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Abstract

Quantile regression is a technique to estimate conditional quantile curves. It pro-

vides a comprehensive picture of a response contingent on explanatory variables. In

a flexible modeling framework, a specific form of the conditional quantile curve is not

a priori fixed. This motivates a local parametric rather than a global fixed model

fitting approach. A nonparametric smoothing estimator of the conditional quantile

curve requires to balance between local curvature and stochastic variability. In this

paper, we suggest a local model selection technique that provides an adaptive esti-

mator of the conditional quantile regression curve at each design point. Theoretical

results claim that the proposed adaptive procedure performs as good as an oracle

which would minimize the local estimation risk for the problem at hand. We illustrate

the performance of the procedure by an extensive simulation study and consider a

couple of applications: to tail dependence analysis for the Hong Kong stock market

and to analysis of the distributions of the risk factors of temperature dynamics.
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Figure 1: The bandwidth sequence (upper panel), plot of data and the estimated 90%

quantile curve (lower panel)

1 Introduction

Quantile regression is gradually developing into a comprehensive approach for the statis-

tical analysis of linear and nonlinear response models. Since the rigorous treatment of

linear quantile regression by Koenker and Bassett (1978), richer models have been intro-

duced into the literature, among them are nonparametric, semiparametric and additive

approaches. Quantile regression or conditional quantile estimation is a crucial element

of analysis in many quantitative problems. In financial risk management, the proper

definition of quantile based Value at Risk impacts asset pricing, portfolio hedging and

investment evaluation, Engle and Manganelli (2004), Cai and Wang (2008) and Fitzen-

berger and Wilke (2006). In labor market analysis of wage distributions, education effects

and earning inequalities are analyzed via quantile regression. Other applications of condi-

tional quantile studies include, for example, conditional data analysis of children growth

and ecology, where it accounts for the unequal variations of response variables, see James

et al. (2010).

In applications, the predominantly used linear form of the calibrated models is mainly

determined by practical and numerical reasonings. There are many efficient algorithms

(like sparse linear algebra and interior point methods) available, Portnoy and Koenker

(1989), Portnoy and Koenker (1997), Koenker and Ferreira (1999), and Koenker (2005),

etc. However, the assumption of a linear parametric structure can be too restrictive in

many applications. This observation spawned a stream of literature on nonparametric

modeling of quantile regression, Yu and Jones (1998), Fan et al. (1994), etc. One line of

thought concentrated on different smoothing techniques, e.g. splines, kernel smoothing,

etc.; see Fan and Gijbels (1996). Another line of literature considers structural semipara-
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metric models to cope with curse of dimensionality, like, partial linear models, Härdle et al.

(2012), etc., additive models, Kong et al. (2010), Horowitz and Lee (2005), etc; single index

models, Wu et al. (2010), Koenker (2010), etc. Yet another strand of literature has been

involved in ultra-high dimensional situations where a careful variable selection technique

needs to be implemented, Belloni and Chernozhukov (2010) and Koenker (2010). In most

of the aforementioned papers on non and semiparametric quantile regression, a smoothing

parameter selection is implicit, and it is mostly a consequence of theoretical assumptions

like e.g. rates of convergence, but falls short in practical hints for real data applications.

An important exception is the method for local nonparametric kernel smoothing by Yu

and Jones (1998) and Cai and Xu (2008). They both propose a data driven choice of

tuning parameter.

To address the limitations of the above mentioned literature on local model selection

for nonparametric quantile regression, we aim at proposing with theoretical justification an

adaptive local quantile regression algorithm that is easy to implement and works for a wide

class of applications. The idea of this algorithm is to select tuning parameters locally by a

sequence of likelihood ratio tests. The novelty lies in a local model selection technique with

computable risk bounds. The main message is that the proposed algorithm is feasible and

beneficial for quantile smoothing and helps in proposing alternatives to other models. As

an example, consider Figure 1 which presents our results for analyzing the Lidar data set,

Ruppert et al. (2003). The presented quantile curve switches smoothness in the middle,

and it is naturally reflected by the bandwidth sequence (upper panel) selected. In the

presence of changing to sharper slope of the curve, the bandwidths get smaller to attain

better approximations. This example shows that the algorithm proposed in this paper can

adaptively choose the bandwidth at each design point.

This article is organized as follows: In Section 2, we introduce the local model selection

(LMS) procedure and lay down how to simulate critical values. In Section 3, Monte

Carlo simulations are conducted to illustrate the proposed methodology. In Section 4,

we apply our method on checking the tail dependency among portfolio stocks, and on

estimation of quantile curves for temperature risk factors. In Section 5, we explain the

main theorem on “Oracle” properties to support the validity of our tests, with the relevant

assumptions, definitions and conditions in Appendix. The technical details: 1, exponential

risk bounds for conditional quantiles established using the representation of quantiles as

Quasi Maximum Likelihood Estimation (qMLE)s of the asymmetric Laplace distribution,

2, theorems for the existence of critical values, 3, proof for “propagation”, “stability” and

“oracle” property are delegated to the Appendix.
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2 Adaptive estimation procedure

This section introduces the considered problem and offers an adaptive estimation proce-

dure.

2.1 Quantile regression model

Given the quantile level τ ∈ (0, 1) , the quantile regression model describes the following

relation between the response Y and the regressor X :

P (Y > f(x) |X = x) = τ,

where f(x) is the unknown quantile regression function. This function is the target of the

analysis and it has to be estimated from independent observations {Xi, Yi}ni=1 . For the

case of a deterministic design, this quantile relation can be represented as

Yi = f(Xi) + εi , (1)

where the errors εi follow P (εi > 0) = τ .

For simplicity of presentation, we consider a univariate regressor X ∈ IR1 and a

deterministic design in this paper, an extension to the d -dimensional case X ∈ IRd with

d > 1 is straightforward.

2.2 A qMLE View on Quantile Estimation

The quantile function f(·) in (1) is usually recovered by minimizing the sum

n∑
i=1

ρτ{Yi − f(Xi)
}
, (2)

over the class of all considered quantile functions f(·) , where

ρτ (u)
def
= u{τ 1I(u ≥ 0)− (1− τ) 1I(u < 0)} = u

{
τ − 1I(u < 0)

}
.

Such an approach is reasonable because the true quantile function f(x) minimizes the

expected value of the sum in (2). An important special case is given by τ = 1/2 . Then

an estimator of f(·) is built as minimizer of the least absolute deviations (LAD) contrast∑
|Yi − f(Xi)| .
The minimum contrast approach based on minimization of (2) can also be put in a

quasi maximum likelihood framework. Assume that the residuals εi from (1) are i.i.d.

and p(x) is their negative log-density on IR1 . Then the joint log-density is given by the
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sum

−
∑

p
(
Yi − f(Xi)

)
and its maximization is equivalent to minimization of the contrast (2) with a pdf from the

asymmetric Laplace distribution ALDτ :

p(u) = pτ (u) = log
{
τ(1− τ)

}
− ρτ (u), −∞ < u <∞. (3)

The parametric approach (PA) additionally assumes that the quantile regression function

f(·) belongs to a parametric family of functions
{
fθ(x), θ ∈ Θ

}
, where Θ is a subset of

the p -dimensional Euclidean space. Equivalently,

f(x) = fθ∗(x),

where θ∗ is the true parameter which is usually the target of estimation.

Examples are a constant model:

fθ∗(x) ≡ θ0,

with θ∗ = θ0 or a linear model:

fθ∗(x) = θ0 + θ1x,

with θ∗ = (θ0, θ1)
> .

Denote by P θ the parametric measure on the observation space which corresponds

to the regression model (1) with f(·) ≡ fθ(·) and with the i.i.d. errors εi following the

asymmetric Laplace distribution (3). Then the log-likelihood L(θ) = L(Y ,θ) for P θ

can be written as

L(θ)
def
= log

{
τ(1− τ)

} n∑
i=1

1−
n∑
i=1

ρτ{Yi − fθ(Xi)} (4)

and the qMLE θ̃ maximizes L(θ) , or, equivalently minimizes the contrast
∑n

i=1 ρτ{Yi−
fθ(Xi)} over all θ ∈ Θ .

The described parametric construction is based on two assumptions: one is about the

error distribution (3) and the other one is about the shape of the regression function f .

However, it is only used for motivating our approach. Our theoretical study will be done

under the true data distribution which follows (1) under mild regularity conditions. The

next section explains how a smooth regression function f can be modeled by a flexible

local parametric assumption.
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2.3 Local polynomial qMLE

This section explains how the restrictive global PA f(·) ≡ fθ∗(·) can be relaxed by using

a local parametric approach. Let a point x be fixed. The local PA at a point x ∈ IR only

requires that the quantile regression function f(·) can be approximated by a parametric

function fθ(·) from the given family in a vicinity of x . Below we fix a family of polynomial

functions of degree p leading to the usual Taylor approximation:

f(u) ≈ fθ
def
= θ0 + θ1(u− x) + . . .+ θp(u− x)p/p! (5)

for θ = (θ0, . . . , θp)
> . The corresponding parametric model can be written as

Yi = Ψ>i θ + εi , (6)

where Ψi = {1, (Xi − x), (Xi − x)2/2!, . . . , (Xi − x)p/p!}> ∈ IRp+1 .

A local likelihood approach at x is specified by a localizing scheme W given by a

collection of weights wi for i = 1, . . . , n . The weights wi vanish for points Xi lying

outside a vicinity of the point x . A standard proposal for choosing the weights W is

wi = Kloc{(Xi−x)/h} , where Kloc(·) is a kernel function with a compact support, while

h is a bandwidth controlling the degree of localization.

Define now the local log-likelihood at x by

L(W,θ)
def
= log τ(1− τ)

n∑
i=1

wi −
n∑
i=1

ρτ (Yi − Ψ>i θ)wi . (7)

This expression is similar to the global log-likelihood in (4), but each summand in L(W,θ)

is multiplied with the weight wi , so only the points from the local vicinity of x contribute

to L(W,θ) . Note that this local log-likelihood depends on the central point x via the

structure of the basis vectors Ψi and via the weights wi . The corresponding local qMLE

at x is defined via maximization of L(W,θ) :

θ̃(x) = {θ̃0(x), θ̃1(x), . . . , θ̃p(x)}> (8)

def
= argmax

θ∈Θ
L(W,θ)

= argmin
θ∈Θ

∑
i=1

ρτ (Yi − Ψ>i θ)wi .

The first component θ̃0(x) provides an estimator of f(x) , while θ̃m(x) is an estimator of

the derivative f (m)(x) , m = 1, . . . , p .
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2.4 Selection of a Pointwise Bandwidth

The choice of bandwidth h is an important issue in implementing (8). One can reduce the

variance of the estimation by increasing the bandwidth, but at a price of possibly inducing

more modeling bias measured by the accuracy of approximation in (5); see Figure 2.

A desirable choice of a bandwidth at a fixed point would strike a balance between the

variance and the bias depending on the local shape of f(·) in the vicinity of x . Many

approaches have been proposed along this line; see e.g. Yu and Jones (1998) and references

therein. However, their justification and implementation is based on some asymptotic

arguments and require large samples. Here we propose a pointwise bandwidth selection

technique based on finite sample theory.

Our basic setup of the algorithm is described as follows. First one fixes a finite ordered

set of possible bandwidths h1 < h2 < . . . < hK , where h1 is very small, while hK

should be a global bandwidth of the order of the design range. The bandwidth sequence

can be taken geometrically increasing of the form hk = abk with fixed a > 0 , b > 1 ,

and n−1 < abk < 1 for k = 1, . . . ,K (A.2. ). The total number K of the candidate

bandwidths is then at most logarithmic in the sample size n . For each k ≤ K , an ordered

weighting schemes W (k) = (w
(k)
1 , w

(k)
2 , . . . , w

(k)
n )> is defined via w

(k)
i

def
= Kloc{(x−Xi)/hk}

leading to a local quantile estimator θ̃k(x) with

θ̃k(x) = argmax
θ

L(W (k),θ) = argmin
θ∈Θ

∑
i=1

ρτ (Yi − Ψ>i θ)w
(k)
i . (9)

The proposed selection procedure is similar in spirit to Lepski et al. (1997). If the underly-

ing quantile regression function is smooth, one can expect a good quality of approximation

(5) for a large bandwidth values among {hk}Kk=1 . Moreover, if the approximation is good

for one bandwidth, it will be also suitable for all smaller bandwidths. So, if we observe

a significant difference between the estimator θ̃k(x) corresponding to the bandwidth hk

and an estimator θ̃`(x) corresponding to a smaller bandwidth h` , this is an indication

that the approximation (5) for the window size hk becomes too rough. This justifies the

following algorithm. Start with the smallest bandwidth h1 . For any k > 1 , compute

the local qMLE θ̃k(x) and check whether it is consistent with all the previous estimators

θ̃`(x) for ` < k . If the consistency check is negative, the procedure terminates and selects

the latest accepted estimator.

The most important ingredient of the method is the consistency check. The Lepski

method suggests to use the difference θ̃k(x) − θ̃`(x) as a test statistic; see e.g. Lepski

et al. (1997). We follow the suggestion from Polzehl and Spokoiny (2006) and apply

the localized likelihood ratio type test. More precisely, the local MLE θ̃`(x) maximizes

the log-likelihood L
(
W (`),θ

)
, and the maximal value of (7) given by supθ L

(
W (`),θ

)
=
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L
(
W (`), θ̃`(x)

)
is compared with the particular log-likelihood value L

(
W (`), θ̃k(x)

)
, where

the estimator θ̃k(x) is obtained by maximizing the other local log-likelihood function

L(W (k),θ) . The difference L
(
W (`), θ̃`(x)

)
−L

(
W (`), θ̃k(x)

)
is always non-negative. The

check rejects θ̃k(x) if this difference is too large for some ` < k . Equivalently one can

say that the test checks whether θ̃k(x) belongs to the confidence sets E`(z) of θ̃`(x) :

E`(z)
def
=
{
θ : L

(
W (`), θ̃`(x)

)
− L

(
W (`),θ

)
≤ z
}
.

A great advantage of the likelihood ratio test is that the critical value z can be selected

universally. This is justified by the Wilks phenomenon: the likelihood ratio test statistics is

nearly χ2 and its asymptotic distribution depends only on the dimension of the parameter

space. Unfortunately, these arguments do not apply for finite samples under possible model

misspecification and we therefore offer an alternative way of fixing the critical values z

which is based on the so called propagation condition. We also allow that the width of the

confidence set E`(z) depends on the index ` , that is, z = z` . Our adaptation algorithm

can be summarized as follows: at each step k , an estimator θ̂k(x) is constructed based

on the first k estimators θ̃1(x), . . . , θ̃k(x) by the following rule,

• Start with θ̂1(x) = θ̃1(x) .

• For k ≥ 2 , θ̃k(x) is accepted and θ̂k(x)
def
= θ̃k(x) , if θ̃k−1(x) was accepted and

L
(
W (`), θ̃`(x)

)
− L

(
W (`), θ̃k(x)

)
≤ z`, ` = 1, . . . , k − 1. (10)

• Otherwise θ̂k(x) = θ̂k−1(x) .

The adaptive estimator θ̂(x) is the latest accepted estimator after all K steps:

θ̂(x)
def
= θ̂K(x)

A visualization of the procedure is presented in Figure 2. The critical values z` ’s are

selected by an algorithm based on the propagation condition explained in the next section.

2.5 Parameter Tuning by Propagation Condition

The practical implementation requires to fix the critical values of z1, . . . , zK−1 . We apply

the propagation approach which is an extension of the proposal from Spokoiny (2009);

Spokoiny and Vial (2009). The idea is to tune the parameter of the procedure for one arti-

ficial parametric situation. Later we show that such defined critical values work well in the

general setup and provide a nearly efficient estimation quality. The presented bandwidth

selector can be viewed as a multiple testing procedure. This suggests to fix the critical
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Local Model Selection procedure

LMS procedure

LMS: Illustration

1 32 * 1k +*k

3θ

1θ
2θ

kθ

1kθ +

Stop

CS

Figure 2: Demonstration of the local adaptive algorithm.

values as in the general testing theory by ensuring a prescribed performance under the null

hypothesis. In our case, the null hypothesis corresponds to the pure parametric situation

with f(·) ≡ fθ∗(·) in the equation (1). Moreover, we fix some particular distribution of

the errors εi , our specific choice is ALDτ with parameter τ . Below in this section we

denote by P θ∗ the data distribution under these assumptions.

For this artificial data generating process, all the estimators θ̃k(x) should be consistent

to each other and the procedure should not terminate at any intermediate step k < K .

We call this effect as propagation: in the parametric situation, the degree of locality

will be successfully increased until it reaches the largest scale. The critical values are

selected to ensure the desired propagation condition which effectively means a “no false

alarm” property: the selected adaptive estimator coincides in the most of cases with the

estimator θ̃K(x) corresponding to the largest bandwidth. The event
{
θ̃k(x) 6= θ̂k(x)

}
for k ≤ K is associated with a false alarm and the corresponding loss can be measured

by the difference

L
(
W (k), θ̃k(x), θ̂k(x)

) def
= L

(
W (k), θ̃k(x)

)
− L

(
W (k), θ̂k(x)

)
.

The propagation condition postulates that the risk induced by such false alarms is smaller

than the upper bound for the risk of the estimator θ̃k(x) in the pure parametric situation:

Eθ∗L
r
(
W (k), θ̃k(x), θ̂k(x)

)
≤ αRr k = 2, . . . ,K, (11)

where the constant Rr is such that for all k ≤ K , it holds

Eθ∗L
r
(
W (k), θ̃k(x),θ∗

)
≤ Rr .

The values α and r in (11) are two hyper-parameters. The role of α is similar to the

significance level of a test, while r denotes the power of the loss function. It is worth
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mentioning that

Eθ∗L
r
(
W (k), θ̃k(x), θ̂k(x)

)
→ P θ∗

{
θ̃k(x) 6= θ̂k(x)

}
, r → 0.

The critical values z1, . . . , zK−1 enter implicitly in the propagation condition: if the false

alarm event {θ̃k(x) 6= θ̂k(x)} happens too often, it is an indication that some of the

critical values z1, . . . , zk−1 are too small. Note that (11) relies on the artificial parametric

model P θ∗ instead of the true model P . The point θ∗ here can be selected arbitrarily,

e.g. θ∗ = 0 . This fact relies on linear parametric structure of the model (6) and is justified

by the following simple lemma.

Lemma 1. The distribution of L
(
W (k), θ̃k(x), θ̂k(x)

)
and of L

(
W (k), θ̃k(x),θ∗

)
under

P θ∗ does not depend on θ∗ .

Proof. Under PA f(·) ≡ fθ∗(·) , it holds Yi − f(Xi) = Yi − Ψ>i θ
∗ = εi and hence,

L(W (k),θ) = log{τ(1− τ)}
n∑
i=1

w
(k)
i +

n∑
i=1

ρτ
(
εi − Ψ>i (θ − θ∗)

)
w

(k)
i .

A simple inspection of this formula yields that the distribution of L(W (k),θ) only depends

on u = θ − θ∗ . In other words, we can use the free parameter u = θ − θ∗ whatever θ∗

is, e.g. θ∗ ≡ 0 . The same argument applies to the difference L
(
W (k), θ̃k(x), θ̃`(x)

)
for

` < k . Moreover, L
(
W (k), θ̃k(x), θ̂k(x)

)
is a function of

{
L
(
W (k), θ̃k(x), θ̃`(x)

)}k
`=1

, so

the distribution of L
(
W (k), θ̃k(x), θ̂k(x)

)
does not depend on θ∗ .

A choice of critical values z1, . . . , zK−1 can be implemented in the following way:

• Consider first only z1 and fix z2 = . . . = zK−1 = ∞ , leading to the estimators

θ̂k(z1, x) for k = 2, . . . ,K . The value z1 is selected as the minimal one for which

1

Rr
Eθ∗L

r
(
W (k), θ̃k(x), θ̂k(z1, x)

)
≤ α

K − 1
, k = 2, . . . ,K. (12)

• With selected z1, . . . , zk−1 , set zk+1 = . . . = zK−1 =∞ . Any particular value of zk

would lead to the set of parameters z1, . . . , zk,∞, . . . ,∞ and the family of estimators

θ̂m(z1, . . . , zk, x) for m = k + 1, . . . ,K . Select the smallest zk ensuring

1

Rr
Eθ∗L

r
(
W (m), θ̃m(x), θ̂m(z1, z2, . . . , zk, x)

)
≤ kα

K − 1
(13)

for all m = k + 1, . . . ,K .

Few remarks to the proposed algorithm.

1. A value z1 ensuring (12) always exists because the choice z1 =∞ yields θ̂k(z1, x) =

θ̃k(x) for all k ≥ 2 .
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2. The value Lr
(
W (m), θ̃m(x), θ̂m(z1, z2, . . . , zk, x)

)
from (13) only accumulates the

losses associated with the false alarms at the first k steps of the procedure. The

other checks at further steps are always accepted because the corresponding critical

values zk+1, . . . zK−1 are set to infinity.

3. The accumulated risk bound kα
K−1 grows at each step by α/(K−1) . This value can

be seen as maximal risk associated with the CV’s z1, z2, . . . , zk .

4. The value zk ensuring (13) always exists, because the choice zk =∞ yields

θ̂m(z1, z2, . . . , zk, x) = θ̂m(z1, z2, . . . , zk−1, x)

for all m ≥ k .

5. All the computed values depend on the considered linear parametric model, the

sequence of bandwidths hk and the quantile level τ . They also depend on the local

point x via the basis vectors Ψi . However, under common regularity conditions

on the design X1, . . . , Xn , the dependency on x is rather minor. Therefore, the

adaptive estimation procedure can be repeated at different points without reiterating

the steps of selecting the critical values.

3 Simulations

First, we check the critical values at different quantile levels τ = 0.05, 0.5, 0.75, 0.95 and

for different noise distributions: a) ALD, b) normal and c) student t(3) . Also, we study

how does misidentification of noise distribution affect the critical values.

Second, we compare the performance of our local bandwidth algorithm with two other

bandwidth selection techniques. One proposal is from Yu and Jones (1998), in which

they consider a rule of thumb bandwidth based on the assumption that the quantiles

are parallel, and another comes from Cai and Xu (2008), where an approach based on a

nonparametric version of the Akaike information criterion (AIC) is implemented.

3.1 Critical Values

Here we summarize our numerical results on choosing the critical values by the propagation

condition as described in Section 2.5. We only consider local constant modeling with p = 0

and local linear modeling with p = 1 starting with p = 0 .

Table 1 shows the critical values with several choices of α and r with τ = 0.75 , m =

10000 Monte Carlo samples, and an bandwidth sequence (8, 14, 19, 25, 30, 36, 41, 52)∗0.001

11



Table 1: Critical Values with different r and α

α = 0.25, r = 0.5 6.123 2.333 0.987 3.678e-05 0.000

α = 0.5, r = 0.5 4.616 1.578 0.357 2.472e-05 0.000

α = 0.6, r = 0.5 3.203 0.679 0.025 0.006 7.278e-05

α = 0.25, r = 0.75 9.127 3.288 1.031 0.126 5.675e-05

α = 0.25, r = 1 12.75 4.280 1.224 1.095e-04 0.000

Table 2: Critical Values with Different τ

τ = 0.05 6.464 2.204 0.620 3.345e-05 0.000

τ = 0.5 7.997 3.089 0.986 0.300e-05 0.000

τ = 0.75 9.203 3.910 1.106 0.123 7.254e-05

τ = 0.95 8.589 5.452 1.904 0.334 1.203e-05

scaled to the interval [0, 1] . Critical values decrease when α increases, and increase when

r increases.

Table 2 displays critical values for different τ , with α = 0.25 , r = 0.5 , m = 10000

Monte Carlo samples, a bandwidth sequence H1 = (8, 14, 19, 25, 30, 36, 41, 52)∗0.001 , and

N(0, 1) noise. Critical values behave similarly for different τ .

Table 3 displays the critical values for three alternative bandwidth sequences:

H1 = (8, 14, 19, 25, 30, 36, 41, 52) ∗ 0.001

H2 = (8, 16, 25, 36, 49, 63, 79, 99) ∗ 0.001

H3 = (5, 8, 14, 19, 27, 36, 46, 58) ∗ 0.001

with α = 0.25 , r = 0.5 , and τ = 0.85 . Although the critical values differ for different

Table 3: Critical Values with Different Bandwidth Sequences

H1 11.33 1.243 6.933e-05 0.000 0.000

H2 18.39 6.479 2.230 0.469 8.738e-05

H3 6.123 2.333 0.987 3.678e-05 0.000

bandwidth sequences, α , r and τ , they indicate the same patterns (finite and decreasing).

We simulate from different data generating processes, namely the distribution of εi

(given by the density p(·) ) does not necessarily coincide with the likelihood (ALDτ )

taken to simulate critical values. Table 4 presents critical values simulated under t(3) ,

12



N(0, 1) and ALDτ . The critical values show the same trend with some differences, so we

conclude that a misidentification of error distribution would not significantly contaminate

the confidence sets.

Table 4: Critical Values with Different Noise Distributions

N(0, 1) 11.50 4.924 2.514 1.313 2.765e-05

ALDτ 14.05 6.554 3.304 1.443 5.879e-05

t(3) 15.42 8.707 2.370 0.342 3.898e-05

In Table 5, critical values are shown in the same circumstances as in Table 4 for the

local linear case. Since introducing one more variable (trend), critical values doubled or

tripled compared to the local constant case. The behavior with respect to tail functions

stays the same.

Table 5: Critical Values with Different Noise Distributions in Local Linear Case

N(0, 1) 29.97 58.64 43.21 33.41 19.43 07.40

ALD(0.5) 45.28 74.51 66.43 50.42 31.42 13.50

t(3) 51.77 84.94 59.28 44.99 29.07 11.57

3.2 Comparison of Different Bandwidth Selection Techniques

We illustrate our proposal by considering x ∈ [0, 1] , τ = 0.75 . The sample with (n =

1000 ) are simulated under three scenarios:

f [1](x) =


0 if x ∈ [0, 0.333] ;

8 if x ∈ (0.333, 0666] ;

−1 if x ∈ (0.666, 1]

f [2](x) = 2x(1 + x),

f [3](x) = sin(k1x) + cos(k2x) 1I{x ∈ (0.333, 0.666)}+ sin(k2x)

The noise distributions are: N(0, 0.03), ALDτ , t(3) .

Figure 3 presents pictures on comparisons of different estimators in the local constant

case. Figure 4 and 5 show in the local linear case the estimators of the functions ( f̂(x) )

and its first derivatives as well. Our technique provides closer fits to the true curve ( f(x) )

than methods with a global fixed bandwidth, especially in the presence of jump. Table

6, which shows the averaged absolute errors for the four methods, further confirms our

conclusion.
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Table 6: Comparison of Monte Carlo errors, averaged over 1000 samples

Fixed bandw Local constant Local linear Fixed bandw (Cai)

f [1](x) 0.654 0.172 0.169 0.378

f [2](x) 0.206 0.008 0.008 0.245

f [3](x) 0.137 0.021 0.019 0.123

Table 7 offers further an analysis for misspecified error distributions. Specifically, to

evaluate the accuracy of our estimation for error distributions generated differently than

the ALD density. Table 7 gives L1 errors between f̂(·) (with critical values simulated from

ALDτ ) and f(·) , from which we conclude that mis-specification of error distributions

would not contaminate our results significantly.

Table 7: Comparison of error mis-specification, errors are calculated averaged over 1000

samples

Local constant {N(0, 1) } Local constant { t(3) } Local linear {N(0, 1) }
f [1](x) 0.252 0.220 0.169

f [2](x) 0.070 0.016 0.043

f [3](x) 0.009 0.021 0.019

4 Applications

In the study of financial products, it is very important to detect and understand tail

dependence among underlyings such as stocks. In particular, the tail dependence structure

represents the degree of dependence in the corner of the lower-left quadrant or upper-

right quadrant of a bivariate distribution. Hauksson et al. (2001) and Embrechts and

Straumann (1999) provide a good access to the literature on tail dependence and Value at

Risk. With the adaptive quantile technique, we provide an alternative approach to study

tail dependence.

The correlation is calibrated from real data as given in Figure 6, where X is stan-

dardized return from stock “clpholdings” from Hong Kong Hangseng Index, and Y is

return from stock “cheung kong”. The conditional quantile function is linear, for example,

X1 ∈ N(u1, σ1) and X2 ∈ N(u2, σ2) , the conditional quantile function α is:

f(x) = ϕ−1(α)(σ2 − σ212/σ1) + ui + σ12σ
−1
2 (x− u2).

Figure 6 and Figure 7 show the empirical conditional quantile curves actually deviate

14
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Figure 3: The bandwidth sequence (upper left panel), the smoothed bandwidth (magenta

dashed); the data with noise (grey, lower left panel), the adaptive estimation of 0.75

quantile (dashed black), the quantile smoother with fixed optimal bandwidth = 0.06

(solid black), the estimation with smoothed bandwidth (dashed magenta); boxplot of

block residuals fixed bandwidth (upper right), adaptive bandwidth (lower right)
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Figure 4: The bandwidth sequence (upper left panel), the smoothed bandwidth sequence

(dashed magenta); the observations (grey, lower left panel), the adaptive estimation of

0.75 quantile (dotted black), the true curve (solid black), the quantile smoother with

fixed optimal bandwidth = 0.063 (dashed dotted blue), the estimation with adaptively

smoothed bandwidth (dashed magenta); the blocked error of the adaptive estimator (lower

right); the fixed estimator (upper right).

0 200 400 600 800 1000

-4
0

-2
0

0
20

40
60

Index

fix
.b

an
d.

pa
ra

m
.tr

(a)

1 2 3 4 5

-6
0

-4
0

-2
0

0
20

1 2 3 4 5

-6
0

-4
0

-2
0

0
20

(b)

Figure 5: The adaptive estimation of first derivative of the above quantile function (left

panel grey), the true curve (solid black), the estimation with smoothed bandwidth (dashed

black), the quantile smoother with fixed optimal bandwidth = 0.045 (dotted black); the

blocked error of the adaptive estimator (lower right); the fixed estimator (upper right).
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Figure 6: The bandwidth sequence with smoothed bandwidth curve(upper left panel), the

smoothed bandwidth (dashed magenta); Scatter plot of stock returns (upper right panel),

the adaptive estimation of 0.90 quantile (solid magenta), the quantile smoother with fixed

optimal bandwidth = 0.15 (dotted black); fixed bandwidth curve (dotted black), adaptive

bandwidth curve (grey), the estimation with smoothed bandwidth (dashed magenta),

confidence band (dashed black) (lower left panel); adaptive bandwidth with normal scale

(lower right).

from the one calculated from normal distributions, which implies non normality. The

motivation of adaptive bandwidth selection is clear to see from Figure 6 and Figure 7, the

dependency structure change is more obvious compared with the fixed bandwidth curve.

Moreover, the flexible adaptive curve is not likely to be a consequence of overfitting since

it mostly lies in the confidence bands produced by fixed bandwidth estimation, see Härdle

and Song (2010).

Figure 8 shows the first derivative curve for the above example. The curve gets more

volatile while x increases until a drastic change, then it turns flat.

We measure the deviation from normality by accumulated L1 distance to the normal

fitting and examine different combination of stocks from Hong Kong Hangseng Index. The

results is summarized in Table 8.

Another application of quantile function estimation is in temperature data analysis,

which is of key interest for pricing temperature derivatives. Quantile regression can provide

a more flexible and comprehensive approach to understand the temperature risk drivers

defined in (14).
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Figure 7: The bandwidth sequence with smoothed bandwidth curve (upper left panel);

Scatter plot of stock returns (upper right panel), the adaptive estimation of 0.90 quantile

(red), the quantile smoother with fixed optimal bandwidth = 0.19 (dotted black); fixed

bandwidth curve (dotted black), adaptive bandwidth curve (grey), confidence bands (dot-

ted dashed black) (lower left panel); adaptive bandwidth with normal scale (lower right

panel)
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Figure 8: The adaptive trend curve (grey), smoothed adaptive curve (dashed black),

estimation with fixed bandwidth (dotted black). τ = 0.90

Table 8: Summary of deviation from normality

Chalco Cosco pacific Bank of China

New world devo 0.252 0.220 0.169

Sino land 0.070 0.016 0.043

Swire pacific A 0.009 0.021 0.019

Denote daily temperature as T 7→ (t, j) , with t = 1, · · · , τ = 365 days, j = 0, · · · , J
years. The time series decomposition for Tt,j is given as:

Xt,j = Tt,j − Λt

Xt,j =

L∑
l=1

βlXt−l,j + σtηt,j

ηt,j ∼ N(0, 1),

εt,j
def
= σtεt,j

ε̂t,j
def
= X365j+t −

L∑
l=1

β̂lX365j+t−l (14)

where Tt,j is the temperature at day t in year j , Λt denotes the seasonality effect and

σt the seasonal volatility.
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Figure 9: Plot of quantile curve for standardized weather residuals over 40 years at Berlin,

95% quantile, 1967 − 2006 . Selected bandwidths (upper), observations with estimated

the quantile function (middle), the estimated the quantile function (lower).

We are interested specifically in the stochastic risk drivers εt,j , Figure 9 presents a

time series plot of ε̂t,j/σ̂t , and the estimated 90% quantile function. By zooming in the

curve, we observe a very interesting phenomena: an changing of trend of the standardized

residual over years.

To further understand the risk factors, we analyze the quantile functions of ε̂2t,j over

12 years, and average over 4 years for comparison, see Figure 10 and Figure 11. The

differences between Berlin and Kaoshiung are easy to see, the variance function has high

value from Jan-Feb, while for Berlin the peaks come more in summer. Moreover, there is

a tendency for Kaoshiung to be more volatile over time, but this phenomenon does not

appear in Berlin.

In addition, our technique can also be used for estimating the function σt . We pro-

pose four methods: 1, Estimate the median curve of ε̂t,j using adaptive technique. 2,

Take {f̂ε,0.75 − f̂ε,0.25}/1.34 ( 1.34 is the inter quartile range of a standard normal dis-

tribution), where f̂ε,0.75 , f̂ε,0.25 are the adaptive quantile estimators. 3, Estimate the

mean curve of ε̂t,j using adaptive bandwidth. 4, Estimate the mean function of ε̂t,j with

fixed bandwidth. The aforementioned methods are compared by testing the normality of

η̂t,j = ε̂t,j/σ̂t . As according to our normal assumption on ηt,j , a good estimation for σt

leads to normal standardized residuals η̂t,j . Table 9 and 10 summarize statistics from the

normality test of standardized residuals from three methods in Berlin and Kaoshiung. It

can be seen that Berlin has more normal residuals than Kaoshiung. Method three is al-
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Figure 10: Estimated 90% quantile of variance functions, Berlin, average over 1995−1998 ,

1999− 2002 (red), 2003− 2006 (green)
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Figure 11: Estimated 90% quantile of variance functions, Kaoshiung, average over 1995−
1998 , 1999− 2002 (red), 2003− 2006 (green)
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ways better in getting more normal residuals, and method two is compatible with method

three. It may be due to the fact that quantiles at higher or lower levels are better to

explain the extremes of the volatility function. Method four performs not so well as it is

with a fixed bandwidth. Therefore we conclude that our adaptive technique is useful in

modeling temperature residuals.

Table 9: P-values of Normality Tests: Berlin

AD JB KS

1 0.000 0.010 0.060

2 0.062 0.000 0.020

3 0.054 0.487 0.171

4 0.009 0.000 0.002

Table 10: P-values of Normality Tests:Kaoshiung

AD JB KS

1 0.000 0.000 0.000

2 1.03e-05 0.077 0.043

3 2.37e-06 0.742 0.674

4 0.000 0.021 0.019

5 Finite Sample Theory

This section discusses some theoretical properties of the proposed estimator θ̂(x) = θ̃
k̂
(x)

under a general data distribution. Here k̂ = k̂(x) is the index selected by the pointwise

procedure from Section 2.4. The main “oracle” result shows that θ̂(x) is adaptive in the

sense that it provides nearly the same quality of estimation as the oracle estimator θ̃k∗(x)

which is the best in the family
{
θ̃k(x)

}K
k=1

. A precise definition of k∗ will be given below

in term of the modeling bias.

5.1 Modeling Bias

The proposed approach for the bandwidth selection suggests to take larger and larger

bandwidth until the linear parametric assumption is not significantly violated on the

considered interval. The likelihood ratio test statistics L
(
W (`), θ̃`(x), θ̃k(x)

)
from (10) are

used for this check. The formal definition of the best or oracle choice requires to introduce
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a measure for the deviation of the function f(·) from its best linear approximation of the

form Ψ>θ on the interval of radius hk considered at step k of the procedure. We follow

Spokoiny (2009) who introduced the modeling bias for measuring the deviation from the

linear parametric structure. Define Pi as the distribution of the observation Yi . Let also

Pi,s be a shift of Pi by s , that is, the distribution of Yi − s . Also denote fi = f(Xi)

and fi(θ) = Ψ>i θ . In particular, Pi,fi is the distribution of εi
def
= Yi − f(Xi) , so that

its τ -quantile is zero. The underlying measure P is the product of the measures Pi,fi .

Under the linear PA f(Xi) = fθ(Xi) , the corresponding measure P θ is the product of

the Pi,fi(θ) :

P =

n∏
i=1

Pi,fi , P θ =

n∏
i=1

Pi,fi(θ) .

The modeling bias at step k measures the deviation of the true quantile function f from

the linear parametric one and it is defined as

∆k
def
= inf

θ
∆k(θ),

∆k(θ)
def
=

n∑
i=1

K
(
Pi,fi , Pi,fi(θ)

)
1I{w(k)

i > 0}.

Here K(P,Q) is the Kullback-Leibler divergence between two measures P and Q . The

quantity ∆k(θ) can be viewed as weighted Kullback-Leibler divergence between P and

P θ localized to the observations in the interval of radius hk around x . The value ∆k

describes the quality of the best linear approximation on this interval. The small modeling

bias (SMB) condition manifests that the value ∆k does not exceed a prescribed quantity

∆ > 0 , and the oracle choice of the bandwidth hk is defined as the largest bandwidth

among hk for which the SMB condition is satisfied:

k∗
def
= argmax

k≤K
{∆k ≤ ∆}. (15)

All the introduced quantities depend on the central point x . Therefore, the parameter θ∗

of the best parametric fit and the oracle bandwidth k∗ also depend on x : our approach

allows for specifying the best bandwidth for each point separately. Under the measure

P θ∗ , the estimate θ̃k(x) is close to θ∗ in the sense that the confidence set Ek(zk) covers

θ∗ with a high probability and the risk Eθ∗L
r
(
W (k), θ̃k(x),θ∗

)
remains bounded by a

fixed constant Rr for all k ≤ K . The definition of the modeling bias based on the

Kullback-Leibler divergence allows to translate this properties to the general case at cost

of the additional factor e∆ . More precisely, the following bound holds.
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Theorem 5.1. Let θ∗ and k∗ ≤ K be such that ∆k∗(θ
∗) ≤ ∆ . Then for each k ≤ k∗

E log

{
1 +

Lr(W (k), θ̃k(x),θ∗)

Rr

}
≤ ∆+ 1

So, if ∆ is small all the confidence or risk bounds continue to apply even in the local

nonparametric situation.

5.2 “Oracle” Property

This section presents our main result called the oracle risk bound. The main message of

this result is that the adaptive estimator θ̂(x) performs nearly as well as the best (oracle)

estimator does. Let the bandwidth index k∗ be defined by the SMB condition (15) leading

to the oracle estimator θ̃k∗(x) . The next result claims that for the final estimator θ̂(x) ,

the difference

L
(
W (k∗), θ̃k∗(x), θ̂(x)

)
= L

(
W (k∗), θ̃k∗(x)

)
− L

(
W (k∗), θ̂(x)

)
is not larger in order than zk∗ e∆ . Later we show that the critical value zk∗ is at most

logarithmic in the sample size n . Therefore, the oracle result means that the adaptive

estimator θ̂(x) belongs with a dominating probability to a confidence set of the oracle.

Theorem 5.2. Suppose A.1–A.5. Let k∗ ≤ K be such that ∆k∗(θ) ≤ ∆ . Then

E log

{
1 +

Lr
(
W (k∗), θ̃k∗(x), θ̂(x)

)
Rr

}
≤ α+∆+ log

(
1 +

zk∗

Rr

)
.

6 Appendix

The appendix collects the conditions, technical results, and the proofs. First we fix our

assumptions. We assume independent observations Y1, . . . , Yn . The results are stated

for a deterministic design X1, . . . , Xn under mild regularity conditions. The case of a

random design can be considered by the usual conditioning argument. Given τ , the

quantile function f(·) is defined by the relation P
{
Yi > f(Xi)

}
= τ . To avoid ambiguous

notation, we suppose that this equation has an unique solution for each i . The general

case can be easily reduced to this one by standard arguments; see e.g. Koenker (2005).

We also denote by Pi the distribution of the residual εi = Yi − f(Xi) and by pi(·) its

density. Below a point x is fixed and the target of estimation is the quantile f(x) . The

local parametric approach requires to fix a localizing weighting scheme W = (w1, . . . , wn)

and linear parametric family fθ(·) with fθ(Xi) = Ψ>i θ , where Ψi,m = (Xi − x)m/m! for

m = 0, 1, . . . , p .
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Our theoretical study can be separated into two parts. An essential and the most

difficult part is done under the linear parametric assumption f(·) ≡ fθ∗(·) . Then we

extend the results to the case when this assumption is approximately fulfilled in a local

vicinity of the central point x .

Below a family of localizing weighting schemes W (k) =
{
w

(k)
i

}n
i=1

for k = 1, . . . ,K

is supposed to be fixed. Our standard proposal is w
(k)
i = Kloc

{
(Xi − x)/hk

}
for a given

kernel Kloc(·) and a sequence of bandwidths h1 < h2 < . . . < hK . Define

D2
k

def
=

n∑
i=1

ΨiΨ
>
i pi(0)w

(k)
i (16)

V 2
k

def
= Var

{
∇L(W (k),θ∗)

}
= τ(1− τ)

n∑
i=1

ΨiΨ
>
i

∣∣w(k)
i

∣∣2, (17)

N
−1/2
k

def
= max

i≤n
sup
γ∈IRp

|γ>Ψi| 1I
(
w

(k)
i > 0

)
‖Vkγ‖

√
τ(1− τ). (18)

Here D2
k and V 2

k are symmetric p×p matrices: D2
k can be defined similarly to the Fisher

information matrix D2
k = −∇2EL(W (k),θ∗) , while V 2

k is the covariance matrix of the

score ∇L(W (k),θ∗) under the parametric assumption f ≡ fθ∗ . In the global parametric

situation, and if the likelihood ALD corresponds to the true error distribution, these two

matrices coincide. The value Nk can be treated as the local sample size corresponding to

the localizing scheme W (k) .

The following conditions will be assumed for our results.

A.1 {Yi}ni=1 are independent.

A.2 For some constants 0 < u0 < u < 1 ,

0 < u0 ≤ ‖D−1k D2
k−1D

−1
k ‖∞ ≤ u < 1.

A.3 For a constant a > 0 and all k = 1, . . . ,K , it holds

V 2
k ≤ a2D2

k.

A.4 For some fixed δ < 1/2 and ρ > 0 ,∣∣pi(u)/pi(0)− 1
∣∣ ≤ δ, |u| ≤ ρ.

A.5 The kernel function Kloc(·) is symmetric, K(0) = 1 , K(u) decreases in u ≥ 0 and

K(u) = 0 for |u| ≥ 1 .
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The condition A.2 effectively requires that the bandwidth sequence hk grows geomet-

rically with k . Condition A.3 is the local identifiability condition and it ensures that the

local variability of the process L(W (k),θ) measured by the matrix V 2
k is not significantly

larger than the local information measured by the matrix D2
k . A.4 only requires that

the density functions pi(·) are uniformly continuous in a vicinity of zero. In particular,

the residuals can be unequally distributed. All the results below tacitly assume that the

conditions A.1 –A.5 hold.

Below we use generic notation C = C(A) to indicate that a constant C only depends

on the constants from conditions A.1 –A.5 like a , ρ , δ , u0 , u , etc. We will also use

conditions (Er) , (Lr) etc. defined later in section 6.2.1.

6.1 Uniform concentration of the MLEs θ̃k(x) under P θ∗

The first result explains the localization property of the estimators θ̃k(x) from (9) under

the linear parametric structure of the quantile function, that is, f(Xi) = Ψ>i θ
∗ . With

some value r0 fixed, define for each k ≤ K a local elliptic set

Θk(r0)
def
=
{
θ : ‖Vk(θ − θ∗)‖ ≤ r0

}
with V 2

k from (17). The question under study is a proper choice of the radius r0 which

ensures a prescribed small deviation probability for the event θ̃k(x) 6∈ Θk(r0) uniformly

in k ≤ K .

Theorem 6.1. Suppose (Er) and (Lr) , and there exist constants C1 = C1(A) and

C2 = C2(A) such that the conditions

r20 ≥ C1(x + p), ρ2Nk ≥ C2(x + p) (19)

ensure for k ≤ K

P θ∗
{
θ̃k(x) 6∈ Θk(r0)

}
≤ 2e−x,

Eθ∗
[
Lr
(
W (k), θ̃k(x),θ∗

)
1I
{
θ̃k(x) 6∈ Θk(r0)

}]
≤ C(A)e−x.

In particular, a choice x = log(K)+x0 and then r20 ≥ C1(x+p) ensures a dominating

probability 1− 2e−x0 for the joint concentration event

A1 =
K⋂
k=1

{
θ̃k(x) ∈ Θk(r0)

}
.

In what follows we suppose that the values x = log(K)+x0 and r0 are fixed in a way that

the probability of the set A1 is sufficiently close to 1. This allows to restrict ourselves to
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the case when each estimator θ̃k(x) belongs to the local vicinity Θk(r0) . The conditions

in (19) require that r20 is of order log(K) + p , and the local sample size Nk should be at

least of the same order.

6.2 Uniform quadratic approximation of the local excess

The previous subsection stated that the chance for any of the estimator θ̃k(x) lying outside

the neighborhood Θk(r0) is small, therefore in this subsection, we focus on the stochastic

behavior of θ̃k in Θk(r0) . The proposed estimation procedure is likelihood-based: all

quantities are defined in terms of the quasi log-likelihood functions L(W (k),θ) . Partic-

ularly, the properties of the excess L
(
W (k), θ̃k(x),θ∗

) def
= L

(
W (k), θ̃k(x)

)
− L(W (k),θ∗)

plays a very important role in the whole method. The famous Wilks result claims that the

excess is asymptotically χ2
p . Unfortunately the local parametric approach for a narrow

local neighborhood of the point x leads to a relatively small effective sample size Nk , and

the asymptotic results cannot be validated. The general parametric approach of Spokoiny

(2011) though allows to operate with finite samples and it can be directly applied to a

local parametric analysis.

It holds

∇L(W (k),θ∗) = −
n∑
i=1

ρ′τ (Yi − Ψ>i θ∗)w
(k)
i

=

n∑
i=1

{
−τ + 1I(Yi − Ψ>i θ∗ < 0)

}
Ψiw

(k)
i .

Further, for ε = (δ, %) and D2
k from (16), define

D2
ε,k = D2

k(1− δ)− %V 2
k ,

ξε,k
def
= D−1ε,k∇L(W (k),θ∗),

and similarly for ε
def
= −ε = (−δ,−%) . The values δ, % are assumed to be small enough

to ensure that D2
ε,k is positive and the value

αε,k
def
= λmax

(
IIp −Dε,kD

−2
ε,kDε,k

)
(20)

is small as well. Finally, define

Lε(W
(k),θ,θ∗)

def
= (θ − θ∗)>∇L(W (k),θ∗)− ‖Dε,k(θ − θ∗)‖2/2

= ξ>ε,kDε,k(θ − θ∗)− ‖Dε,k(θ − θ∗)‖2/2

and a similar definition for Lε(W
(k),θ,θ∗) .
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Theorem 6.2. Under the conditions (ED0) , (ED1) , (L0) , it holds for all k ≤ K and

all θ ∈ Θk(r0)

Lε(W
(k),θ,θ∗)−♦ε,k ≤ L(W (k),θ,θ∗) ≤ Lε(W

(k),θ,θ∗) +♦ε,k . (21)

Here ♦ε,k are the random error terms which fulfill with some C1(A) and C2(A) the

following conditions: for any x > 0 with C1(A)x + C2(A) ≤ yc

P θ∗
(
♦ε,k/% > C1(A)x + C2(A)p

)
≤ C(A)e−x,

Eθ∗
∣∣♦ε,k/%

∣∣r ≤ Cr(A),

where yc is a constant of order Nk .

The sandwiching result (21) for each k follows from Theorem 3.1 of Spokoiny (2011).

It is only worth mentioning that the local sets Θk(r0) are embedded: Θ1(r0) ⊃ Θ2(r0) ⊃
. . . ⊃ ΘK(r0) , so it suffices to check the bound (21) on Θ1(r0) for each k ≤ K .

The majorization bound (21) yields that the maximum of the process L(W (k),θ,θ∗) is

also sandwiched between the maximum of Lε(W
(k),θ,θ∗) and of Lε(W

(k),θ,θ∗) up to a

small random error term. Moreover, Lε(W
(k),θ,θ∗) is quadratic in θ , and its maximum

is given by a quadratic form ‖ξε,k‖2/2 ; similarly for Lε(W
(k),θ,θ∗) . The next result

presents a probabilistic bound for such quadratic forms.

Theorem 6.3. Assume A.1 through A.5 . There exist C1(A) and C2(A) such that for

each x with C1(A)x + C2(A)p ≤ yc and k ≤ K , it holds

P θ∗
{
‖ξε,k‖2 > C1(A)x + C2(A)p

}
≤ 2e−x.

Furthermore, for r > 0 and k ≤ K , it holds

E‖ξε,k‖2r ≤ Cr(A) .

Consider the random set

A2 =

K⋂
k=1

{
‖ξε,k‖ ≤ r0

}
.

Due to the bound of Theorem 6.3, the choice r20 = C1(A)(x + logK) + C2(A)p ensures

that the probability of the set A2 is at most 2e−x .

Below we restrict ourselves to the set A with A = A1 ∩A2 . By construction

P (A) ≥ 1− 4e−x

and on this set θ̃k ∈ Θk(r0) and ‖ξε,k‖ ≤ r0 for all k ≤ K .
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The results of Theorem 6.2 and 6.3 have a number of important corollaries; cf. Spokoiny

(2011).

Corollary 1. It holds on A for every k ≤ K

‖ξε,k‖2/2−♦ε,k ≤ L(W (k), θ̃k(x),θ∗) ≤ ‖ξε,k‖2/2 +♦ε,k. (22)

Corollary 2. It holds on A for every k ≤ K∥∥Dε,k

{
θ̃k(x)− θ∗

}
− ξε,k

∥∥2 ≤ 4♦ε,k + αε,k‖ξε,k‖2,∥∥Dε,k

{
θ̃k(x)− θ∗

}∥∥ ≤ 2♦1/2
ε,k +

(
1 + α

1/2
ε,k

)
‖ξε,k‖. (23)

The result of Corollary 1 can be viewed as a non-asymptotic version of Wilks Theorem.

It claims that the twice excess 2L(W (k), θ̃k(x),θ∗) can be approximated by the quadratic

form ‖ξε,k‖2 . Moreover, the vector ξε,k is asymptotically normal under usual assumptions

by the central limit theorem, thus the twice excess is asymptotically χ2
p .

One can summarize the obtained general results as follows. On the set A of dominating

probability, each estimator θ̃k(x) belongs to the local vicinity Θk(r0) which yields the

bounds (22), (23). Moreover, the random quantities ♦ε,k and ξε,k obey the deviation

and moment bounds of Theorem 6.2 and Theorem 6.3.

6.2.1 Conditions from Spokoiny (2011)

Here we list the conditions from Spokoiny (2011) which are assumed to be fulfilled for

each local likelihood L(W (k),θ) , k ≤ K . Some value r0 is assumed to be fixed for all

conditions. It separates the local zone of local quadratic approximation and the large

deviation zone. The assumption are stated under the true data distribution P . However,

we apply the assumptions only in the case of linear parametric structure with f(·) ≡ fθ∗(·) .

Define

ζk(θ)
def
= L(W (k),θ)−EL(W (k),θ)

= −
n∑
i=1

{
ρτ (Yi − Ψ>i θ)−E{ρτ (Yi − Ψ>i θ)

}
w

(k)
i .

Also denote ∇ζk(θ) = d
dθ ζ(θ) . The majorization bound (21) of Theorem 6.2 is stated in

Spokoiny (2011) under the following conditions.

(ED0) There exists a positive symmetric matrix V 2
k , and constants g > 0 and ν0 ≥ 1

such that Var
{
∇ζk(θ)

}
≤ V 2

k and for all λ with |λ| ≤ g ,

sup
γ∈IRp+1

logE exp

{
λ
γ>∇ζk(θ∗)
‖Vkγ‖

}
≤ ν20λ2/2.
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With this matrix Vk , define the local set

Θk(r0) = {θ : ‖Vk(θ − θ∗)‖ ≤ r0}.

(ED1) For each r ≤ r0 , there exists a constant %(r) ≤ 1/2 such that it holds for all

θ ∈ Θk(r0) and |λ| ≤ g :

sup
γ∈IRp+1

logE exp

{
λ
γ>{∇ζk(θ)−∇ζk(θ∗)}

%(r)‖Vkγ‖

}
≤ ν20λ2/2;

(L0) There are a positive matrix Dk and for each r ≤ r0 and a constant δ(r) ≤ 1/2 ,

such that it holds for all θ ∈ Θk ,∣∣∣∣−2EL(W (k),θ,θ∗)

‖Dk(θ − θ∗)‖2
− 1

∣∣∣∣ ≤ δ(r);

(Er) For any r ≥ r0 , there exist a value g(r) > 0 and a constant ν0 such that for all

|λ| ≤ g(r) ,

sup
γ∈IRp+1

sup
θ∈Θk(r)

logE exp

{
λ
γ>∇ζk(θ)

‖Vkγ‖

}
≤ ν20λ2/2.

(Lr) For each r ≥ r0 and any θ with ‖Vk(θ − θ∗)‖ = r ,

−EL(W (k),θ,θ∗)

‖Vk(θ − θ∗)‖2
≥ b(r) > 0.

All these conditions are assumed to be fulfilled for each k ≤ K . Conditions

(ED0), (ED1) , (L0) are local conditions which should be applied on the local set Θk(r0) ,

while (Lr), (Er) are global conditions which we apply on the complement of Θk(r0) .

Also (ED0), (ED1), (Er) are smoothness or moment assumptions on the log likelihood

process, and the conditions (L0), (Lr) ensure the identifiability properties.

6.2.2 Proof of (Er) , (ED0) and (ED1) .

Let us fix some k ≤ K . Let Nk be the local sample size for the weighting scheme W (k) ;

see (18). Let also r0 by fixed in a way that r0|Ψi| ≤ ρNk for all i with w
(k)
i > 0 , that

is, for all Xi with |Xi − x| ≤ hk .

First we check (Er) . It holds by definition

∇ζk(θ) =

n∑
i=1

Ψi
[
1I(Yi − Ψ>i θ < 0)− P (Yi − Ψ>i θ < 0)

]
w

(k)
i

=

n∑
i=1

Ψiεi(θ)w
(k)
i
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with εi(θ)
def
= 1I(Yi − Ψ>i θ < 0) − P (Yi − Ψ>i θ < 0) . Obviously 1I(Yi − Ψ>i θ < 0) is a

Bernoulli random variable with the parameter qi(θ)
def
= P (Yi − Ψ>i θ < 0) and

logE exp{δεi(θ)} = log
{

1− qi(θ) + qi(θ)eδ
}
− δqi(θ).

The function f(δ)
def
= log

(
1− q + qeδ

)
− qδ fulfills for any q < 1

f(0) = 0, f ′(0) = 0, f ′′(δ) ≤ q(1− q)eδ.

This implies

logE exp{δεi(θ)} ≤ qi(θ){1− qi(θ)}ν20δ2/2, |δ| ≤ g1

for a constant ν0 ≥ 1 depending on g1 only. Therefore, it holds for any γ ∈ IRp+1 and

ρ > 0 with ρ|γ>Ψi| ≤ g1 that,

logE exp{ργ>∇ζk(θ)} ≤ logE exp

{
ρ

n∑
i=1

γ>Ψiεi(θ)w
(k)
i

}

≤
n∑
i=1

logE exp
{
ργ>Ψiεi(θ)w

(k)
i

}
≤

n∑
i=1

ρ2
∣∣γ>Ψiw(k)

i

∣∣2qi(θ){1− qi(θ)}ν20/2

≤ ν20ρ
2‖Vk(θ)γ‖2/2,

where

V 2
k (θ)

def
=

n∑
i=1

qi(θ){1− qi(θ)}ΨiΨ>i
∣∣w(k)

i

∣∣2.
This yields (ED0) with V 2

k
def
= V 2

k (θ∗) and g = g1N
1/2
k ; see (18). Furthermore, the linear

PA f ≡ fθ∗ yields qi(θ
∗) = τ and hence

V 2
k (θ∗) = 4τ(1− τ)V

2
k

for

V
2
k

def
=

1

4

n∑
i=1

ΨiΨ
>
i

∣∣w(k)
i

∣∣2.
For any θ ∈ Θ , it obviously holds V 2

k (θ) ≤ V
2
k ≤

{
4τ(1 − τ)

}−1
V 2
k , and thus (Er) is

fulfilled with g2(r) ≡ 4τ(1− τ)Nkg
2
1 .
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Next we check the local condition (ED1) . For r ≤ r0 and θ ∈ Θk(r) , it holds

∇ζk(θ)−∇ζk(θ∗) =
n∑
i=1

Ψi
{
εi(θ)− εi(θ∗)

}
w

(k)
i .

Similarly to the above, the identity E
{
εi(θ)− εi(θ∗)

}
= qi(θ)− qi(θ∗) implies

logE exp
[
λγ>

{
∇ζ(θ)−∇ζ(θ∗)

}]
≤ 2ν20λ

2‖V kγ‖2 max
i≤n

∣∣qi(θ)− qi(θ∗)
∣∣ 1I(w(k)

i > 0
)

≤ ω(r)ν20λ
2‖V kγ‖2/2

with

ω(r)
def
= 4 max

i≤n
sup

θ∈Θk(r0)

{
qi(θ)− qi(θ∗)

}
1I
(
w

(k)
i > 0

)
.

Further, for any θ ∈ Θk(r) , it holds
∣∣Ψ>i (θ − θ∗)

∣∣w(k)
i ≤ r/Nk

|qi(θ)− qi(θ∗)| 1I
(
w

(k)
i > 0

)
≤ C|Ψ>i (θ − θ∗)| 1I

(
w

(k)
i > 0

)
≤ CN

−1/2
k ‖V k(θ − θ∗)‖ ≤ CN

−1/2
k r,

and (ED1) holds with %(r) = N
−1/2
k r .

6.2.3 The (L0) and (Lr) conditions

These identifiability conditions will be checked under the measure P θ∗ corresponding to

the linear quantile function f(·) = fθ∗(·) . It holds

∇Eθ∗L(W (k),θ) = −
n∑
i=1

Ψi

{
τ − P

(
Yi − Ψ>i θ < 0

)}
w

(k)
i

and

−∇2Eθ∗L(W (k),θ) =

n∑
i=1

ΨiΨ
>
i pi
(
Ψ>i (θ − θ∗)

)
w

(k)
i

def
= D2

k(θ).

Now the Taylor expansion of −Eθ∗L(W (k),θ) at the extreme point θ = θ∗ implies

Eθ∗L(W (k),θ)−Eθ∗L(W (k),θ∗) = −
n∑
i=1

|Ψ>i (θ − θ∗)|2pi
(
Ψ>i (θ◦ − θ∗)

)
w

(k)
i /2

= −(θ − θ∗)>D2
k(θ
◦)(θ − θ∗)/2.
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for some θ◦ ∈ [θ,θ∗] . Further, for any θ ∈ Θk(r0) , it holds by A.4

∣∣∣pi(Ψ>i (θ − θ∗)
)

pi(0)
− 1
∣∣∣ 1I(w(k)

i > 0
)
≤ δ,

and (L0) follows. The global identifiability condition (Lr) is fulfilled if r2 ≥ C1(x + p)

for some fixed constants C1 ; see Spokoiny (2011), Section 5.3, for more details.

6.3 Theorem for critical values

The theorem below assures an upper bound for the critical values zk constructed in

Section 2.5. To avoid technical burdens, we restrict the analysis to the random set A and

discard the large deviation probability part on its complement. The notation P ′(B) for

a set B means P (B ∩A) .

Theorem 6.4. Suppose that r > 0, α > 0 . There exist constants a0, a1 s.t. the propaga-

tion condition is fulfilled with the choice of

zk = a0 + log(α−1) + a1r(K − k) + r log(p) (24)

Proof. First we bound the quantity L
(
W (k), θ̃k(x), θ̃`(x)

)
on the random set A = A1∩A2 .

The majorization (21) and its corollary (22) yield on A with u`k
def
= Dε,k

(
θ̃`(x)− θ∗

)
L
(
W (k), θ̃k(x), θ̃`(x)

)
= L

(
W (k), θ̃k(x),θ∗

)
− L

(
W (k), θ̃`(x),θ∗

)
.

≤ ‖ξε,k‖2/2− Lε

(
W (k), θ̃`(x),θ∗

)
+♦ε,k

= ‖ξε,k‖2/2− u>`kξε,k + ‖u`k‖2/2 + 2♦ε,k

≤
(
‖ξε,k‖+ ‖u`k‖

)2
/2 + 2♦ε,k

≤ ‖ξε,k‖2 + ‖u`k‖2 + 2♦ε,k, (25)

where we used the fact that ‖ξε,k‖ ≤ ‖ξε,k‖ . It is not difficult to see that

‖u`k‖2 = ‖Dε,kD
−1
ε,`Dε,`

(
θ̃` − θ∗

)
‖2 ≤ ‖Dε,kD

−2
ε,`Dε,k‖∞ ‖Dε,`

(
θ̃` − θ∗

)
‖2.

By construction D2
ε,k ≤ D2

k ≤ D2
ε,k and the definition (20) implies by αε,k ≤ 1/2

D2
ε,k ≤ (1− αε,k)

−1D2
ε,k ≤ 2D2

ε,k .

Now it follows from condition A.2 that

‖Dε,kD
−2
ε,`Dε,k‖∞ ≤ 2‖DkD

−2
` Dk‖∞ ≤

2/uk−`0 , k > `,

2u`−k, k < `.
(26)
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Corollary 2 implies

‖Dε,`

(
θ̃`(x)− θ∗

)
‖ ≤ 2♦1/2

ε,` +
(
1 + α

1/2
ε,`

)
‖ξε,`‖ ≤ 2♦1/2

ε,` + 2‖ξε,`‖. (27)

We also use that Eθ∗‖ξε,k‖2r ≤ prCr(A) for all k ≤ K . Now it holds from (25), (26),

and (27) for k > `

E′θ∗L
r
(
W (k), θ̃k(x), θ̃`(x)

)
≤ E′θ∗

[
‖ξε,k‖2 + 8u−k+`0

(
♦1/2

ε,` + ‖ξε,`‖
)2

+ 2♦ε,k

]r
≤ C(A)pru

−r(k−`)
0 . (28)

Similarly one can show that for k < ` by u < 1

E′θ∗L
r
(
W (k), θ̃k(x), θ̃`(x)

)
≤ E′θ∗

[
‖ξε,k‖2 + 8

(
♦1/2

ε,` + ‖ξε,`‖
)2

+ 2♦ε,k

]r
≤ C(A)pr.

Also by Theorem 6.3 for x > 0

P θ∗
{
L
(
W (k), θ̃k(x), θ̃`(x)

)
> C1p+ C2x

}
≤ 2e−x. (29)

These bounds can be used to check that the critical value zk which is selected in the form

(24) to ensure the propagation condition in (11). Consider a random set B`
def
= {k̂(x) = `} ,

By definition of k̂ , when B` happens, at least one of the estimator θ̃`+1(x) must be not

accepted, that is,

B` ⊆
⋃̀
m=1

{
L
(
W (m), θ̃m(x), θ̃`+1(x)

)
> zm

}
.

The bounds (28) and (29) yield by the Cauchy-Schwarz inequality

E′θ∗L
r
(
W (k), θ̃k(x), θ̂k(x)

)
≤

k∑
`=1

[
E′θ∗L

2r
(
W (k), θ̃k(x), θ̃`(x)

)]1/2[
P ′θ∗(B`)

]1/2
≤ C(A)p2r

k∑
`=1

u
−2r(k−`)
0

[
P ′θ∗(B`)

]1/2

≤ C(A)p2r
k∑
`=2

u
−2r(k−`)
0

(∑̀
m=1

P ′θ∗
{
L
(
W (m), θ̃m(x), θ̃`+1(x)

)
> zm

})1/2

.

Fix c0 > log(u−10 ) and consider zm = C1p+C2xm with xm = 2c0r(K−m) + 2x for some
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x . Then (29) implies

E′θ∗
[
Lr
(
W (k), θ̃k(x), θ̂k(x)

)]
≤ C(A)p2r

K∑
`=2

u
−2r(K−`)
0

(∑̀
m=1

2e−xm
)1/2

≤ C(A)p2re−x
K∑
`=2

exp
[
−2r(K − `)

{
c0 − log(1/u0)

}]
≤ C(A)p2re−x

and the bound (11) follows with x = log(1/α) + r log(p) + a0 for a proper a0 .

6.4 Propagation Property and Stability

The oracle result is a consequence of two properties of the procedure: propagation under

homogeneity and stability. The first one means that the algorithm does not terminate

for k < k∗ (no false alarm) with a high probability. The stability property ensures that

the estimation quality will not essentially deteriorate in the steps “after propagation” for

k > k∗ .

By construction, the procedure described in Section 2 provides the prescribed perfor-

mance if the true quantile function f(·) follows the parametric model: at any intermediate

step k < K the non-adaptive estimator θ̃k(x) and the adaptive estimator θ̂k(x) coincide

with high probability yielding that Eθ∗L
r
(
W (k), θ̃k(x), θ̂k(x)

)
is small. The next theorem

claims a similar performance of the k step estimator θ̂k(x) under the true nonparametric

model f(·) , however, the propagation property is only guaranteed for k ≤ k∗ , that is,

while the SMB assumption is fulfilled.

Theorem 6.5. Assume ∆k∗(θ) ≤ ∆ for some k∗ . Then for any k ≤ k∗

E log
{

1 + Lr
(
W (k), θ̃k(x), θ̂k(x)

)
/Rr

}
≤ ∆+ α, (30)

The result of the theorem follows from the next general inequality; see e.g. Spokoiny

(2009).

Lemma 2. Let P , P 0 , be two measures s.t. E log(dP /dP 0) ≤ ∆ < ∞ . For any

random variable Z with E0Z <∞ , it holds E log(1 + Z) ≤ ∆+E0Z .

The propagation result (30) explains well the behavior of the procedure for the first k∗

steps. In addition, we also need a stability property which makes sure that at the further

steps of the algorithm for k > k∗ , the quality of the obtained adaptive estimator θ̂k(x)

will not significantly deteriorate. The stability property can be stated as follows.
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Theorem 6.6. The adaptive estimator θ̂(x) fulfills

L
(
W (k∗), θ̃k∗(x), θ̂(x)

)
1I
{
k̂(x) > k∗

}
≤ zk∗ .

In other words, if k̂(x) ≥ k∗ , then θ̂(x) belongs to the confidence set Ek∗(zk∗) of the

oracle estimator θ̃k∗(x) . This assertion follows from the setup of our procedure because

the estimate θ̂(x) = θ̃
k̂(x)

(x) is accepted. If k̂(x) > k∗ , it should be consistent with

θ̃k∗(x) , and thus it belongs to the confidence set of θ̃k∗(x)(x) .

6.5 Proof of the “oracle” property

The propagation and stability results yield

E log

{
1 +

Lr
(
W (k∗), θ̃k∗(x), θ̃

k̂
(x)
)

Rr

}

= E

[
log

{
1 +

Lr
(
W (k∗), θ̃k∗(x), θ̃

k̂
(x)
)

Rr

}
1I(k̂ ≤ k∗)

]

+E

[
log

{
1 +

Lr
(
W (k∗), θ̃k∗(x), θ̃

k̂
(x)
)

Rr

}
1I(k̂ > k∗)

]

≤ ∆+Eθ∗

[
Lr
(
W (k∗), θ̃k∗(x), θ̃

k̂
(x)
)

Rr

]

+E log

[
1 +

Lr
(
W (k∗), θ̃k∗(x), θ̃

k̂
(x)
)

Rr
1I(k̂ > k∗)

]
≤ ∆+ ρ+ log(1 + zk∗/Rr)
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