1)
{
V̂ ′′ − V ′′

}{√τ
2
− log(M) + rτ

V 2
√
τ

}
+St

(
M

X

)2

ϕ(d̂2)/M
{
V̂ ′′ − V ′′

}{−√τ
2
− log(M) + rτ

V 2
√
τ

}
).
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7.4 Proof of Theorem 4

Firstly, the expansion under (A8) in Corollary 2.1 in Claeskens and Van Keilegom (2003)

is still valid with remainder term,

Hnq{Ĉ(x)−C(x)} = J(x)−1H−1nq
Anq(x) + Rnq(x), (31)

where using I{C(x)}, L defined in Section 3,

J(x)
def
= fX(x)I{C(x)}L (32)

and

Rnq(x) = −B−1nq
(x)J−1(x){J(x) + Bnq(x)}H−1nq

Anq(x) (33)

+{B−1nq
(x)J−1(x)Bnq(x)− J−1(x)}H−1nq

Anq(x)−B−1nq
(x)Dnq(x). (34)

Define

Dnq(x)
def
=

1

2nq

nq∑
i=1

Khnq
(Xi − x)

∂3

∂C3
log f{Yi; ξ(x,Xi)}(Ĉ(x)−C(x))

X>i Xi(Ĉ(x)−C(x))H−1nq
Xi

Bnq(x)
def
=

1

nq

nq∑
i=1

Khnq
(Xi − x)

∂2

∂C2
log f{Yi;C(x,Xi)}H−1nq

Xi(H
−1
nq

Xi)
>.

where ξ(x,Xi) is in between C(x,Xi) and Ĉ(x,Xi). Masry (1996) proved that the remain-

der term is theoretically ignorable uniformly under strong mixing conditions and under

(A8) it can be shown that

sup
x∈E

Rnqj(x) = Op((hnq log nq/nq)
1/2). (35)

Thus we concentrate on the scaled first order term

Snj
def
= (nqhnq)

1/2h−jnq
{g(x)}−1/2Anqj(x)

with g(x)
def
= I(C(x))fX(x).

Recall that with a Gaussian likelihood, the components involved in J(x)−1H−1n An(x) are

Snqj = −(nq)
−1/2h1/2nq

(g(x))−1/2
nq∑
i=1

Kh(Xi − x){(Xi − x)j/hjnq
}{Yi − C(x,Xi)}/σ2(x)

= Tnq1(x) + Tnq2(x), j = 0, . . . , d,
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where

Tnq1
def
= −(nq)

−1/2h1/2nq
g(x)−1/2

nq∑
i=1

Khnq
(Xi − x){(Xi − x)j/hjnq

}(C(x)− C(x,Xi))/σ
2(x),

Tnq2
def
= −(nq)

−1/2h1/2nq
g(x)−1/2

nq∑
i=1

Khnq
(Xi − x){(Xi − x)j/hjnq

}(σ(Xi)εi)/σ
2(x).

Then we rely on an easy modification of Theorem 2.4 in Liu and Wu (2010), which implies

sup
x∈E
|Tnq1(x)| = Op

(
hnq

√
log nq +

Z1/2
nq h

3/2
nq

n
1/2
q

)
, (36)

sup
x∈E
|Tnq2(x)− h

1/2
nq

(nqfX(x))1/2

nq∑
i=1

Khnq
(Xi − x)(Xi − x)jεi/h

j
nq
| = Op(hnq

√
log nq).(37)

We need a linear combination of the component Snqj to analyze q̂(x)− q(x), in particular∑p
j=0 L−13,j+1Snqj.

The rest of the proof then follows from the modification of the proof of Proposition 2.1

in Liu and Wu (2010) and is similar to Theorems 4 and 5 in Zhao and Wu (2008).
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