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Motivation
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Motivation

[J Arbitrage free market; riskless bond with rate r
[J Underlying price process {S;:}

Price z; at time t from a payoff ¥(S7)

7 — /0 ~ exp(—rr)$(x)dQs, (x)

= [T en-rw) L dps, )

pt(x)

Figure 1: conditional measure at time of maturity T built opon a path of the stochastic

process for underlying asset with information up to time t .
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Motivation

Empirical Pricing Kernel (EPK)

Pricing Kernel (PK) a stochastic discount factor, i.e.

qt(x)
Kir(x) = exp(—r1
t, ( ) P( )pt(X)
EPK is therefore an estimate of PK:
Kon(x) = expl(—rr) )
pt(x)
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Motivation

The EPK Paradox
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Figure 2:  Examples of inter-temporal pricing kernels with maturity
0.00833(3D) respectively on 17-Jan-2006 (blue), 18-Apr-2006 (red), 16-
May-2006 (magenta), 13-June-2006 (black).
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Motivation 1-4

The EPK Paradox

Figure 3: Estimated PK across moneyness and maturity
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Motivation

The EPK Paradox
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Figure 4: Examples of inter-temporal pricing kernels with various maturities in years:
0.02222 (8D) (red) 0.1(36D) (green) on 12-Jan-2006 and their confidence bands
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Motivation 1-6

Aims

(] Nonparametric confidence band to test alternatives
[ Check the statistical significance of the EPK puzzle
(] Investigate shapes of EPKs: investor preference

[ Understand the dynamics of risk patterns
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Motivation

Outline
1. Motivation Vv
2. Uniform Confidence Band
3. Monte-Carlo Study
4. Empirical Data Analysis
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Uniform Confidence Band 2-1

Risk Neutral Density (RND) Estimation

The RND may be estimated from option prices, Breeden and
Litzenberger (1978):

8?Hq(k, T
qe(ST) = eXP(fT)E;/((z )|k:ST

with call price function H;(k, 7).

Ait-Sahalia and Lo (1998) estimate Hy(k, T) nonparametrically and
differentiate it twice w.r.t. k.

Uniform Confidence for PKs ﬁ




Uniform Confidence Band

Call prices (Xj, Yi), with fixed 7, we have:
Y,':H(X,')—I—E:,',I':].,...,nq

(Xi, Yi)s are i.id.
Define L{y; H(u)} as the conditional density of Y given K = u
Local polynomial estimate, (x ~ u):

[eH)
h

3
H(u) ~ H(x,u éZHJ (u—xY
j=0

Local likelihood

Lo dHOO} 2 L5 K (= x0) log L{Yi: (s )},
ql 1
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Uniform Confidence Band
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Figure 5: Plot of call prices against strikes k, nq = 1000, n, = 500.

[ Source: Reseach Data Center (RDC)

http://sfb649.wiwi.hu-berlin.de
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Uniform Confidence Band
Solutions: o
H(x) & argmaxy L, {H(x)},

where

e —

H(x) = {Ho(x), H1(x), Ha(x), H3(x)} "

Estimate for g:(x):

—

Ge(x) o< 21 Ha(x)

The kernel density estimate for p:(x) is based on historical {S;}:

—_— np
pe(x) = my ' Y Khy, (x = 5))
j=1
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Uniform Convergence

Theorem
Under regularity conditions, for all x in an interval J, we have a.s.,

SUB |Ktr(x) = Ker(x)| = O[max{(nphy,,/ log n,)~%%, h,2,p,
xe

Mgy g Anghng / log ng} >3]
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Uniform Confidence Band

Uniform Confidence Band

Theorem

Under regularity conditions,

Kot (x) & 0Y2 00,5 {K e (X) = Ker (x)} Var{Ke - (x)} V2.
We have:

P {(—2 log h,,q)l/2 {sup |ICht,r(x)| — Cnt} < z}
xeJ

— exp{—2exp(—2)},

where cne = (—2log hn,)Y/? + (—2log hy,) /2 {xs + log(C/2m)}

Uniform Confidence for PKs

2-6



Uniform Confidence Band 2-7

Uniform Confidence Band

Thus, a (1 — a)100% confidence band for pricing kernel K, ; is:
[f(x) : sup{|KCt,r(x) — F(x)[Var(K¢7(x)) — } < La]

where
Lo = 21(ngh} )" cpe

and
Xo = — log{—1/2log(1 — a)}
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Uniform Confidence Band 2-8
Extension on 7

Let ¢ be the possible set of maturities, the extension of our results
over T :

() stp_{1ICur() = for (IVaHKes ()7} < Lol

In the BS setup, the evolution of bands over time, for fixed 71
(g(11 — 72) = K, (%) / K, (x)))
1/2
[fth : (7_1_7_2){ L Var(lct‘rl( )) +Kf7’1( )}<ft7'2( )S
-~ 1/2
g(n — ) LaVar(Ken (x) | + Kem (03,
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Bootstrap

Theorem
Under regularity conditions

[feir : supg[Ke;r(x) = for (X)) Var(Ker) 1%} < L]
X€

where the bound L}, satisfies

P*(—{Ung(x) T Ho A, (x)/ B () NG ™ M (ONG) ™ B3
<l)=1-a
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Monte-Carlo Study 3-1
A Monte-Carlo Study

For g:(x), generate data from BS model, interest rate r = 0.04,
S. = 6500, k € [6200,7400], T = 1M, ¢; € U[0, 6], o = 0.1878.
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Figure 6: (Left) H against k (Right) Plot of confidence bands (black) ,
estimated value, the Black Scholes SPD (magenta) of the EPK, h,, =
0.085, a = 0.05, ng = 300.
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Monte-Carlo Study 3-2
A Monte-Carlo Study

For historical density, simulate data from Geometric Brownian
Motion, with 4 = 0.23, o = 0.1878.
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Figure 7: Plot of confidence bands, estimated value, the Black Scholes
EPK (magenta), h,, = 0.060, a = 0.05, nq = 500 , n, = 600.
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Monte-Carlo Study 3-3

Coverage Probability

Case (n=)300 450 600

(r =)3 0.9063(2.402) 0.0144(2.204) 0.9233(1.998)
6  0.8964(2.438) 0.9056(2.134) 0.9203(2.069)

Table 1: Cov. prob. (area) of the uniform confidence band for g:(x) at
a = 5% with ¢ = 0.1878, sim = 500

Case (n=)300 450 600

3 0.7820(2.5434) 0.7980(2.4978) 0.8020(2.4131)
6  0.8602(2.4987) 0.8749(2.4307) 0.8900(2.4131)

Table 2: Same for EPK at o = 10%

Uniform Confidence for PKs ﬁ




Empirical Data Analysis 4-1

Empirical Data Analysis
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Figure 8: (Left) Plot of DAX index (Right) Plot of confidence bands
(black), EPK by Black Scholes fitting, nonparametric EPK, h,, = 0.075,
a = 0.05, n, =506, ng = 715.
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Empirical Data Analysis
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Figure 9: (Left) Plot of g and p (upper panel) Plot EPK and its bands,
2006 Feb 28th (lower panel) (Right) Plot of confidence bands (blue), EPK
by Black Scholes fitting (black), EPK, 2006, April, 24th.
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Empirical Data Analysis

Figure 10: (Left) Plot of confidence bands (blue), EPK by Black Scholes
fitting (black), EPK, 2006, July, 24th. (Right) Same for 2006, Aug, 18th.
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Empirical Data Analysis 4-4

Figure 11: Plot of estimation of the BS EPK covered in band, DAX price
(red) T = 2M.(200001-200006)
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Empirical Data Analysis 4-5
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Figure 12: Plot of estimation of the BS EPK covered in band (blue), DAX
price difference (red) 7 = 2M.(200001-200006)
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Empirical Data Analysis 4-6

Conclusions

(] Uniform confidence bands tell us about risk patterns

(] Smoothing of EPK is best done via IVS

(] Bootstrap does not improve coverage probability significantly
(1 BS for 7 = 0.5M is mostly rejected

[] Bootstrap improvement possible for robust smoothers
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Appendix 6-1

Rookley (1997)

Let Ci; be the price of the i option at time t and Kij; its strike
price, and define the rescaled call option ¢ = C/S; in terms of
moneyness M = S;/K s.t.

Cit = C{Mit; U(Mit)} = cl)(dl) - er;\j(Cb)

Iog(/\/l;t) + {I’t + %U(Mit)z} T
o(Mie)y/T

d = dp—a(Mp)JT

d =
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Appendix
The RND is then

82C 8%c
q( ) _ erTW rTSW
with
Bc _ d*c (M\*  dec M
8K2 — dm2 <K> dM K2
and

d?c , d?d, ddi \?
amz ¢(d1){dM2_d1(dl\/l>}
T 2y, 4y
M dM2 — MdM ~ P\dm
2efr7¢(d2)
/\/73
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Appendix

d?d, 1 1 V(M
_ { ( )}

dM2 — Mx V(M)T M V(M)
y VT log(M) + rT
_v (M){7+7\§(M)2\/F }

+V'(M){2V’(M)7|Og(M) trr
1

V(M)*vT
M x V(M)Zﬁ}
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